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CourseCode:23PHMAL122                                          Offeredto:B.Sc.(H) 

DomainSubject:PHYSICS Semester–II 

Max.Marks:100(CIA:30+SEE:70) TheoryHrs./Week:3 

Credits:04 

 

Unit LearningUnits Lecture Hours 
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A) Simple harmonic oscillator and solution of the differential equation- 

Physical characteristics of SHM, Torsion pendulum-measurements of 

rigidity modulus, Compound pendulum- measurement of ‘g’, 

B) Principle of superposition, the combination of two mutually 

perpendicularsimpleharmonicvibrationsofthesamefrequencyand 

differentfrequencies, –applicationsLissajousfigures 

 
 
 
 
 

12 
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A) Simple harmonic oscillator, damped harmonic oscillator, 

Logarithmic decrement, Relaxation time, and Quality factor. 

B) forcedharmonicoscillator-differentialequationsanditssolutions 
 
Resonance-amplituderesonance. 

 
 
 

12 

II
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A) Fourier theorem (Statement & limitations), evaluation of the Fourier 

coefficients using Fourier’s theorem 

B) Analysisofperiodicwavefunctions-squarewave,Saw tooth wave. 
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A) Transverse wave propagation along a stretched string, Velocity of a 

transverse wave along a stretched string, modes of vibration of stretched 

string clamped at ends, overtones and harmonics. 

B) GeneralsolutionoftheLongitudinalwaveequation.Specialcases 

(i) bar fixed at both ends (ii) bar fixed at the midpoint (iii) bar fixed at 

one end. 

 
 
 
 
 

12 
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vU
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 Ultrasonics, properties of ultrasonic waves, production of Ultrasonics by 

piezo-electricandmagnetostrictionmethods,detectionofUltrasonics, 

Applicationsandusesofultrasonicwaves. 
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Text Book 

1. B.Sc.Physics,Vol.1,TeluguAcademy,Hyderabad 
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Model Question Paper                          

WavesandOscillations 

                                                                                        SECTION-A 
Answerthefollowing: 5x10=50M 

1. A) Define simple harmonic motion. Derive the equation of a simple harmonic oscillator and 
obtain its solution (L3. CO1) 

(OR) 

B) Discuss the combination of two mutually perpendicular simple harmonic 
vibrations (L3, CO1) 

2. A) What are damped oscillations? Derive the equation of motion of a forced oscillator and 
find its solution (L3, CO3) 

(OR) 

B) What are forced oscillations? Derive the equation of motion of a forced oscillator and 
obtain its solution (L3, CO2) 

3 A)StateFourier’stheoremandevaluatetheFouriercoefficients.(L3,CO3). 

(OR) 

B)AnalyseasquarewaveusingtheFouriertheorem.(L3,CO3) 

4.A) Derive an expression for the velocity of a transverse wave along a stretched string.(L3, 
CO4). 

(OR) 
B) Deduce the modes of vibration of a rod clamped at one end and free at the other end 

(L2, CO4) 

5 A)DescribetheMagnetostrictionmethodofproducingultrasonicwaves.(L2,CO5) 

 
(OR) 

B)DescribethePiezo-electricmethodofproducingultrasonicwaves(L2,CO5) 
 

                                                                                     SECTION-B 

AnsweranyTHREEofthefollowingquestions: 3x4=12M 

6. Explainbrieflythephysicalcharacteristicsofsimpleharmonicmotion(L1,CO1) 

7. Definerelaxationtimeanddriveanexpressionforit.(L2,CO2) 

8. MentionthelimitationsofFourier’stheorem(L1,CO3) 

9. Explainovertonesandharmonics.(L1,CO4) 

10.WriteanyfiveapplicationsofUltrasonics.(L1,CO5) 
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Section–C 2X4=8M 

AnsweranyTWOofthefollowing: 

9. Aspringofforceconstant20NM-1isloadedwithamassof0.1kgandallowedto oscillate. Calculate 
the time period and frequency of oscillation of the string (L4, CO1) 

10. The amplitude of an oscillator of frequency 200Hz falls to 1/10th of its initial value after a 
time of 10s. Calculate its relaxation time and Q-factor. (L4, CO2) 

11. A steel wire of length 50cm has a mass of 5gm. It is stretched with a tension of 
400N.Calculate the frequency of the wire in the fundamental mode of vibration (L3, CO4) 

12. Calculate the fundamental frequency of a quartz crystal of thickness 0.003m given Y-
8X1010Pa and density is 2500kgm-3 for quartz (L3, CO5) 
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WAVESANDOSCILLATIONS 

PRACTICALS 

CourseCode:23PHMAP122 Offeredto:B.Sc.(H) 

DomainSubject:PHYSICS Semester–II 

Max. Marks:50(CIA:15+SEE:35) TheoryHrs./Week:2 

Credits:01 

COURSEOBJECTIVE: 

Todeveloppracticalskillsintheuseoflaboratoryequipmentandexperimental techniques for 
measuring properties of matter and analyzing mechanical systems 

 
Courseoutcomes:Onsuccessfulcompletionofthiscourse,thestudentswillbeableto: 

 
CO 1 Gainhands-onexperienceinsettingupandconductingexperimentsrelatedto waves and 

oscillations. 
CO 2 Investigateandanalyzethebehaviorofdifferenttypesofwaves,suchas mechanical waves, 

sound waves, and electromagnetic waves. 
CO 3 Examine resonance phenomena in various systems and understand the 

conditionsthat lead to resonance. 
CO 4 Enhance skills in presenting findings through graphical representations and written 

reports. 
CO 5 Develop critical thinking skills by solving problems related to wave mechanics and 

oscillatory systems. 
ListofExperiments 

1. Volumeresonatorexperiment 
2. Determinationof‘g’bycompound/barpendulum 
3. Simple pendulum normal distribution of errors-estimation of time period and the 

error of the mean by statistical analysis 
4. Determinationoftheforceconstantofaspringbystaticanddynamicmethods. 
5. Determinationoftheelasticconstantsofthematerialofaflatspiralspring. 
6. Coupledoscillators 
7. Verificationoflawsofvibrationsofstretchedstring–sonometer 
8. Determinationoffrequencyofabar–Melde’sexperiment. 

9. Study of a damped oscillation using the torsional pendulum immersed in liquid- 
decay constant and damping correction of the amplitude. 

10. FormationofLissajousfiguresusingCRO. 
 

Note: 
 

1. 8 (Eight) Experiments are to be done and recorded in the lab. These experiments 

will be evaluated by the CIA. 

2. For certification minimum of 6 (Six) experiments must be done and recorded by 
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students who had put in 75 % of attendance in the lab. 

3. Thebest6experimentsaretobeconsideredfortheCIA. 

4. 10+5(RECORD)=15marksforCIA 

5. 35marksforthepracticalexam. 
 

ThemarksdistributionfortheSemesterEndpracticalexaminationisasfollows:  

Formula/Principle/Statementwithanexplanationofsymbols 05 

Diagram/CircuitDiagram/TabularColumns 05 

Settingupoftheexperimentandtakingreadings/Observations 10 

Calculations(explicitlyshown)+Graph+ResultwithUnits 05 

ProcedureandPrecautions 04 

Result 01 

Viva-voce 05 

TotalMarks: 35 
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UNIT-I 
FUNDEMENTALS OF VIBRATION 

 
SIMPLE HARMONIC MOTION (SHM): 

The acceleration of a body in periodic motion along a straight line is directly 
proportional to its displacement but in opposite direction and is always directed towards a 
fixed point, then the body is said to be in simple harmonic motion. 

Properties: 

1.The motion is periodic. 
2. The motion is along a straight line about the mean position. 
3. The acceleration is directly proportional to its displacement but in opposite    
    direction 
4. Acceleration is always directed towards its mean position. 
 

Ex: Simple pendulum, vibration of prongs of a tuning fork etc. 
 

THE SIMPLE OSCILLATOR: 
 When a particle or a body moves such that its acceleration is always directed towards a 

fixed point and varies directly as its distance from that point, the particle or body is said to 
execute S.H.M. The particle or body executing simple harmonic motion is called a Simple 
oscillator. 
Equation of motion of simple oscillator: 

            Consider a particle ‘P’ of mass ‘m’ executing SHM about an equilibrium position ‘O’ 
along X- axis as shown in figure.                                                                    

                                                   -----------------•--------------- 
                                                                                                                   O        P          
                                                                                                        |           |---x-- -|   
By definition, the restoring force is directly proportional to the displacement (x) but in 

opposite direction. 

                i.e.,       F α – x   or           F = – k x -------- (1)  

Where   k = proportionality constant or force constant 

                = force per unit displacement 

‘–’ ve sign indicates ‘F’ and ‘x’ are in opposite direction. 

According to Newton’s-II Law of motion, the restoring force on mass m produces an 

acceleration,  𝑎 =
ௗమ௫

ௗ௧మ
on the mass, so, that  
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 F = mass x acceleration, i.e.,      F = m a   i.e.,        F = m 
2

2

td

xd    ------ (2)                       

From equations (1) & (2) we get, 

                                   m 2

2

td

xd
  = – k x 

2

2

td

xd
  = – 

m

k
 x 

2

2

td

xd
   + 

m

k
 x = 0  

2

2

td

xd
   + ω2 x = 0   -------- (3)  

                  Where, ω2= 
m

k
  or   ω = 

m

k
 

Eq. (3) is known as differential equation of simple harmonic oscillator. 

SOLUTION OF DIFFERENTIAL EQUATION OF SIMPLE OSCILLATOR:  

    Let, 2

2

td

xd
= 

dt

d

dt

dx

dt

d 










dt

dx
=    

                                   = 
dx

d
. 

dt

dx
 

2

2

td

xd
 =  . 

dx

d
----------------- (4) 

The equation of motion of Simple harmonic oscillator is,  

2

2

td

xd
= – 

2
  x 

From eq. (4)     . 
dx

d
= – 

2
  x 

 ʋ dυ = – 
2

  x dx 

On Integrating,    dxxd
2  
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22

222
x 

 + C1, Where C1= Integrating constant 

The value of C1 is calculated by applying the condition    at x =a (amplitude) 
velocity of the particle is zero (ʋ = 0) 

  0 =
2

22
a + C1 

C1 = 
2

22
a

 


222

22222
ax 




  

 )(
2222

xa   

)(
22

xa  ----------------- (5) 

Asʋ=
dt

dx
,  eq (5) is written as 

 )(
22

xa  = 
dt

dx
 

 dt
xa

dx 
 )(

22
-------------------------------(6) 

To integrate eq. (6) substitute   x = a Sinθ.       Hence,  dx = a Cosθdθ 

dt
Sinaa

dCosa 





 )( 222
 

௔௖௢௦ఏௗఏ

௔௖௢௦ఏ
= 𝜔 𝑑𝑡 

                                         dθ = ω dt     -----------------(7) 

Integrating eq. (7), we get 𝜃 = (ωt + ∅), where ∅ is a constant 

Now, the displacement    x = a Sin (ωt + ϕ) ----------------(8) 

              This is the displacement of the particle at any instant. 

If the motion of the particle is on Y-axis, 
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                                         y = a Cos (ωt + ϕ) --------------(9) 

CHARACTERISTICS OF SHM 

1. Displacement (x): The displacement of any particle at any instant executing SHM is 

given by 

                                                     x = a Sin (ωt + ϕ) 

The maximum displacement from mean position is called amplitude. 

                                    Here, amplitude = a 

2.Velocity (ʋ): The velocity of the oscillating particle is given by 

                       ʋ = 
dt

dx
= a ω Cos (ωt + ϕ) 

)(1
2

  tSina  

)(
222

  tSinaa  

)(
22

xa   

At mean position,       x = 0,      ʋ = ω a      is maximum 

                                          i.e., ʋmax = ω a 

At extreme position,    x = a,    ʋ = 0 

3. Time Period (T): time taken for one complete oscillation is called time  
                                period. 


2

T  

x

tdxd
T

22 /

2
   2

2

td

xd
= –

2
 x 

22 /
2

tdxd

x
T   

onaccelerati

ntdisplaceme
T 2  
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4. Frequency (ν): The number of oscillations made in one second is called                       

frequency.        ν = 
m

k

T 


2

1

2

1
 

m

k
  

 

ntdisplaceme

onaccelerati




2

1
  

5. Phase: Phase denote the position and direction of the particle at any instant  

                  of time. The angle, (ωt + ϕ) is called phase of vibration. 

6. Epoch: The value of phase when t = 0 is called the initial phase (or) epoch. 

                       Here, ϕ is called epoch. 

Relation between displacement, velocity and acceleration: 

The displacement of the particle executing SHM is 
given by,         x = a Sin (ωt + ϕ)   

Its velocity,    ʋ = 
dt

dx
= a ω Cos (ωt + ϕ) 

   Its acceleration,   2

2

td

xd
 =  – aω2 Sin (ωt + ϕ) 

2

2

td

xd
= – ω2x 

If ϕ = 0,            x = a Sin ωt = a Sin 







T

t2


 2
2


T

 

                           ʋ = a ω Cos 







T

t2
 

         Acceleration = – a ω2Sin 







T

t2
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TORSIONAL PENDULUM-MEASUREMENTS OF RIGIDITY MODULUS: 

 Torsional Pendulum consists of a heavy metal sphere or cylinder suspended from a rigid 
support by means of experimental wire. When the sphere or cylinder is slightly twisted in the 
horizontal plane and the released, the pendulum starts torsional oscillations about the axis of 
suspension. 

Theory: 

Let a sphere or cylinder of mass M be suspended at one end of a wire of length l and 
radius r keeping its other end fixed at a rigid support.  

Let, a pendulum be slightly twisted in the horizontal plane through an angle 𝜃 radians 
and then released. The pendulum starts executing torsional oscillations. Let I be the moment 
of inertia of cylinder or sphere about the axis of suspension.  

Within the elastic limits, the couple or torque acting on the wire is proportional to the 
displacement. 

Therefore, 𝜏 = 𝐼𝛼, 

Where angular acceleration, 𝛼 =
ௗమఏ

ௗ௧మ
 and internal couple acting, 𝜏 = 𝐼

ௗమఏ

ௗ௧మ
. 

If C be the torsional rigidity of suspension wire (i.e., couple required to produce unit 
radian twist in the wire), the restoring couple (𝜏) required to produce 𝜃 radians is −𝐶𝜃.  

In equilibrium,     𝐼
ௗమఏ

ௗ௧మ  = −𝐶𝜃.---------------(1) 

Therefore, the equation of motion of the pendulum is, 

𝐼
ௗమఏ

ௗ௧మ  +𝐶𝜃=0 or 
ௗమఏ

ௗ௧మ  + 
஼

ூ
𝜃 =0 

  or 
𝒅𝟐𝜽

𝒅𝒕𝟐  + 𝝎𝟐𝜽 =0      where,𝜔ଶ = 
஼

ூ
-------(2) 

This is the differential eq. of simple harmonic motion  

whose time period T is given by 

  T= 
𝟐𝝅

𝝎
=

𝟐𝝅

ට
𝑪

𝑰

 ------------(3) 

We know that torsional rigidity C of a wire is given byC = 
గఎ ర

ଶ௟
 ---------(4) 

Where η is the modulus of rigidity of the material of wire and I is the moment of inertia. 
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In case of sphere, I = 
ଶ

ହ
MR2, 

Where M= mass of the sphere and R= radius of sphere. 

In case of cylinder, I = 
ଵ

ଶ
 MR2, 

Where M= mass of the cylinder and R= radius of cylinder. 

Substituting the value of C from eq, (4) in eq (3), we get. 

T = 2𝜋ඨቈ
ூ

ഏആೝర

మ೗

቉   =2𝜋ටቂ
ଶூ௟

గఎ௥రቃ 

Or     T2 = 
଼గమூ௟

𝜋𝜂𝑟4   = 
଼గூ

𝜂𝑟4 

                        ∴ 𝜼 =
𝟖𝝅𝟐𝑰𝒍

𝑻𝟐𝒓𝟒
 

Measurement of Rigidity Modulus By Torsional Pendulum: 

The following procedure is adopted: 

(i) The sphere or the cylinder is suspended from a rigid support with the help of 
experimental wire. 

(ii) The sphere or the cylinder is slightly rotated about the wire and released so that it 

begins to execute torsional oscillations of small amplitude about the wire as axis. 

(iii) Start stop watch and simultaneously count the number of oscillations. The time 

period is               T=
𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒐𝒔𝒄𝒊𝒍𝒍𝒂𝒕𝒊𝒐𝒏𝒔 

𝒕𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆 𝒕𝒂𝒌𝒆𝒏
 

(iv) Measure the length l and radius r of the wire. The radius of the wire is measured 
with the help of screw guage and length l with the help of meter scale. 

(v) With the help of Vernier Callipers measures the radius R of the sphere or cylinder. 
(vi) Measure the mass M (in Kg) of the (sphere or cylinder) with the help of physical 

balance. 

Calculate        I = 
ଶ

ହ
M R2   (for sphere) 

                       I = 
ଵ

ଶ
 MR2(for cylinder) 

Using the formula𝜼 =
𝟖𝝅𝟐𝑰𝒍

𝑻𝟐𝒓𝟒 , we calculate the rigidity modulus of the wire. 

Therefore, For cylinder, 𝜼 =
𝟖𝝅𝟐𝒍

𝑻𝟐𝒓𝟒
. ቀ

𝟏

𝟐
 𝑴𝑹𝟐ቁ= 

𝟒𝝅𝑴𝑹𝟐𝒍

𝑻𝟐𝒓𝟒
. 

For sphere, 𝜼 =
𝟖𝝅𝟐𝒍

𝑻𝟐𝒓𝟒
.ቀ

𝟐

𝟓
 𝑴𝑹𝟐ቁ =   

𝟏𝟔𝝅𝑴𝑹𝟐𝒍

𝟓 𝑻𝟐𝒓𝟒
. 
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COMPOUND PENDULUM: 

 A compound pendulum is a rigid body, capable of oscillating about a horizontal axis 
passing through it (not through its centre of gravity) in a vertical plane. 

Consider the vertical section of an irregular rigid body pivoted at a point S. In the 
equilibrium position of the body, the centre of mass lies vertically below S. Let mbe the mass 
of the body and l the distance between the point of suspension S and centre of gravity G. 

Let, at any instant t, the body be displaced through an angle 𝜃. Let a restoring couple acts 
on the body to bring it in its mean position of the rest. Due to inertia, it does not stop in the 
position of rest but swings to opposite side, i.e., the body executes simple harmonic motion. 

 

Theory: 

The time period is calculated as follows, 

Resorting couple = weight x perpendicular distance of G from S 

∴ 𝜏 = mg x l sin 𝜃 

or 𝜏 = mg l. 𝜃(∵  sin 𝜃  = 𝜃, when 𝜃 is small). 

If I is the moment of inertia of the body about an  

axis through S perpendicular to the plane of oscillation,  

and  
ௗమఏ

ௗ௧మ
 angular acceleration, the torque acting on it     𝜏 = I

ௗమఏ

ௗ௧మ
 

and thus    I
ௗమఏ

ௗ௧మ
 = −mg l . 𝜃 

negative sign indicates that angular acceleration is always towards the position of rest. 
Then, 

ௗమఏ

ௗ௧మ
  = −

௠௚ ௟ 

ூ
`𝜃  = −p2θWhere, 

௠௚ ௟ 

ூ
  = p2 

This is the equation of simple harmonic motion whose time period T is given as, 

  T = 
𝟐𝝅

𝒑
  = 2𝝅ටቀ

𝑰

𝒎𝒈𝒍
ቁ    -----------------------(A) 

       If Ig be the moment of inertia of the body about its centre of gravity, then from the 
theorem of parallel axes 

     I = Ig = ml2 
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or                                           I = mk2 + ml2----------------------------(B) 

where k is the radius of gyration about an axis through the centre of gravity. 

Substituting the value of Ifrom eq. (B) into eq. (A) 

T = 2𝜋ටቀ
𝒎𝒌𝟐ା 𝒎𝒍𝟐

𝒎𝒈𝒍
ቁ    =   2𝝅 ඨቆ

𝒌𝟐

𝒍
ା𝒍

𝒈
ቇ 

Comparing the above time period with the periodic time of the simple pendulum  

                                                  T=2𝝅 ටቀ
𝑳

𝒈
ቁ, we get L = 

𝒌𝟐

𝒍
+ 𝒍 

It is, therefore, termed as the length of the equivalent simple pendulum. 

PRINCIPLE OF SUPERPOSITION OF WAVES 

According to the principle of superposition, when a medium is distributed 
simultaneously by any number of waves, the instantaneous resultant displacement 
of the medium at every instant is the algebraic sum of the displacements of the 
medium due to individual waves in absence of others. 

If y1, y2, y3,…. be the displacement vectors due to waves 1,2, 3,.. acting separately, then 
the resultant displacement is  

                  y= y1+y2, +y3+……. 

The following are the important cases of the superposition of waves: 

(i) Two waves of the same frequency moving in the same direction (Interference of 

waves). 
(ii) Two waves of the slightly different frequencies moving in the same direction 

(Beats). 
(iii) Two waves of the same frequency moving in the opposite direction (Stationary 

Waves). 
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COMBINATION OF TWO MUTUALLY PERPENDICULAR SIMPLE 
HARMONIC VIBRATIONS 

EQUAL FREQUENCIES 

Let us consider two simple harmonic motions having the same frequency one acting along 
X-axis and the other acting along Y-axis. Let the two vibrations be represented by  

                x = a Sin (ωt + ϕ) ---------- (1) 

            and   y = b Sin ωt          ----------- (2) 

where a, b arethe  amplitudes of ‘x’ and ‘y’ vibrations respectively. 

The x motion is ahead of the y motion by angle ϕ i.e., the phase different between the two 
vibrations is ϕ. 

The equation of resultant vibrations is obtained by eliminating t between eqs. (1) and (2) 

From eq. (2), Sin ωt = ቀ
௬

௕
ቁ 

   Cos ωt = tSin21  = 2

2

1
b

y
  

Expanding eq (1) and substituting the values of sin ωt and cos ωt, we get 

From eq. (1),  
a

x
= Sin ωt Cos ϕ + Cos ωt Sin ϕ 

a

x
= 

b

y
 Cos ϕ + 2

2

1
b

y
  Sin ϕ 

a

x
– 

b

y
 Cos ϕ = 2

2

1
b

y
  Sin ϕ 

Squaring on both sides, 

2







  Cos

b

y

a

x
= 










2

2

1
b

y
Sin2 ϕ 

2

2

a

x
 + 2

2

b

y
Cos2 ϕ – 

ab

xy2
Cos ϕ = Sin2 ϕ – 2

2

b

y
Sin2 ϕ 

2

2

a

x
 + 2

2

b

y
(Cos2 ϕ + Sin2 ϕ)– 

ab

xy2
Cos ϕ = Sin2 ϕ  
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2

2

a

x
 + 2

2

b

y
 –

ab

xy2
cos ϕ = sin2 ϕ     --------- (3) 

This equation represents oblique ellipse, which is the resultant path of the 
particle. 

Special Cases: 

1. when ϕ = 0 (i.e., the two vibrations are in phase) 

    Cos ϕ = 1 and sin ϕ = 0 

    From Eq. (3)    2

2

a

x
 + 2

2

b

y
– 

ab

xy2
= 0                                             fig (i)                                                                      

2







 

b

y

a

x
= 0 

 





 

b

y

a

x
= 0   

 x
a

b
y  --------- (4) 

 This represents two coincident straight lines passing through the origin and inclined 
to X-axis at an angle ‘θ’. 

     Tan θ = 
a

b
   (or) 






 

a

b
Tan 1  

This resultant path is shown in fig. (i) 

2. When ϕ = 
4


we have, 

Cos ϕ = 
2

1        and       Sin ϕ = 
2

1  

From Eq. (3)    2

2

a

x
 + 2

2

b

y
– 

ab

xy2

2

1
= 

2

1
--------- (5) 

     This represents an oblique ellipse, shown in the figure.                                                                     

3.When ϕ = 
2


  we have,   

Cos ϕ = 0   and     Sin ϕ = 1 
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From Eq. (3)    2

2

a

x
 + 2

2

b

y
= 1    --------- (6) 

      The resultant path is an ellipse, whose major axis coincides with the   coordinate axis 
as shown in fig.  

       If a = b , then              
222 ayx   

      So, the resultant path of the particle is a circle of radius ‘a’ as shown in figure.  

4.When ϕ = 
4

3
we have, 

Cos ϕ = –
2

1        and       Sin ϕ = 
2

1
 

    From Eq.(3)   2

2

a

x
 + 2

2

b

y
– 

ab

xy2










2

1
= 

2

1
 

2

2

a

x
 + 2

2

b

y
+ 

ab

xy2
= 

2

1
--------- (7) 

    This equation represents an oblique ellipse, as shown in figure 

5.when ϕ = 𝜋.  We have,   cos ϕ = –1   and     sin ϕ = 0 

      From Eq. (3)    2

2

a

x
 + 2

2

b

y
+ 

ab

xy2
= 0 

2







 

b

y

a

x
= 0 

 





 

b

y

a

x
= 0   

a

x
= 

b

y
 

 x
a

b
y  --------- (8) 

     This again represents two coincident straight lines passing through the origin and 
inclined to X-axis at an angle ‘θ’. 

       Tan θ = –
a

b
(or) 






 

a

b
Tan 1  

         This resultant path is shown in figure. 
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DIFFERENT FREQUENCIES (FREQUENCIES IN THE RATIO 1:2 

Consider two simple harmonic motions have the same frequency in the ratio 2:1 one acting along 
X-axis and the other acting along Y-axis. These vibrations are represented by  

                x = a Sin (2ωt + ϕ) ---------- (1) 

            and   y = b Sin ωt          ----------- (2) 

     where a, b are their respective amplitudes and ϕ is the phase angle by which x-vibration the initially 
ahead of y-vibration. The equation of the resultant vibration is obtained by eliminating t between eqs. 
(1) & (2) 

From eq. (2), Sin ωt = ቀ
௬

௕
ቁ,   Cos𝜔t = √1 − 𝑠𝑖𝑛ଶ𝜔𝑡 

∴   cosωt = 2

2

1
b

y
  

Expanding Eq. (1) we get, 

a

x
= Sin 2ωt Cos ϕ + Cos 2ωt Sin ϕ 

a

x
= 2 sin ωtcos ωt cos ϕ + (1-2 Sin2ωt) sin ϕ 

Substituting the value of sin ωt and cos ωt, we have 

a

x
=

ଶ௬

௕ 2

2

1
b

y
 Cos ϕ +ቀ1 −

ଶ௬మ

௕మ ቁsin ϕ 

or   
a

x
− ቆ1 − 2𝑦

2

𝑏
2 ቇsin ϕ = 

ଶ௬

௕ 2

2

1
b

y
 cos ϕ 

Squaring both sides 

௫మ

௔మ + ቀ1 −
ଶ௬మ

௕మ ቁ
ଶ

sin2ϕ −
ଶ௫

௔
ቀ1 −

ଶ௬మ

௕
ቁsin ϕ =

ସ௬మ

௕మ ቀ1 −
௬మ

௕మቁcos2 ϕ 

௫మ

௔మ
 + sin2ϕ + 

ସ௬ర

௕ర
 sin2ϕ −

ସ௬మ

௕మ
 sin2ϕ −

ଶ௫

௔
 sin ϕ + 

ସ ௫ ௬మ

௔ ௕మ
sin ϕ = 

ସ௬మ

௕మ
cos2 ϕ −

ସ  ௬ర

 ௕ర
 cos ϕ 

௫మ

௔మ
 + sin2ϕ−

ଶ௫

௔
 sin ϕ +

ସ  ௬ర

 ௕ర
 (sin2ϕ+cos2 ϕ)− 

ସ௬మ

௕మ
(sin2ϕ+cos2 ϕ) +

ସ ௫ ௬మ

௔ ௕మ
sin ϕ =0 

ቀ
௫

௔
− sin∅ቁ

ଶ
+ 

ସ  ௬ర

 ௕ర
−  

ସ௬మ

௕మ
+

ସ ௫ ௬మ

௔ ௕మ
sin ϕ =0 
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ቀ
௫

௔
 − sin∅ቁ

ଶ
+

ସ௬మ

௕మ ቀ
௬మ

௕మ
+

௫

௔
sin ϕ − 1ቁ =0---------------------(3) 

This is the equation of a curve having two loops, which is the resultant path. 

 

Special Case 

(i) When 𝜙=0, 𝜋, 2𝜋, When the two component vibrations are in phase. 

Substituting ϕ=0 in eq. (3),  

we have,ቀ
௫మ

௔మቁ
ଶ

+
ସ௬మ

௕మ ቀ
௬మ

௕మ
− 1ቁ =0 -----------------(4) 

This is represented in the figure. 

(ii) When 𝜙=
గ

ସ
. 

 

In this case 𝑠𝑖𝑛∅ =
ଵ

√ଶ
. The eq. (3) is  

ቀ
௫మ

௔మ
 −

ଵ

√ଶ
ቁ

ଶ

+
ସ௬మ

௕మ ቀ
௬మ

௕మ
− 1 +

௫

௔√ଶ
ቁ=0-----------(5) 

This represents a curve as shown in the figure. 
 

(iii) When 𝜙=
గ

ଶ
, we have 𝑠𝑖𝑛∅ = 1. Then eq. (3) gives, 

ቀ
௫

௔
 − 1ቁ

ଶ
+

ସ௬మ

௕మ ቀ
௬మ

௕మ
+

௫

௔
− 1ቁ=0 

ቀ
௫

௔
 − 1ቁ

ଶ
+

ସ  ௬ర

 ௕ర
+

ସ௬మ

௕మ ቀ
௫

௔
 − 1ቁ=0 

 

ቄቀ
௫

௔
 − 1ቁ +

ଶ௬మ

௕మ ቅ= 0 

𝑇ℎ𝑖𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠  two coincident parabolas, the equation of each parabola being  

ቀ
௫

௔
 − 1ቁ +

ଶ௬మ

௕మ
= 0      or 

ଶ௬మ

௕మ
= − ቀ

௫

௔
 − 1ቁ 

∴        y2 = −
௕మ

ଶ௔
(x -a) --------------(6) 

The pair of coincident parabolas symmetrical about x-axis is shown in the 

figure. 

(iv)  When 𝜙=
ଷగ

ଶ
. In this case 𝑠𝑖𝑛∅ =

ଵ

√ଶ
 . The eq. (3) reduces to the same 

form as in case (ii). 

Hence the path of resultant vibration is the same. 
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(v) When 𝜙=𝜋. In this case sin 𝜙=0. Hence, the figure is again obtained as shown in the figure. 

LISSAJOUS FIGURES 

The resultant path traced out by a particle when it is acted upon simultaneously by two 
simple harmonic motions at right angles to each other is known as Lissajous figure. 

The nature of resultant path depends on, 

(i) The amplitude of vibrations 

(ii) The frequencies of two vibrations 

(iii) The phase difference between them. 

USES OF LISSAJOUS FIGURES 

1. The ratio of the frequencies of two vibrating systems can be obtained from   
    their Lissajous figure provided the ratio is in a whole number                          
    i.e., 1:1, 1:2, 1:3, …so. on 

2. The Lissajous figure provide a good method for adjusting the frequencies of  
    two forks to a given ratio. 

3. Lissajous figures may be used to determine the frequency of a tuning fork  
    provided the frequency of the other tuning fork producing the figure is known  
    and are comparable i.e., in a whole number ratio. 

4. These figures are useful in testing the accuracy of a tuning of some simple  
    intervals between two forks.  

5. The figures may be employed to investigate how the period of a rod fixed at  
    one end varies with the length of the rod.  

6. Helmholtz used these figures to investigate the variation of a violin string. 

 

*********** 

 

 

 

Problems:  
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1. A particle executing SHM has a maximum velocity of 0.4 m/s and a maximum 
acceleration of 0.8 m/s2. Calculate the amplitude and the period of oscillation. 

Sol: ʋmax=a ω = 0.4 m/s 

 amax= a ω2 = 0.8 m/s2  

Ta

aa 




22

max

max   

4.0

8.02


T

   = 2   

 






2

22
T = 3.14 sec 

 

ʋmax=a ω (or) amplitude, ma 2.0
2

4.0max 



 

2.The displacement of a particle executing SHM is                                      
   x = 0.01 Sin 100π (t +0.005) m.  

Calculate amplitude, periodic time, maximum velocity and displacement at the time of 
start? 

Sol: Given that, x = 0.01 Sin 100π (t +0.005) m 
                         x = 0.01 Sin (100π t +0.5π) m 
       The general equation is, x = a Sin (ωt + ϕ) 
       On comparison we get, 
       (i) amplitude a = 0.01 m      and ω = 100π 

       (ii) Time period 02.0
100

22








T Sec  

       (iii)  ʋmax=a ω = 0.01X 100π = π = 3.14 m/s 

       (iv)  displacement at the time of start (t = 0) 
                    x = 0.01 Sin 100π (0.005) 
                    x = 0.01 Sin π/2 
                    x = 0.01 m

  

 

 

 

3. A particle executing SHM makes 100 complete oscillations per minute and its 
maximum speed is 5 m/s. what is the length of its path and maximum acceleration? 



24 
 

Find the velocity when the particle is half wave between its mean position and the 
extreme position?  

Sol:           ν = 
60

100 = 
6

10
 

                   ω = 2π ν = 
6

14.320

6

102 


 = 10.47 rad/s 

ʋmax=a ω = 5 m/s 

amplitude, ma 48.0
47.10

5max 



 

      length of the path = 2 a = 2 x 0.48 = 0.96 m 

amax= a ω2 = 0.48 X (10.47)2 = 52.62 m/s2 

      The velocity of the particle, )(
22

xa   

4

2
2 a

a 
 =

4

3
2

a at the half wave, x = a/2 

ʋ = 
2

3 a =
2

48.047.10732.1  = 4.352 m/s 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT-II 
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DAMPED AND FORCED OSCILLATION 

Free Vibrations 

When a body is capable of vibrations is displaced from its mean position of equilibrium and 
then released, it begins to vibrate. In an ideal harmonic oscillator, the amplitude of vibration remains 
constant for an infinite time, such vibrations are called free vibrations and the frequency of vibration 
is called as natural frequency.  

Damped Vibrations 

 The vibrations of a freely vibrating body (such as a pendulum or spring) gradually diminish in 
amplitude and ultimately die away, as the oscillating system is always subjected to frictional forces 
arising from air resistance, such vibrations are known as damped vibrations. 

Forced Vibrations 

 When a body is made to vibrates by an external periodic force (which may or may not 
have its frequency equal to the natural frequency of the body), the body starts vibrating with its own 
natural frequency but ultimately it vibrates with the frequency of applied force, such vibrations are 
called forced vibrations The forces vibrations, after removal of external periodic force, become free 
and die out in course of time. 

DAMPED HARMONIC OSCILLATOR 

In an ideal harmonic oscillator, the amplitude of vibration remains constant for an infinite time. 
When a body vibrates in air or in any medium which offers resistance to its motion, the amplitude of 
vibration decreases gradually and ultimately the body comes to rest i.e., the body is subjected to 
frictional forces arising from air resistance and the motion of the body is known as damped simple 
harmonic motion. 

Examples: 

 1. If we displace a pendulum from its equilibrium position it will oscillate with a decreasing 
amplitude and finally come to rest in equilibrium position.  

2. Let a mass m is suspended from the spring and set to vibrate. The mass vibrates for a longer time in 
air as compared to the mass which vibrates partially in air and partially in liquid kept below the mass. 
The damped force is more when the mass moves in the liquid and hence the vibrations die out more 
quickly in the liquid than in air. 

 
 
 
 
 

DIFFERENTIAL EQUATION OF MOTION OF DAMPED HARMONIC 
OSCILLATOR 

There are two opposing forces acting on the damped oscillator, 
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1. The restoring force (f1) is directly proportional to the displacement (x) but in  
    opposite direction. 

         i.e.,       f1 α – x          (or)   f1 = –μ x           
where   μ = proportionality constant (or) force constant i.e., force per unit displacement 

2. A frictional force (f2) proportional to velocity (ʋ) but in opposite direction 

          i.e.,    f2 α –ʋ   (or)    f2 α – 
dt

dx 
dt

dx
=  

        (or)      f2 = – r 
dt

dx  

   where   r = frictional force per unit velocity 

    The resultant force, F = f1+ f2 

            F = – μ x – r 
dt

dx  

But,    F = m a               where,  m = mass of the particle 

      F = m 
2

2

td

xd   a = 
2

2

td

xd  

  Equation of the motion of the particle is,          m 2

2

td

xd
= – μ x – r 

dt

dx
 

2

2

td

xd
+   

m

r

dt

dx
 +

m


 x = 0 

2

2

td

xd
+ 2 b 

dt

dx
  + ω2 x = 0     -------- (1) 

This is known as differential equation of damped harmonic oscillator. 

where, 
m

r
=2 b    Here, b = damping constant  

b

1
= decay modulus 

                                  ω2= 
m


(or) ω = 

m


 

 
 

SOLUTION OF THE EQUATION FOR VARIOUS BOUNDARY CONDITIONS 

Equation (1) is a second-degree differential equation. 
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  Let its solution be,    x = A eαt--------(2) 

where A, α are arbitrary constants 

Differentiating eq.(2) with respect to t, we get, 

dt

dx
 = A α eαt    and 2

2

td

xd
= A α2 eαt

  

Substituting these values in eq. (1) we get,  

     A α2 eαt + 2b A α eαt + 
2

 A eαt = 0 

     A eαt (α2+ 2bα+ 
2

 ) = 0 

   A eαt0,    α2+ 2bα+ 
2

 = 0 


a

acbb

2

42 
 a = 1, b = 2b , c = 

2
  

2

442 22  


bb
22  bb  

The general solution of equation (1) is 

tbbtbb
eAeAx






 





 


2222

21


--------(3) 

where A1, A2 are arbitrary constants. 
Special Cases – Different Damping Conditions  

Case (1): Over damped motion: 

       When    b2>ω2
. In this case 22 b  is real and less than ‘b’ 

Hence, ( 22  bb ) and ( 22  bb ) are both negative. 

Thus, the two-displacement x consists of two terms, both dying off exponentially to zero without 
performing any oscillations, as shown in figure. 

       The rate of decrease of displacement is governed by the term ( 22  bb )t as the other term 

reduces to zero. 

In this case, the body once displaced returns to its equilibrium position quite slowly without performing 
any oscillation, this type of motion is called over damped (or) dead beat. 

Ex: 1. Pendulum moving in thick oil. 

       2. Dead beat moving coil galvanometer. 

Case (2): Critical damping: 
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    When    b2 =ω2
.  By substituting b2 =ω2 , the solution does not satisfy eq.(1) 

Let us consider,  22 b   0 but, equal to very small quantity ‘h’  

     i.e., 22 b = h   0 

From eq. (3),     thbthb eAeAx   21  
x = e –bt (A1 e ht + A2 e –ht) 
                     x = e –bt [A1(1+ ht + …) + A2 (1– ht+…)] 

                     x = e –bt [(A1+A2) + ht (A1– A2) + …] 

                     x = e –bt [p + q t]   --------(4) 
 Where, p = (A1+A2) and     q = h (A1– A2) 
This is a possible form of solution. 
From eq. (4), as ‘t’ increases the factor (p + q t) increases, but the factor e –bt decreases.So, the 
displacement (x) first increases, due to the factor (p + q t) and approaches to zerodue to e –bt as ‘t’ 
increases. 

In this case the particle tends to acquire equilibrium position much rapidly than case (1), this motion 
is called critical damping. 

Ex:  This type of motion is exhibited by many pointer instruments such as Ammeter, Voltmeter, etc., 
in which the pointer moves to the correct position and comes to rest without any oscillations in the 
minimum time. 

Case (3): Under damped motion 
 When    b2<ω2

. In this case  22 b  is imaginary 

Let, 22 b = i         22 b = i β 

Where, i2 = – 1 (or) i = 1 and      β = 22 b  

From eq. (3),       tibtib eAeAx    21  

x = e –bt (A1e iβ t + A2 e –iβ t ) 

x = e –bt [A1(Cosβt + iSin βt)+ A2(Cosβt – iSin βt)] 

                         x = e –bt [ (A1+A2) Cosβt + i(A1–A2) Sin βt] 

                         x = e –bt [a Sin ϕ Cos βt + a Cos ϕSin βt] 

where, a Sin ϕ = (A1+A2)     a Cosϕ = i(A1–A2) 

 x= e –bt a Sin (βt + ϕ) 

x=a e –bt Sin [ ( 22 b )t + ϕ]--------(5) 

     This is in Simple Harmonic Motion with amplitude ‘ a e –bt.  
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and Time period T = 
22

22

b








 

The amplitude is continuously decreasing due to ‘e –bt, where,  e -bt is called damping 
factor. 

As Sin [ ( 22 b )t + ϕ] varies between +1 and –1, the amplitude also varies between a 
e -bt and   –a e –bt, 

The decay of amplitude depends on damping coefficient ‘b’. It is called under damped motion as shown 
in figure. 

The time period is slightly increased or frequency decreased because the period is 
ଶగ

√ఠమି௕మ
, while in the 

absence of damping it was
ଶగ

ఠ
. 

Ex: Motion of a pendulum in air, motion of coil of ballistic galvanometer or the electric oscillations of 

L-C-R circuit. 

LOGARITHMIC DECREMENT: 

 Logarithmic decrementis defined as the natural logarithm of the ratio between two successive 
maximum amplitudes which are separated by one period. 
          Logarithmic decrement measures the rate at which the amplitude dies away.  

The amplitude of damped harmonic oscillator = a e –bt 
At     t = 0,     amplitude   a0 = a 

  Let a1, a2, a3….. be the amplitudes at time t = T, 2T,3T,…respectively,                                                      
where T = time period of oscillation.  

Then   a1 = a e –bT 
           a2 = a e –b(2T) 
           a3 = a e –b(3T)  ………. 
From these equations, we get 

 .......
3

2

2

1

1

0 
a

a

a

a

a

a
= e bT = e λ ,   Where bT = λ = logarithmic decrement 

Taking natural logarithm, we get 

                         λ = loge
1

0

a

a
= loge

2

1

a

a
= loge

3

2

a

a
= …….(1) 

 
 
 

RELAXATION TIME (𝑻) 
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  The Relaxation Time (Τ) is defined as the time taken for the total mechanical energy to decay 
to (1/e) of its original value. 

The mechanical energy of damped oscillator, E =  
2

1
a2μ e –2bt 

Let E = E0      when t = 0,    E0 = 
2

1
a2μ     ---------- (1) 

Now,                                              E = E0 e –2bt       ---------- (2) 

Let  τ  be the relaxation time,   t = τ(relaxation time)       E =  
e

E 0  

Substituting the value of E in eq. (2), we get  

From eq. (2),   
e

E 0  = E0 e –2bτ 

 e –1 = e –2bτ 

      – 1 = – 2 b τ 

 τ = ቀ
𝟏

𝟐
 𝒃ቁ---------- (3) 

From eq. (2),   E = E0e – t /τ  -------  (4) 

Power dissipation,   P = 

E  

Quality factor (Q): 
 Quality factor (Q) defined as 2π times the ratio of the energy stored in the system to the energy lost 

per period. 

i.e.,        Q = 2𝜋
ா௡௘௥௚௬ ௦௧௢௥௘ௗ ௜௡ ௧௛௘ ௦௬௦௧௘௠

ா௡௘௥௚௬ ௟௢௦௧ ௣௘௥ ௣௘௥௜௢ௗ
 

              Q = 2𝜋
ா

௉்
, where P is power dissipatedand T is period time 

Where     E = energy stored 
            P = power dissipation 
            T = Time period 

We know that, P = 

E             where τ = relaxation time 

So, Q =  
TE

E

)/(

2




= 
T

2
  ω = 

T

2 =(angular frequency) 

                                 Q =   

Here,   Q α τ,  i.e.,   the higher the value of Q, the higher would be the value of relaxation time. 
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FORCED VIBRATIONAS 

 The vibrations of a body which vibrates with a frequency other than its natural frequency under the 
action of an external periodic force are called ‘forced vibrations’ 

“A body executing forced vibrations is called driven oscillator” 

EQUATION OF FORCED VIBRATIONS: 

The forces acting on the particle are, 

1.The restoring force (fr) is directly proportional to the displacement (x) but in  
    opposite direction. 

i.e,       fr α – x          (or)     fr = – μx 
where   μ = proportionality constant (or) force constant or force per unit displacement 

2. The frictional force (f2) proportional to velocity (ʋ) but in opposite direction 

i.e,      ff α –ʋ     (or)     ff α – 
dt

dx 
dt

dx
=  

  (or)      f2 = – r 
dt

dx
,  where   r = frictional force per unit velocity 

3. The external periodic force fe = F Sin pt 

 where      F = maximum value of the force,     

 p =  2π n = driving frequency    (or)     n = 
2
p = frequency 

 The Total force acting on the particle, ft = fr+ ff +fe 

ft = – μ x – r 
dt

dx
 + F Sin pt     

The impressed periodic force is called driver and the body executing forced vibrations is called 
Driven Oscillators. 
By Newtons’s second law of motion, it is equal to the product of mass m of the particle and 

instantaneous acceleration i.e., m 
2

2

td

xd
, hence 

But,   ft = m a                  Where,  m = mass of the particle 

ft = m 
2

2

td

xd  

         m 2

2

td

xd
= – μ x – r 

dt

dx
 + F Sin pt   

                           m 2

2

td

xd
+ r 

dt

dx
 + μ x= F Sin pt                     
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2

2

td

xd
+   

m

r

dt

dx
 +

m


 x = 

m

F
 Sin pt 

 2

2

td

xd
+ 2 b 

dt

dx
  + ω2x = fSin pt --------(1) 

where, 
m

r
=2 b   ,  

m

F
= f ,    ω2= 

m


(or)   ω = 

m


 

This is the differential equation of forced vibrations. 
 

SOLUTION OF EQUATION OF FORCED OSCILLATIONS 
(Amplitude and Phase of forced Vibrations) 

 When a steady state is set up, the particle vibrates with the frequency of applied force, and not with its 
own natural frequency. The solution of differential eq. (1) is of the type 

 x = A Sin (pt –θ)   --------(2) 
where A is the steady amplitude of vibration and θ is the angle by which the displacement x lags behind 
the applied force F sin pt. A and 𝜃  are arbitrary constants.                       

Differentiating eq. (2),  we have, 

dt

dx
=  A p Cos (pt –θ) 

2

2

td

xd
= – A p2 Sin (pt –θ) 

Substituting the values of  
dt

dx
and 2

2

td

xd
in eq (1), we get 

– A p2 Sin (pt –θ) + 2 bA p Cos (pt –θ) + ω2A Sin (pt –θ)  
                                                                           = f Sin pt =   fSin [(pt–θ) + θ]                                                                
 A (ω2– p2) Sin (pt –θ) + 2bAp Cos (pt –θ) = fSin (pt–θ) Cosθ + 
f Cos (pt–θ) Sin θ 

The relation holds good for all values of t, the coefficients of Sin (pt–θ)’ and ‘Cos (pt–θ) terms on both 
sides of the equation are equal i.e., 
 

Comparing the coefficients of ‘Sin (pt–θ)’ and ‘Cos (pt–θ)’ on both sides, we get 
 
                   A (ω2– p2) = f Cosθ     --------(3) 
 
                       2bA p = f Sin θ       --------(4) 
 
 

Squaring and adding equations (3) & (4) we get, 
                   A2 (ω2– p2)2 + 4 b2A2 p2 = f 2 
 
                    A2 [(ω2– p2)2 + 4 b2 p2] = f2 
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Amplitude of forced vibration, A= 
  22222 4 pbp

f


--------(5) 

 
Dividing equation (4) with (3) we get, 

 

                          Tanθ = 
)(

2

)(

2
2222 p

bp

pA

bAp




 
 

 

 Phase of vibration , 









 

)(

2
22

1

p

bp
Tan


 --------(6) 

Substituting the value of A from eq (5) in eq. (2) 
 

      x =  
  22222 4 pbp

f


Sin (pt –θ)   --------(7) 

 

Note: p = driving frequency of applied force = 2π n, &ω = 
m


 

Depending upon the relative values of p and 𝜔, three cases are possible: 
 

Different cases of Amplitude and Phase 
 

Case (1):When driving frequency is low i.e., p << ω. In this amplitude of vibrations are given 

by               Amplitude, A= 
  22222 4 pbp

f


≈ 

2
f = Constant 

 

                 and 









 

)(

2
22

1

p

bp
Tan


 = Tan–1(0) ≈ 0 

This shows, the amplitude is independent of frequency of force. It depends on magnitude 
of applied force and force constant ‘μ’ 

The force and displacement are always in phase i.e., in the same phase. 
 

Case (2):When p =ω,i.e., frequency of force is equal to the frequency of particle (or) 
body 

             In this case,  the Amplitude of vibration is,    

                 A= 
  22222 4 pbp

f


= 

bp

f

2
 = 

 r

F

m

r
m

F
           [

m

r
=2 b, 

m

F
= f   and p = ω] 







 

0

21 bp
Tan = Tan–1() = 

2

  
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 Thus, the amplitude of vibration is depends on ‘damping force’ and for small damping 

forces, the amplitude will be quite large.  The displacement lags behind the force by 
2


. 

 

Case (3):When p >ω, i.e., the frequency of force is greater than the natural frequency 
𝜔 of the body. 
 

           In this case,    Amplitude, A= 
222 4 pbp

f


≈ 2p

f
≈ 2mp

F
 

m

F
= f 

 








 











 

p

b
Tan

p

bp
Tan

22 1
2

1 ≈ Tan–1(–0) = π 

Thus,  the amplitude  A  goes on decreasing and phase difference tends towards  ‘π’. 
 

Resonance: 
The phenomenon of making a body vibrates with its natural frequency under the influence 
of another vibrating body with the same frequency is called resonance. 

 
Example: 

1. Tuning a radio (or) transistor, when natural frequency is so adjusted, by moving the tuning 
knob of the receiver set that it equals the frequency of the radio waves, the resonance takes 
place and the incoming sound waves can be listened after being amplified. 
 

2. Musical instrument can be made to vibrate by bringing them in contact with vibrations 
which have the frequency equal to the natural frequency of the instrument.  

 
3. Soldiers crossing a suspension bridge are prohibited to march in steps and areadvised to 

march on suspension bridges out of steps so as to avoid the    resonance between the natural 
frequency of the bridge and the frequency of    steps of soldiers which may cause the collapse of 
the bridge. 
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AMPLITUDE RESONANCE: 
The amplitude of forced oscillations varies with the frequency of applied force and becomes 
maximum at a particular frequency, this phenomenon is called amplitude resonance. 
Conditions of Amplitude Resonance 

In case of forced vibrations, 

Amplitude,         A= 
  22222 4 pbp

f


----------------- (1) 

 

and 









 

)(

2
22

1

p

bp
Tan


 ----------------- (2) 

Eq.(1) shows that the amplitude varies with the frequency of force (p). 

For particular value of ‘p’ amplitude becomes maximum, this is called amplitude resonance. 

The amplitude is maximum when the term  22222 4)( pbp   becomes minimum. 

(or)
dp

d
 [ 22222 4)( pbp  ] = 0 

                2 (ω2– p2) (– 2p) + 4b2 (2p) = 0 

                                                (ω2– p2) = 2b2 

                    p2 = ω2– 2b2  (or)     p = )2( 22 b --------------(3) 

Thus, the amplitude is maximum when frequency 






2
p

 of the impressed force becomes



2

)2( 22 b
.  

This is the resonant frequency. 

It gives frequency of the system both in presence of damping i.e.,



2

)2( 22 b
and in the 

absence of damping i.e., 
ఠ

ଶగ
. If the damping is small, then it is neglected and the condition of 

maximum amplitude is reduced to p = 𝜔. 
Substituting the condition (3) in eq. (1), we get 

 Amax =  
)2(4)2( 2222222 bbb

f

 
 

 Amax = 
4224 844 bbb

f

 
= 

422 44 bb

f


 

Amax = 
222 bb

f


= 

222 22 bbpb

f


 

p2 = ω2– 2b2 
   (or)  ω2 = p2 + 2b2 
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            Amax = 
222 bpb

f


 

 For low damping,     Amax  ≈ 
bp

f

2
 

Then,       Amax →   as   b → 0 

            In figure, curve (1) shows amplitude when there is no damping i.e., b = 0. The amplitude 
becomes infinite at p=𝜔. It can never be attained in practise due to frictional resistance as slight 
damping is always present. 

           Curves (2) & (3) shows the effect of damping on the amplitude. It is observed that peak of the 
curve moves towards the left and the value of A, which is different for different values of b (damping), 
diminishes as the value of b increases.  

          For smaller values of b, the fall in the curve about p=𝜔 is steeper than for large values, i.e., 
smaller is the value of damping, greater is the departure of amplitude of forced vibrations from the 
maximum value vice-versa. 
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Problems: 

1. The differential equation for a certain system is 2

2

td

xd
+ 2 k 

dt

dx
  + ω2x = 0     if ω >> k, 

find the time in which amplitude falls to 1/e times the initial value? 
 

Sol: The given equation is of damped harmonic motion. 
        The amplitude is given by, a = a0 e –bt= a0 e –kt 

           According to given problem,   a = 
e

a 0  

e

a 0   = a0 e –kt  (or)  e–1 = e –kt 

                                          k t = 1   (or)   t =  
k

1
sec 

2. The damped oscillator starting from rest reaches first amplitude of 500mm. It reduces 
to 50mm after 100 oscillations. The periodic time is 2.3 sec. Find the damping 
constant and relaxation time? 

 
Sol: Given that, T = 2.3 sec 
       The amplitude is given by, a = a0 e –bt 
       The first amplitude,  a1 = a0 e –bT/4               (for 1st amplitude, t=T/4) 
      The 201th amplitude, a201 = a0 e –b(100T + T/4)     (for 201th amplitude, t =100T + T/4) 
                                                        (After 100 oscillations 201th amplitude is obtained) 
            a1 = 500 mm and  a201 = 50 mm                

1

201

a

a
= e –100 bT 

500

50
= e –100 bT (or) e 100 bT = 10 

                                                      100 bT = loge 10 = 2.303 log10 10 = 2.303 
                                                      100 b x 2.3 = 2.303 

                        Damping constant, b ≈ 
100

1
= 10–2 sec. 

                      Relaxation time, τ = 
b2

1
= 2102

1
x

= 
2

100
= 50 sec. 
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3. The quality factor of a sonometer wire is 2 x103. On plucking it makes 240 vibrations 
per second. Calculate the time in which amplitude decreases to half the initial 
value?  
Sol:   Given that,     Q = 2 x103   and   ν = 240 Hz        
            The quality factor, Q = ω τ            
                                              = 2πν τ = 2 x 3.14 x 240 τ 
                                   2 x103 = 2 x 3.14 x 240 τ 

                                     τ = 
24014.32

102 3




= 1.327 sec 

But,  τ = 
b2

1
(or)  

b

1
= 2τ = 2 x 1.327 = 2.654 

   The amplitude of damped vibrations is, a = a0 e –bt 

0a

a
= e –bt  given that,    a = 

2
0a

 

2

1
= e –bt   (or)   e bt = 2   (or)   b t = loge 2 =2.303log10 2  

                                                                     b t = 2.303 x 0.3010 =0.6932 

                    t = 
b

6932.0
= 0.6932 x 2.654 = 1.84 sec. 

 
4. The amplitude of  a  seconds pendulum falls to half of its initial value in 150 seconds. 

Calculate quality factor? 
Sol: The amplitude of damped vibrations is, a = a0 e –bt 

0a

a
= e –bt  given that,    a = 

2
0a

and  t = 150 sec 

2

1
= e –150 t   (or)   e 150 t = 2   (or)   150 b = loge 2 =2.303log10 2  

                                                                     150 b = 2.303 x 0.3010 =0.6932 

                  b = 
150

6932.0
= 0.00462 

              For seconds pendulum, T = 2 sec 

                              ω = 
T

2
= 

2

2
= π = 3.14  

                          τ = 
b2

1
= 

00924.0

1

 

        So, the quality factor, Q = τ ω = 
00924.0

14.3
 ≈ 340 
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5. The quality factor of an oscillator is 500.Find its initial energy of its amplitude 0.01 
m. Also calculate the energy lost in first cycle? Given that          s = m ω2 = 100 
N/m 
 
Sol:   Given that          s = m ω2 = 100 N/m  
                                   Q = 500 
Amplitude,       a = 0.01 m 

        The initial energy of an oscillator, E = 
2

1
m ω2 a2 = 

2

1
s a2 

                                                               E = 
2

1
x 100 x (0.01)2 

                                                               E = 5x10–3 J 

       The quality factor, Q = 
periodperlostenergy

systeminstoredenergy2
 

                                   500 = 
periodperlostenergy

E2
 

 

        Energy lost in first cycle (or) per period = 
500

2 E
 

                                                                =
500

10514.32 3
 

                                                                = 6.28 x 10–5 J 
 

***** 
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UNIT-III 
COMPLEX VIBRATIONS 

 
FOURIER’S THEOREM: 

Any single valued, finite, continuous periodic function can be represented as a 
summation of an infinite number of simple harmonic terms having frequencies which 
are multiples of the frequency of the function. 

Mathematically,  

y = f (ω t) = A0 + A1 Cos ωt + A2 Cos 2ωt + A3 Cos 3ωt + …+ Ar Cos rωt +  
  .……+ B1 Sin ωt + B2 Sin 2ωt +B3 Sin 3ωt +….+Br Sin rωt +… 

y = f (ω t) = A0 +  





1r

rr trSinBtrCosA        -------- (1) 

Where y = f (t) = the displacement of a complex periodic motion of angular  
                              frequency ‘ω’ 

           A1, A2, A3,..Ar ……B1,B2, B3……Br … are constants 

            A0 = The constant representing the displacement of the axis of motion  
         from the time axis. 

Evaluation of A0: 

          In order to evaluate A0, multiply eq. (1) with ‘dt’ and integrate between the limits 
t = 0 and t = T, where, T = period of the function. Hence, 

dttf
T


0

)( = A0 dt
T


0

 + A1 dttCos
T


0

 +…... + Ar dttrCos
T


0

 + B1 dttSin
T


0

  +      

                    ……. + Br dttrSin
T


0

  

dttf
T


0

)(    = A0 T, all other integrals being zero 

                            A0 = 
T

1 dttf
T


0

)( -------- (2) 
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Evaluation of Ar: 
In order to evaluate Ar,  multiply eq. (1) with ‘Cos rωt dt’ and integrate between the 

limits t = 0 to t = T, we get,    

dttCosrtf
T


0

)(  = A0 dttCosr
T


0

  + A1 dttCosrtCos
T


0

 +…..+Ar dttrCos
T


0

2  +                

                              B1∫ 𝑆𝑖𝑛 𝜔𝑡. 𝐶𝑜𝑠𝜔𝑡𝑑𝑡
்

଴
  + ……. + Br dttCosrtrSin

T


0

 

                            = Ar dttrCos
T


0

2  ,     all other integrals being zero 

dttCosrtf
T


0

)(  = Ar dt
trCosT

t







 


 2

21

0


Cos2 θ = 

2

21 Cos  

                             = 
T

t

r

r

trSin
t

A

02

2

2 




 




= 
2

TA r   Sin 2πr = 0, ω = 
T

2  

 

 Ar = 
T

2
dttCosrtf

T


0

)(  -------- (3) 

Evaluation of Br: 
In order to evaluate Br, multiply eq. (1) with ‘Sin rωt dt’ and integrate between the 

limits t = 0 and t = T   where, T = period of the function 

dttSinrtf
T


0

)(  =  A0 dttSinr
T


0

 + A1 dttSinrtCos
T


0

 +…………..+                               

                         Ar dttSinrtrCos
T


0

 + B1 dttSinrtSin
T


0

+ …+Br dttrSin
T


0

2   

                            = Br dttrSin
T


0

2  ,     all other integrals being zero 

dttSinrtf
T


0

)(  = Br dt
trCosT

t







 


 2

21

0


Sin2 θ = 

2

21 Cos
dttSinrtf

T


0

)(  = 

T

t

r

r

trSin
t

B

02

2

2 




 




= 
2

TB r   Sin 4πr = 0, ω = 
T

2
 

 Br = 
T

2
dttSinrtf

T


0

)(  -------- (4) 

------ 

[Note: dttrCos
T


0

 = 
T

tr

tSinr

0







 =  rSinSin

r



20

1
 = 0  
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  Sin 2πr = 0, ω = 
T

2  

 

dttrSin
T


0

 = 
T

tr

tCosr

0







 =  rCosCos

r



20

1
 =  11

1


r
= 0 

  Cos 2πr = 1, ω = 
T

2  

dttCosrtrSin
T


0

= 
2

1 


T

t

dttrSin
0

2  Sin θ Cos θ =
2

1  Sin 2θ 

= –
2

1
T

tr

trCos

02

2











  Cos 4πr = 1, ω = 
T

2  

 = –  rCosCos
r




40
4

1
 = –  11

4

1


r
= 0 

1. Sin A Sin B = 
2

1 [Cos (A–B) – Cos (A+B)] 

2. Cos A Cos B = 
2

1 [Cos (A-B) + Cos (A+B)] 

3. Sin A Cos B =
2

1 [Sin (A+B) + Sin (A–B)] 

4. Cos A Sin B = 
2

1 [Sin (A+B) – Sin (A–B)] 

Note: dttSinrtSin
T


0

= 
2

1




T

t

dttrtCostrtCos
0

)]()([   

= 
2

1
 
 


T

t

T

t

tdtrCostdtrCos
0 0

)1(
2

1
)1(  = 0

 

dttCosrtCos
T


0

 = 
2

1




T

t

dttrtCostrtCos
0

)]()([   

= 
2

1
 
 


T

t

T

t

tdtrCostdtrCos
0 0

)1(
2

1
)1(  = 0 

dttCosrtSin
T


0

= 
2

1




T

t

dttrtSintrtSin
0

)]()([   

                                     = 
2

1
 
 


T

t

T

t

tdtrSintdtrSin
0 0

)1(
2

1
)1(  = 0] 
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Limitations of Fourier’s theorem: 

(i) The function should be finite 
     i.e., the displacement should always have finite values and should never be 
infinite at any time. 

(ii) The function should be single-valued i.e., the displacement should have only one 
value at a given instant ‘t’ 

(iii) The function should be continuous 
 i.e., the function should have a finite number of jumps within its               

       time- interval 
Fourier series of a function f (ω t) between the limits – π to +π, is 

                      A0 = 
2
1

dttf








 )(  

                      Ar = 

1

dttCosrtf








 )(  

                       Br = 

1

tdtSinrtf 








)(  

FOURIER ANALYSIS OF SQUARE WAVE: 
 
 
 
 
 
 
 

       A square wave is shown in figure, the displacement is along the Y-axis and the time 

is along X-axis. The function has a constant value ‘a’ from t =0 to t =
்

ଶ
 and ‘–a’ from t 

=
்

ଶ
 to t = T. 

So,         y = f (ω t) = a            when        t =0     to   t = t =
்

ଶ
 

            And       y = f (ω t) = – a         when        t =t =
்

ଶ
to   t = T 

Calculation of values A0, Ar and Br 
The Value of A0: 

Here, the axis of vibration coincides with the time axis and hence A0 = 0 

A0 = 
T

1 dttf
T


0

)( = 
T

1 dttf
T


2/

0

)(  +
T

1 dttf
T

T


2/

)(  
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                              = 
T

1 dta
T


2/

0

 +
T

1 dta
T

T
 

2/

)(  

                                =    tt
T

Tt

T

t T

a

T

a
2/

2/

0 
  

                         A0   =   
2

a  – a + 
2

a   = a – a = 0        

 
The Value of Ar: 

        Ar = 
T

2
dttCosrtf

T


0

)(   

        Ar = 
T

2
tdtCosra

T


2/

0

+
T

2
dttCosra

T

T
 

2/

)(   

   Ar = 
T

a2
tdt

T

r
Cos

T









22/

0

– 
T

a2
dtt

T

r
Cos

T

T
 








2/

2
ω = 

T

2  

        Ar = 
T

a2 2/

0

2
T

t
T

rt
Sin


















 
r

T

2
– 

T

a2 T

Tt
T

rt
Sin

2/

2


















 
r

T

2
 

        Ar = 
r

a

 [Sin rπ – 0] – 
r

a

 [ Sin 2π r– Sin rπ] 

       Ar = 
r

a

 [Sin rπ – Sin 2π r+ Sin rπ] 

        Ar = 
r

a

 [2 Sin rπ – Sin 2π r] = 0                     Sin 2πr = 0 

The Value of Br: 

           Br = 
T

2
dttSinrtf

T


0

)(   

            Br = 
T

2
tdtSinra

T


2/

0

+
T

2
dttSinra

T

T
 

2/

)(   

            Br = 
T

a2
tdt

T

r
Sin

T









22/

0

– 
T

a2
dtt

T

r
Sin

T

T
 








2/

2

 
ω = 

T

2  

            Br = 
T

a2 2/

0

2
T

t
T

rt
Cos






















r

T

2
– 

T

a2 T

Tt
T

rt
Cos

2/

2






















r

T

2
 

            Br = 
r

a

 [– Cos rπ + 1] – 
r

a

 [ – Cos 2π r + Cos rπ ] 

            Br = 
r

a

 [– Cos rπ + 1+1–Cos rπ]     Cos 2πr = 1 
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            Br = 
r

a

 [2– 2Cos rπ] = 
r

a


2

[1– Cos rπ] 

When ‘r’ is even, i.e., r = 2,4, 6…, Cos rπ = 1 

                              Br = 
r

a


2

[1– 1] = 0 

When ‘r’ is odd, i.e., r = 1,3, 5…, Cos rπ = –1 

                              Br = 
r

a


2

[1– (–1)] = 
r

a


4

 

B1 = 


a4
,  B3 = 3

4 a
,  B5 = 5

4 a
…… and B2 =B4 =B6 =…...= 0 

y = f (ω t) = 
a4

Sin ωt + 3

4 a
Sin 3ωt + 5

4 a
Sin 5ωt +…… 

y = f (ω t) = 
a4

[Sin ωt + 
3

1 Sin 3ωt +
5

1 Sin 5ωt+……] 

       Component vibrations are shown in figure. 

The curve ‘a’ shows the Simple harmonic wave of angular frequency ‘ω’ 
The curve ‘b’ shows the Simple harmonic wave of angular frequency ‘3ω’ 
The curve ‘c’ shows the Simple harmonic wave of angular frequency ‘5ω’ 

                  The addition of these curves yields a curve ‘d’. Approximately this represents a 
square wave, we get a better approximation to the original curve if we add more and 
more terms. 
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FOURIER ANALYSIS OF SAW-TOOTH WAVE FORM 

A Saw-tooth Waveform is represented by a linear relation y= a when t =0 and y= 0 
when t =T.  

  Consider a point P on the 
curve whose coordinates 
are (t, y).  

From similar triangle 
AOB and P t B, we have 
௔

௬
 = 

்

(்ି௧)
 

 

or y = 
௔(்ି௧)

்
 = aቀ1 −

௧

்
ቁ= f (t) 

So, in case of saw-tooth waveform, the displacement at an instant t is represented by  

                       y = f (t) = aቀ1 −
௧

்
ቁ   for 0< t < T -------------(1)  

According to Fourier series, 

y = f (ω t) = A0 + A1 Cos ωt + A2 Cos 2ωt +---------+ Ar Cos rωt +  
  .……+ B1 Sin ωt + B2 Sin 2ωt +---------+Br Sin rωt +…------------(2) 

Where,                     A0 = 
T

1
∫ 𝑓(𝑡)𝑑𝑡

்

଴
 

                           Ar =
ଶ

்
∫ 𝑓(𝑡) cos 𝑟𝜔𝑡 𝑑𝑡

𝑇

0
 

and                      Br =
ଶ

்
∫ 𝑓(𝑡) sin 𝑟𝜔𝑡 𝑑𝑡

𝑇

0
 

To calculate the values of the coefficients Ao,Ar and Br 

A0 = 
T

1 ∫ 𝑓(𝑡)𝑑𝑡
்

଴
 = 

T

1 ∫ a ቀ1 −
௧

்
ቁ 𝑑𝑡

்

଴
   =

௔

்
ቂ𝑡 −

𝑡2

2𝑇
ቃ ்

଴
 =௔

்
ቀ𝑇 −

்మ

ଶ்
ቁ 

A0 =
௔

்

்

ଶ
  = ௔

்
   ------------------(3)     

Thus, the axis of the curve is at a distance  ቀ
௔

ଶ
ቁ from the time axis. 
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For Ar, we have 

Ar = 
ଶ

்
∫ 𝑓(𝑡) cos 𝑟𝜔𝑡 𝑑𝑡

்

଴
   =   

ଶ

்
∫ a ቀ1 −

௧

்
ቁ cos 𝑟𝜔𝑡 𝑑𝑡

்

଴
 

Ar = 
 ଶ௔

்
∫ cos 𝑟𝜔𝑡 𝑑𝑡

்

଴
- 

ଶ௔

்మ ∫ 𝑡 cos 𝑟𝜔𝑡 𝑑𝑡
்

଴
 

    Ar =  
ଶ௔

்మ ቂ
௦௜௡௥ఠ௧

௥ఠ
ቃ ்

଴
  - 

ଶ௔

்మ ቂ{𝑟 ቀ
௦௜௡௥ఠ௧

௥ఠ
ቁ ்

଴
  −  ∫

௦௜௡௥ఠ௧

௥ఠ

்

଴
dt}ቃ 

Ar = 0 - 
ଶ௔

்మ ቈt 
ୱ୧୬ (

మഏೝ೟

೅
)

ଶగ௥/௧
   +  

ୡ୭ୱ (
మഏೝ೟

೅
)

ଶగ௥/்
቉ ்

଴
 

Since, [sin r 𝜔t]௧
଴
  = 0 where 𝜔 =

ଶగ

்
 

Ar = 
ଶ௔

்మ ቂT 
ୱ୧୬ ଶగ௥

ଶగ௥/்
 –  0 +  

௖௢௦ଶగ

ଶగగ௥/்మ   −  
ୡ୭ୱ ଴

ଶగ௥/்మቃ 

Ar = 
ଶ௔

்మ ൥
ଵ

ቀ
మഏೝ

೅
ቁ

మ   −  
ଵ

ቀ
మഏೝ

೅
ቁ

మ൩ 

Since, sin 2𝜋𝑟 = 0 and cos 2𝜋𝑟 =1 

Ar = 0 

Hence, all cosine terms of Fourier series have zero amplitude. 

For Br, we have,  

Br  = 
ଶ

்
∫ a ቀ1 −

௧

்
ቁ sin 𝑟𝜔𝑡 𝑑𝑡

்

଴
  =  

ଶ௔

்
∫ 𝑠𝑖𝑛 ቂ

ଶగ௥௧

்
ቃ 𝑑𝑡

்

଴
  -  

ଶ௔

்మ ∫ 𝑠𝑖𝑛 ቂ
ଶగ௥௧

்
ቃ 𝑑𝑡

்

଴
 

Br= 
ଶ௔

்మ ∫ 𝑡𝑠𝑖𝑛 ቂ
ଶగ௥௧

்
ቃ 𝑑𝑡

்

଴
                      Since, ∫ 𝑠𝑖𝑛 ቂ

ଶగ௥௧

்
ቃ 𝑑𝑡

்

଴
= 0 

Integrating by parts, 

Br = 
ଶ௔

்మ ቂቄt 
ି ୡ୭ୱ ଶగ௥௧/்

ଶగ௥/்
ቅ ்

଴
  −  ∫

ି ୡ୭ୱ ଶగ௥௧/்

ଶగ௥/்

்

଴
𝑑𝑡ቃ 

Br =  
ଶ௔

்మ ቂt
ୡ୭ୱ ଶగ௥௧/்

ଶగ௥/்
−

ୱ୧୬ ଶగ௥௧/்

(ଶగ௥/்)మ ቃ ்
଴
 

Br = 
ଶ௔

்మ ቂT
ୡ୭ୱ ଶగ௥

ଶగ௥/்
− 0 −

ୱ୧୬ ଶ

(ଶగ௥/்)మ  +  
ୱ୧୬ ଴

(ଶగ௥/்)మቃ 
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Br = 
ଶ௔

்మ ቈT
ଵ

(
మഏೝ

೅
)
቉   = 

௔

௥గ
[since, cos 2𝜋𝑟 = 1 𝑎𝑛𝑑 𝑠𝑖𝑛2𝜋𝑟 = 0] 

∴B1 = ቀ
௔

గ
ቁ,              B2 = ቀ

௔

ଶగ
ቁ,            B3 = ቀ

௔

ଷగ
ቁ  and so on. 

𝐻𝑒𝑛𝑐𝑒, the complete vibration is represented by, 

y = f(t) = 
௔

ଶ
 + 

௔

గ
 sin𝜔𝑡+ 

௔

ଶగ
  sin2𝜔𝑡 +  

௔

ଷగ
 sin3𝜔𝑡 +--------- 

y = f(t) = 
௔

ଶ
 + 

௔

గ
ቂsin𝜔𝑡 +

ଵ

ଶ
  sin2𝜔𝑡 + 

ଵ

ଷ
 sin3𝜔𝑡 + − − − − −ቃ 

having frequencies in the ratio 1:2:3…… and amplitudes 

in the ratio 1 :
ଵ

ଶ
:
ଵ

ଷ
  and so on. 

         The addition of successive terms of the series in 
indicated in the figure. It is observed that if a greater 
number of terms are used then there is close resemblance 
between the resultant curve and the curve under analysis.  

 

 

 

*********** 
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UNIT-IV 

IV (A)VIBRATING STRINGS 

GENERAL WAVE EQUATION AND ITS SOLUTION: 

 

 

 

 

 

Let the pulse is travelling to the right with a velocity ‘ʋ’. After a time ‘t’ the pulse reaches a distance 

‘ʋt’along X- axis. 

The wave is be represented as,          y = f (x- ʋt)       

The variable y depends on x and tand hence it is written as, y (x,t) 

 y (x, t) = f (x- ʋt)      (from Galilean transformations) 

  Hence,            y (x, t) = f (x- ʋt)  wave travelling in positive X- axis 

                             y (x, t) = f (x+ ʋt)  wave travelling in negative X- axis 
 
  y = f (x± ʋt) ------- (1) 
Now, we consider the special case, the variable is a harmonic function, 
 
    y (x, t) = Ao Sin [k (x- ʋt) ] 

 Let, ‘x’ is replaced by (
k

x
2

 ), then 

                      y (x, t) = Ao Sin [k (
k

x
2

 - ʋt) ] 

                                 = Ao Sin [k (x - ʋt) + 2π] 

                     y (x, t) = Ao Sin [k (x- ʋt)]   ( Sin (2π + θ) = Sin θ ) 

The replacement of ‘x’ by (
k

x
2

 ) gives same value of ‘y’ 

In other words,   λ= 
ଶగ

௞
 

or,   

2

k           where, k = wave number 

From eq. (1), we consider that,   y = f (ʋt ± x) ----------- (2) 
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 Partial differentiating eq.(2) w.r.to ‘x’ twice, then 

)(1 xtf
x

y
 




 

)(11
2

2

xtf
x

y
 




----------- (3) 

Where,  1f and 11f  are some functions of (ʋt ± x) 

Now, again Partial differentiating eq.(2) w.r.to ‘t’ twice, then 

)(1 xtf
t

y
 




 

)(112
2

2

xtf
t

y
 




   ----------- (4) 

Fromequations (3) & (4) we get, 2

2
2

2

2

x

y

t

y







  

This is called the differential form of the wave equation 

General Solution of The Wave Equation: 

The arbitrary function either (ʋt - x) or (ʋt + x) will be the solution of the wave equation 

)()( 21 xtfxtfy    

Velocity of Transverse Wave Along A Stretched String: 

 

 

 

 

 

 

 

A string is fixed between two rigid supports and stretched under a tension ‘T’ along X- axis. In 
displaced position, consider a infinitesimal string element AB of length ‘dx’ between the coordinates x 
and x+dx as shown  

Let ‘y’ be its displacement at time ‘t’ 

Let θ1 and θ2 be the angles which the tension (T) makes with X- axis 
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The components of ‘T’ in horizontal and vertical directions at A are T Cos θ1 and T Sin θ1 and   at B 
are T Cos θ2  and  T Sin θ2   respectively.T Cos θ1 and  T Cos θ2   are nearly equal and balances each 
other, 

The resultant upward force F in upward direction, 

 Fy = TSin θ2   – T Sin θ1 

                                                   Fy = T [ Sin θ2   –   Sin θ1] -----------(1) 

As ‘AB’ is small θ1 and θ2 are also small, 

Hence,       Sin θ1 ≈ Tan θ1 ≈  
x

x

y









  

     and      Sin θ2 ≈ Tan θ2 ≈  
dxx

x

y











  

Fy = T





























 xdxx
x

y

x

y







 ----------(2) 

Using Taylor’s series, we expand 
dxx

x

y











   , i.e., 

 

......
!2

)( 2

3

3

2

2











































dx

x

y
dx

x

y

x

y

x

y

xdxx












------------(3) 

Neglecting high power terms, we have, 
 

Substituting the values of ቀ
డ௬

డ௫
ቁ

௫ାௗ௫
from equations (2) & (3) we get, 













































xx

y
x

y
dx

x

y

x

y
TF










2

2

 

 dx
x

y
TFy 












2

2


 ---------(4) 

Let m = mass per unit length of the wire 

Mass of the element ‘AB’ = m dx 
Force,   Fy  = mass X acceleration (a) 













2

2

)(
t

y
xdmFy




 ---------(5) 












2

2

t

y
a




  

From equations (4) &(5) we get, xd
x

y
Txd

t

y
m 





















2

2

2

2








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






















2

2

2

2

x

y

m

T

t

y








---------(6) 

The differential equation of a wave motion is 






















2

2
2

2

2

x

y

t

y









---------(7) 

Comparing equations (6) & (7) we get,
m

T


2
  

m

T
   

This is the velocity of the transverse wave along the string. 

 

MODES OF VIBRATION OF STRETCHED STRING CLAMPED AT BOTH THE ENDS: 

Consider a uniform string of length ‘  ’ having mass per unit length ‘m’ and stretched by a 

tension ‘T’.  

The general solution of the wave equation is, 

y = a1 Sin (ωt – kx) + a2 Sin (ωt + kx) + b1 Cos (ωt – kx) + b2 Cos (ωt + kx)  ----(1) 

where, a1, a2, b1 and b2 are arbitrary constants. 

As the string is fixed at both ends, the boundary conditions are, 

      y = 0 at x = 0 for any time ‘t’    -------(2) 

      y = 0 at x =    for any time ‘t’    -------(3) 

Applying boundary conditions from eqs (1) & (2) we get, 

0 = a1 Sin ωt + a2 Sin ωt + b1 Cos ωt + b2 Cos ωt  

0 = (a1 + a2) Sin ωt + (b1+ b2) Cos ωt 

    As, Sin ωt ≠0     and     Cos ωt ≠ 0 

a1 + a2 = 0       and       b1+ b2 = 0 

Thus, we have a1 = – a2and  b1= –b2 

Now  Eq. (1) becomes  

y = a1[Sin (ωt – kx) –Sin (ωt + kx] + b1[Cos (ωt – kx) – Cos (ωt + kx)] 
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y = a1 [ (Sin ωt Cos kx – Cos ωt Sin kx) – (Sin ωt Cos kx + Cos ωt Sin kx)]+   

b1 [ (Cos ωt Cos kx + Sin ωt Sin kx) – (Cos ωt Cos kx – Sin ωt Sin kx)] 

y = – 2a1Cos ωt Sin kx + 2b1 Sin ωt Sin kx 

y = (– 2a1Cos ωt + 2b1 Sin ωt) Sin kx -----------(4) 

The solution now consists of two terms, i.e., on t and  x.  Thus, the first boundary condition reduces 
the opposite travelling waves to a stationary wave.  

Applying the second boundary condition eq. (3) to eq (4). 

As Sin ωt ≠0     and     Cos ωt ≠ 0, 

Hence,   Sin k   = 0, 

which gives the general solution for angle kl to be  

    k   = nπ         where, n = 1,2, 3….. 

As  ‘  ’ is constant, k is limited to discrete set of values, known as eigen values. 

   kn = 


n
        where, n = 1, 2, 3, ….     ------- (5) 

νn = n 






2


     where, n = 1, 2, 3, ….     ------- (6) 

 

Since,   k = 

2

= 

2

= 

2

        (υ = νλ ) 

ν = 



2

k
 

                 From eq. (5),   ν = 



2

n
 

ν = n 






2


 

  
From eq. (6) it is clear that the string can have a set of eigen or proper frequencies only. The equation 
represents modes of vibration corresponding to nth harmonic frequency.  

Different modes of vibration are shown in figure. 

(ii) First mode of vibration (or) first harmonic 

(iii) Second mode of vibration (or) 
  Second harmonic, 1st overtone 

(iv) Third mode of vibration (or)  
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 Third harmonic, 2nd overtone 

Fundamental frequency corresponding to n =1 is, 

ν1 = 






2


 

ν1 = 
m

T

2

1

m

T
       ------------------(7) 

This is called first harmonic frequency. 
The nth harmonic mode of frequency is,    

νn = 
m

Tn

2
 

This is called (n–1) overtone. 
 

OVERTONES AND HARMONICS: 

 (i) When the string is plucked at the middle, it vibrates with nodes(N) at the end and antinode (A) at 
the middle as shown in fig(ii). The frequency of vibration here is called the fundamental 
frequency (or) first harmonic. 

The frequency,   ν1 =  
m

T

2

1
n = 1 

(ii) If the string is vibrating in two segments as shown in fig (iii), 

       The frequency of vibration,   ν2 = 
m

T

2

2
n = 2 

ν2 = 2ν1 

This is called second harmonic (or) first overtone. 

(iii) If the string is vibrating in three segments as shown in fig (iv), 

The frequency of vibration,   ν3 = 
m

T

2

3
n = 3 

ν3 = 3ν1 

        This is called third harmonic (or) second overtone. 

(iv) If the string is vibrating in four segments, then 

 The frequency of vibration,   ν4 = 
m

T

2

4
n = 4 

ν4 = 4ν1 
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This is called fourth harmonic (or) third overtone. 

So, in case of stretched string the frequencies are in the ratio, ν1:ν2: ν3…= 1: 2: 3…. 

Laws of Transverse Vibrations of Strings: 

The fundamental frequency of vibrating string,ν = 
m

T

2

1
 

1st Law:ν α 


1
when T, and m are constant. 

i.e., the fundamental frequency of vibrating string is inversely proportional to the length of the string, 
when tension and linear density are constant. 

2nd Law:ν α T     when land m are constant. 

i.e., the fundamental frequency of vibrating string is directly proportional to the square root of tension 
in the string, when length and linear density are constant. 

3rdLaw:ν α 
m

1
when   and T are constant. 

i.e, the fundamental frequency of vibrating string is inversely proportional to the square root of linear 
density of string, when tension and length of the string are constant. 

 

 

 

 

 

 

 

 

PROBLEMS 

1. A travelling wave propagates according to the expression y = 0.03 Sin (3x – 2t) where ‘y’  
    is the displacement at position ‘x’ at time ‘t’. Taking the units to be in S.I, determine (a)  
    The amplitude (b) The wave length (c) The frequency and (d) The period of the wave. 

Sol: we know that,                 y = a Sin (kx – ωt) 
      The given equation is,     y = 0.03 Sin (3x – 2t) 

      On comparing, (a) amplitude,  a  = 0.03 m 
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                         (b) wave length,  λ = 
3

2  (k = 3) 

λ = 
3

14.32  = 2.09 m 

        (c) Frequency,  ν= 


2

= 
2
2

=

1 (ω = 2) 

 
 

ν = 0.31 Hz 

        (d) Time period, T = 

1 =  π  = 3.14 sec 

2. Standing waves are produced by the superposition of two waves y1 = 10 Sin (3π t – 4x)    
    and y2 = 10 Sin (3π t + 4x). Find the amplitude of motion at x = 18 ? 

Sol:   given that,             y1 = 10 Sin (3π t – 4x) 
                                 y2 = 10 Sin (3π t + 4x)  

        The resultant displacement is given by, y = y1 + y2 
        y = 10 Sin (3π t – 4x) + 10 Sin (3π t + 4x) 
           = 10 [Sin 3π t Cos 4x – Cos 3π t Sin 4x + Sin 3π t Cos 4x + Cos 3π t Sin 4x] 
           = 10 X 2 Sin 3π t Cos 4x 
        y = 20 Sin 3π t Cos 4x = 20 Cos 4x Sin 3π t 
      The amplitude of motion is A = 20 Cos 4x 

         When x = 18,         4x = 4 X 18 = 72 = 72 x 
14.3


 rad = 22.9 π rad 

                                  A = 20 Cos (22.9 π) = 20 x (0.9673)  
                                  A = 19.35 units of length. 

3. A string vibrates according to the equation y = 5 Sin 







3

x Cos 40π t, where x, y are in cm, and t is in 

sec. Find the distance between two successive nodes and the speed of the particle of the string at 
position x = 1.5 cm when t = 9/8 sec? 

Sol: At nodes y = 0, thus  

                       0 = 5 Sin 







3

x Cos 40π t 

            As Cos 40π t ≠ 0,    5 Sin 







3

x = 0 

3

x  = n π   where, n = 0, 1, 2, 3, …. 

                                             x = 3n = 0, 3, 6, 9, …. 
        So, the distance between two successive nodes = 3 cm 

      Speed of the particle, 
t

y




= - 5Sin 







3

x   40π Sin 40π t + 5 Cos 40π t 







3

  Cos 







3

x
 

 
       When x = 1.5 cm and t = 9/8 sec,  

t

y




= - 5Sin 






 
3

5.1   40π Sin 







8

940    + 5 Cos 40π  










38

9   Cos 






 
3

5.1
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t

y




= - 5Sin 







2

   40π Sin 45   + 5 Cos 40π  






 
8

3   Cos 







2



 

t

y




= 0                   Cos 







2

 = 0 and   Sin 45 =  

  Hence, the particle is at rest at that position. 

 
4. A steel wire 50 cm long has a mass of 5 gm. It is stretched with a tension of 400N. Find  the 

frequency of the wire in fundamental mode of vibration? 
Sol: given that,    = 50 cm = 0.5 m  

                          Mass = 5gm = 5 x 10-3 Kg 
                         Tension, T = 400 N  

                        Linear density, m = 
5.0

105 3
= 10-2 Kg/m 

                    Frequency, ν = 
m

T

2

1
= 210

400

5.02

1


= 1x 20x10 

ν = 200 Hz. 
5. The fundamental frequency of a stretched string of length 1m is 256 Hz. Find the  

    frequency of the same string of half the original length under identical conditions? 

Sol: ν α 


1
 

ν  = constant 

ν1 1 = ν2 2  

Given that,ν1= 256 Hzν2= ? 

1 = 1 m 2 = 0.5 m 

    256 x 1 = 0.5 ν2  

ν2 = 
5.0

256 = 2 x 256 = 512 Hz. 

 
 
 
 

6. Calculate the speed of transverse waves in a wire of 1mm2 cross-section under the tension  
    produced by 0.1 Kg weight. Specific gravity of material of wire is 9.81 gm/cm3 and              
    g = 9.81m/sec2? 

Sol: T = Mg = 0.1 x 9.81 = 0.981 N 
       Linear density, m = area of cross-section x Specific gravity 
                               m = 10-6 x 9.81 x 103 = 9.81 x 10-3 Kg/m 
since, area of cross-section = 1mm2= 10-6 m2 
 Specific gravity = 9.81 gm/cm3 = 9.81 x 103Kg/m3 
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Velocity,   
m

T
 = 31081.9

981.0


= 
81.9

1081.9 2
= 10 m/s 

******** 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
IV (B) VIBRATING BARS 
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Velocity of longitudinal waves in a bar: 

 
Consider a bar of length ‘Ɩ’ of  uniform cross-section ‘a’. The bar is made of homogeneous and 

isotropic material having a large length as compared to its area of cross section. The bar has only 
longitudinal vibrations and not transverse vibrations. 
It is also assumed that at any given time, the displacement of all the particles at any cross-sectional 
area are the same. 

 
 
 

 

 

As shown in figure, consider a small part ‘AB’ of length ‘dx’ of the bar in unstrained position 
at a distance x and x + dx.  Under the influence of longitudinal waves, the planes A and B are 
displaced to new positions A1 and B1 respectively.   

Let the displacement of plane A to A1 is ‘y’ at any time when longitudinal wave passed through it. 
The displacement of B to B1is,  y + dy . 

dx
x

y
ydyy 












                (Taylor’s series first two terms) 

The longitudinal extension of the element is  

 (y + dy) – y= ൞ ydx
x

y
y 












ൢ= dx
x

y











 

 

Longitudinal Strain = 
lengthoriginal

lengthinChange
   = 

dx

dx
x

y











= 







x

y




 

Young’s modulus, Y = 
Strain

Stress
 

Longitudinal Stress = Y x Strain = Y 







x

y




 

Force on the surface element at A = Longitudinal Stress X area of cross- section 

                                                              = Y 







x

y




 x a 

                                                              = Y a 







x

y



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Similarly, Force on the surface element at B = Y a )( dyy
x





 

                   =Ya 




















 dx

x

y
y

x 





 

                                           = Y a 







x

y




 + Y a 












2

2

x

y




dx  

 The resultant force to which the elementary part is subjected  

                                 = 

⎩
⎪
⎨

⎪
⎧

Y a 







x

y




 +  Y a 












2

2

x

y




𝑑𝑥 

⎭
⎪
⎬

⎪
⎫

–  Y a 







x

y




 

                                 = Y a 












2

2

x

y




dx -------(1) 

This restoring force tries to bring the displaced mass of elementary part to its mean position. 

At the same time, it produces acceleration in it. 

According to Newton’s second law of motion,  
Force on element ‘dx’ = mass x acceleration 
Mass of the element = Volume X density 

                                     = a (dx) ρ                  where, ρ = density of the material 

We know that, Acceleration = 












2

2

t

y




  

       Force = a (dx) ρ 












2

2

t

y




 = a ρ 












2

2

t

y




dx ------------ (2) 

From eq. (1) & (2) we get, 

a ρ 












2

2

t

y




dx = Y a 












2

2

x

y




dx  














2

2

t

y




=  

Y














2

2

x

y




------------ (3) 
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The wave equation is given by,   




















2

2
2

2

2

x

y

t

y







------------ (4) 

 Comparing eqs. (3) & (4) we get,


 Y


2
 

                                 or                      



Y

 -------------(5) 

This is the velocity of longitudinal wave in a bar. 
It is clear from eq. (5) that velocity of longitudinal wave is  
(i) directlyproportional to the square root of longitudinal elasticity. 
(ii) inversely proportional to the square root of density of material, and  

(iii) independent of shape and size of the cross-section. 

(iv)  

 
GENERAL SOLUTION OF LONGITUDINAL WAVE EQUATION: 

The general solution of wave equation for the transverse vibrations of strings is applied to the 
longitudinal waves. Hence  

y = f1(vt-x) + f2 (vt + x) ------------------(1) 
Here y varies as a harmonic function of time, the simple harmonic solution isType equation here. be 

expressed as, 
y = a1 sin (ωt – kx) + a2 sin (ωt + kx) + b1 cos (ωt – kx) + b2 cos (ωt + kx) -------(2) 
where a1, a2, b1 and b2 are amplitude constants. 

             We know that     k = 
ଶగ

ఒ
 = 

ఠ

ఔ
 

Where, k is the propagation constant, 𝜔 the angular frequency (2𝜋 𝜗) and 𝜈, the velocity of 
longitudinal waves. 

Boundary Conditions:The following boundary conditions are applied, 
(i) At a point where the bar is fixed, the displacement is zero at all time, i.e., y = 0 (at all time) ----(1) 

(ii)At the free end, there can be no internal elastic force, hence, 
ௗ௬

ௗ௫
 = 0 at all time 

𝒅𝒚

𝒅𝒙
 = 0(at all time) 

 

LONGITUDINAL VIBRATIONS OF A BAR RIGIDLY FIXED AT BOTH ENDS: 

This is also known as fixed-fixed bar. When a bar is clamped at its ends, stationary waves are formed 
with antinode at the middle and node at the ends. 
Boundary conditions are, y = 0 when x = 0 at any time ‘t’ 

                                                  and   y = 0 when x=   at any time ‘t’      ---------(1) 

We know, the general solution of longitudinal wave is, 

y = a1 Sin (ωt – kx) + a2 Sin (ωt + kx) + b1 Cos (ωt – kx) + b2 Cos (ωt + kx) --(2) 

Applying the first boundary condition, y = 0 when x = 0 

0 = a1 Sin ωt + a2 Sin ωt + b1 Cos ωt + b2 Cos ωt  
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0 = (a1 + a2) Sin ωt + (b1 + b2) Cos ωt 

    As, Sin ωt ≠ 0     and     Cos ωt ≠ 0 

a1 + a2 = 0       and       b1 + b2 = 0 

Thus,   a1 = –  a2, b1 = – b2------- (3) 

Substituting eq. (3) in eq. (2) 

y = a1 [Sin (ωt – kx) – Sin (ωt + kx)] + b1 [Cos (ωt – kx) – Cos (ωt + kx)] 

y = a1 [ (Sin ωt Cos kx – Cos ωt Sin kx) – (Sin ωt Cos kx + Cos ωt Sin kx)] +    

      b1 [ (Cos ωt Cos kx + Sin ωt Sin kx) – (Cos ωt Cos kx – Sin ωt Sin kx)] 

y = a1[-2Cos ωt Sin kx] + b1[2Sin ωt Sin kx] 

y = (– 2a1Cos ωt + 2b1 Sin ωt) Sin kx  

y = (A Cos ωt + B Sin ωt) Sin kx-----------(4) 

where, A = – 2a1    and B = 2b1 

Now apply boundary condition y = 0 when x =   

0 = (A Cos ωt + B Sin ωt) Sin k   

Since, A & B ≠ 0, (otherwise there will be no wave), 

Hence, Sin k   = 0 

     k   = n π         where, n = 1,2, 3... 
n =0 isnot taken as it corresponds to the condition of no wave (or a wave of infinite length). 
Replacing k by  kn ( because of dependence of k on the integer), thus  

or,          kn = 


n
        where, n = 1, 2, 3, …..     ------- (5) 

This equation shows only certain modes of vibration are allowed. 
The frequency of allowed modes of vibration are given by, 


n

=  


n
                            Since,    k = 


2

= 

2

= 

2

  =  



 

                                                                                (υ = νλ & ω = 2πν) 

             ωn  = 

n
          where, n = 1, 2, 3, …..   

            2π νn =  


n
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               νn =  
2

n
           n = 1, 2, 3, ….   

We know,


 Y
  

νn =  
2

n


Y

   

In the fundamental mode of vibration, the  
two ends of the rod are nodes and only one antinode at the 
midpoint. The higher harmonics are in the ratio 1:2:3: … 

The various modes vibration are shown in figure.  

The complete solution of longitudinal wave is 

  xkSintSinBtCosAy n
n

nn





1

 `` 

Modes of vibrations of fixed- fixed bar 

LONGITUDINAL VIBRATIONS OF A BAR CLAMPED AT THE MIDDLE: 

When a bar is clamped at its middle point, stationary waves are formed with node at the middle 
and antinode at the ends. 

The boundary conditions are, 

x

y




   = 0     when x = 0     for all time ‘t’ 

  And            y = 0     when x =  /2 for all time ‘t’ -------(1) 

The general solution of longitudinal wave is, 

y = a1 Sin (ωt – kx) + a2 Sin (ωt + kx) + b1 Cos (ωt – kx) + b2 Cos (ωt + kx) ------------(2) 
Now,         

x

y




= – ka1 Cos (ωt – kx) + ka2 Cos (ωt + kx) + kb1 Sin (ωt – kx) – kb2 Sin (ωt + kx)  

Apply boundary condition,  
x

y




 = 0     when x = 0  

0 = – ka1 Cos ωt + ka2 Cos ωt + kb1 Sin ωt – kb2 Sin ωt  
0 = k Cos ωt (a2 – a1) + k Sin ωt (b1 – b2) 
As, Sin ωt ≠ 0     and     Cos ωt ≠ 0 

   a1 = a2 , b1 =  b2        ------- (3) 
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substituting these values in (2) we get, 

y = a1 [Sin (ωt – kx) + Sin (ωt + kx)] + b1 [Cos (ωt – kx) + Cos (ωt + kx)] 

y = a1 [ Sin ωt Cos kx – Cos ωt Sin kx + Sin ωt Cos kx + Cos ωt Sin kx]  

       + b1 [ Cos ωt Cos kx + Sin ωt Sin kx + Cos ωt Cos kx – Sin ωt Sin kx] 

y =  a1[2Sin ωt Cos kx] + b1[2 Cos ωt Cos kx] 

y = (2a1Sin ωt + 2b1 Cos ωt) Cos kx  

y = (A Cos ωt + B Sin ωt) Cos kx -----------(4) 

where, A = 2b1    and B = 2a1   

Apply boundary condition, y = 0     when x = 
2


 

0 = (A Cos ωt + B Sin ωt) Cos
2

k
 ----------(5) 

Since, A & B ≠ 0, Cos 
2

k
 = 0 

2

k
  = 

2

)12( n
      where, n= 1,2,3, … 

These are allowed vibrations in case of a bar clamped at the middle, 

Hence,        k = 


)12( n
 

Considering the dependence of k on integer, we have 

or,           Kn = 


)12( n
         where, n= 1,2,3,… 

    The frequency,  
n

= Kn                        Since,    k = 

2

= 

2

= 

2

  =  



 


n

= 


)12( n
 

                   ωn  =


)12( n
                n= 1,2,3,… 

                    ωn = 2π νn 

Therefore,   2π νn = 


)12( n
 

                νn = 
2

)12( n
              ------(6) 

The frequency of nth mode is,  
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                      νn = 

Yn

2

)12( 
               -----(7)       Since,


 Y

  

The modes of vibration are shown in figure. 
The odd harmonics are produced while even 
harmonic is completely absent. 
Frequency are in the ratio 1: 3: 5: … 

 

 

 

 

 

 

LONGITUDINAL VIBRATIONS OF A BAR FIXED AT ONE END AND FREE AT THE OTHER: 

This is also known as the fixed-free bar. The boundary conditions are 

y = 0 at x =0     for all time t 

డ௬

డ௫
 = 0 at x = lfor all time t     ---------------(1) 

The general solution of longitudinal wave is, 

y = a1 Sin (ωt – kx) + a2 Sin (ωt + kx) + b1 Cos (ωt – kx) + b2 Cos (ωt + kx) ------------(2) 
Applying the first boundary condition, we have 
    0 = a1 sin 𝜔𝑡 + a2 Sin𝜔𝑡  + b1 Cos𝜔𝑡 + b2 Cos𝜔𝑡 

0 =  (a1 + a2) Sin ωt + (b1 + b2) Cos ωt 
∴  a1 = – a2, andb1 = – b2 

Substituting these values in eq. (2)we get 

y =a1[Sin (ωt – kx)- Sin (ωt + kx)] + b1[Cos (ωt – kx)-Cos (ωt + kx)] 

y = a1[sin 𝜔𝑡Coskx – CosωtSin kx – SinωtCos kx- SinωtCoskx-CosωtSin kx] 

      + b1[CosωtCoskx + sin 𝜔𝑡Sin kx - CosωtCos kx + SinωtSin kx] 

y = a1[ - 2CosωtSin kx] + b1[ 2 sin 𝜔𝑡Sin kx] 

Let -2a1 = A and 2b1 = B 

∴       y = (A Cosωt + B sin 𝜔𝑡)Sin k 𝑥-----------------(3) 

Now, applying the boundary conditions  
డ௬

డ௫
 = 0 at x = l.  
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Differentiating eq. (3) with respect to x.  

Hence,  
డ௬

డ௫
 = (A Cos ωt + B sin 𝜔𝑡)𝑘 cos k 𝑙 

or 0 = (A Cos ωt + B sin 𝜔𝑡)𝑘 cos k 𝑙 

cos k 𝑙= 0       Since, A and B ≠ 0--------------(4) 

The allowed frequencies should satisfy k l = (2n-1)
గ

ଶ
   where n = 1,2, 3… 

Replacing k by kn, we get 

kn = (2n-1)
గ

ଶ௟
  n = 1,2, 3…. 

𝜔௡ = (2n-1)
గణ

ଶ௟
   n = 1,2, 3…. ------------------(5) 

𝜗௡  = 
(ଶ௡ିଵ)ణ

ସ௟
    n = 1,2, 3…. 

From eq. (5), it is clear that 

(i) Only odd harmonics are present in a fixed- free bar 

(ii) The fundamental frequency is half that of a free-free bar 

(iii) The quantity of sound is altereddue to the absence of even harmonics  

The complete longitudinal wave solution, in respected of a fixed-fixed bar, may be 

considered as sum of n harmonic solution, i.e., may be considered as the sum of n harmonics.  

` 

 

 

 

 

 

 

 

 

 

 

 

PROBLEMS: 
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1.The density of aluminium is 2.8 x 103 Kg/m3 and its Young’s modulus is   7 x 1010 pascals. If the 
frequency of the Aluminium rod is 500Hz, Calculate     the velocity of sound and wavelength 
through the rod? 

Sol: given that, ρ = 2.8 x 103 Kg/m3 

                           Y = 7 x 1010 pascals 

ν = 500 Hz               λ= ?    and    = ? 

         Velocity of longitudinal wave 


 Y
 = 3

10

108.2

107




= 

2

10
4

 

 = 5 x 103  m/s 

                                                  λ = 


= 
500

105
3


= 10 m 

2. A copper rod of length 4m is free at its ends, the diameter of the cross section of the rod is 0.01m. 
Find the fundamental frequency of the  longitudinal vibrations of the rod?   (velocity of sound in 
copper is 3560m/s) 

Sol:      The frequency,   ν = 
2

)12( n

 

         For fundamental frequency n =1,   ν = 
2


 

  = 3560m/s   and  = 4 m 
 

                                                   ν = 
42

3560


= 445 Hz 

3. A steel rod of length one meter and density 7.1 gm/cc is clamped at itsmiddle and longitudinal 
vibrations are set up in it. If the fundamental frequency is 2600 Hz. Find the velocity of sound in the 
rod and Young’s modulus of material of the rod? 

 
Sol:  given that,    

ρ = 7.1gm/cc  = 7.1  x 6

3

10

10




Kg/m3 = 7.1  x 103 Kg/m3 

= 1 m  and  ν = 2600 Hz 

       ν = 
2


  or  velocity     = 2  ν = 2 x 2600 x 1 = 5200 m/s 
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
 Y

    or  Y = ρ
2  = 7.1 x 103 x 5200 x 5200  

 Y = 19.2 x 1010 N/m2 

4. A brass rod of length one meter is clamped at its middle point. If it is madeto vibrate longitudinally, 
find the fundamental frequency and frequencies of first two overtones?  

( Y = 10 x 1010 N/ m2 and ρ = 8.3  x 103 Kg/m3) 

Sol: given that,   = 1 m 
                                Y = 10 x 1010 N/ m2 
ρ = 8.3 x 103 Kg/m3 

         The frequency,   ν = 

Yn

2

)12( 

 

         For fundamental frequency n =1,  ν = 

Y

2

1
 

 

ν = 3

10

103.8

1010

2

1




 

                 ν =
3.8

10

2

1
 x 104 = 

2

3471.0
 x 104 

ν = 1735.5 Hz 

          First overtone, ν1 = 3 ν = 3 x 1735.5 = 5206.5 Hz      ( n=2) 

          Second overtone, ν2 = 5 ν = 5 x 1735.5 = 8677.5 Hz    (n= 3) 

                                                         ******** 
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UNIT-V 

ULTRASONICS 

Introduction: 

Sound is produced from vibrating bodies. Sound waves are longitudinal mechanical waves. 
The frequency range of these waves is very high. 

The frequencies of sound between 20 Hz to 20,000 Hz are called audiable frequencies.  The 
human ear can recognize these sounds only. 

The frequencies of sound below 20 Hz are called Infrasonic. Human ear cannot recognize 
these sounds. The wavelength of these waves is more. 

         The frequencies of sound more than 20,000 Hz are called Ultrasonics. Human ear cannot 
recognize these sounds also. The wavelength of these waves is less, it is about less than 1.8cm. 
Hence, they can travel in a specific direction. 

PROPERTIES OF ULTRASONICS: 

1.Ultrasonics are highly energetic. 

2. Their speed of propagation increases with frequency. 

3. They show negligible diffraction due to their small wavelength. Hence, they  can be transmitted 
over long distances without any appreciable loss of energy. 

4. Intense Ultrasonic radiation has a disruptive effect on liquid by causing bubbles to be formed. 
5.When Ultrasonic waves are propagated in liquid bath a plane diffraction grating is formed, which 

can diffract light. 
 (When Ultrasonic waves are propagated in liquid bath, stationary wave pattern is formed due to 

the reflection of the wave from the other end. The density of the liquid thus varies from layer to layer 
along the direction of propagation. In this way a plane diffraction grating is formed which can 
diffract light.) 

 

PRODUCTION OF ULTRASONICS: 
Ultrasonics can be produced in two important methods 

     1. Magnetostriction method 
     2. Piezo-electric method 

      Magnetostriction method is used to produce 
Ultrasonics of frequencies up to 100 KHz. For the 
production of Ultrasonics of frequencies more 
than 100 KHzPiezo-electric method is used. 

 
 

1. MAGNETOSTRICTION METHOD: 
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Magnetostriction: 

When a rod of ferromagnetic material such as Iron or Nickel, is placed in a magnetic field parallel to its 
length, a small expansion is occurred, this phenomenon is called Magnetostriction. This change in 
length depends on magnitude of the field and nature of the material.   

         If the rod is placed inside a coil carrying an alternating current, then it suffers the same change 
in length for each half cycle alternating current. This results in setting up vibrations in the rod whose 
frequency is twice that of alternating current. However, if the frequency of the a.c. is the same as the 
natural frequency of the rod, then resonance occurs and the amplitude of vibration is considerably 
increased. Sound waves are emitted from the ends of the rod. More over if the applied frequency is the 
order of Ultrasonics frequency, the rod sends out Ultrasonic waves. 

Procedure:   An experimental arrangement to produce Ultrasonic waves is shown in figure. The rod 
is permanently magnetized by passing direct current (d.c.) in the coil which is wrapped round the 
rod. There are two coils L1 and L2 which are also wrapped round the rod as shown in figure. The coil 
L2 is connected in the plate circuit of valve V, while L1 is connected in the grid circuit. A variable 
condenser C is connected across the coil L2, a milli ammeter (mA) reads plate current. 

        As the internal diameter of the coils is more, the rod can freely produce longitudinal 
vibrations. The values of the Inductance of the coil L2 and the capacity of the variable condenser C 
decides the frequency of the electric oscillator. When the frequency of the electric oscillator coincides 
with the natural frequency of the rod then resonance occurs and the rod vibrates with maximum 
amplitude and produces Ultrasonics. By varying the length of the rod and capacity of the variable 
condenser C we can produce the Ultrasonics of required frequency. 

The velocity of Ultrasonics in the rod is (ʋ) 
 Y

  

Where   Y = Young’s modulus of the rod 

  ρ = density of the material of the rod 

If ‘  ’ is the length of the rod, then the fundamental wave length becomes 2   

Hence, the frequency       
2

   or 
 Y

2

1
  

In this method Ultrasonic waves having less frequency were produced. 

PIEZO-ELECTRIC EFFECT:  

When certain crystals likequartz, tourmaline etc are stretched or compressed along certain axis, 
an electric potential difference is produced along a perpendicular axis, this is called Piezo-electric 
effect. 
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The converse of this effect is also true, i.e. when an alternating potential difference is applied 
along the electric axis, the crystal is set into elastic vibration along the mechanical axis.  

 

 

 

 

                                                         Fig-1 

Quartz crystal is six-sided prism with pyramid shaped ends as shown in figure-1 has following 
three major axes. 

a) Optic axis or Z-axis: The line joining the apexes of the end pyramids is  
    known as Z-axis. 

b) The electric axis or X-axis: The axis passes through any set of opposite  
     corners known as X-axis. 

c) The mechanical axis or Y-axis: The axis passes through the opposite faces known as Y-axis. 

 
The X-cut and Y-cuts of the crystal are shown in figure-2.  

 
 
 
 
 
 

                                                Fig-2 
 
The X-cut slab makes an angle 90o with the X-axis while Y-cut slab makes an angle 90o with 

the Y-axis. X-cut slabs are used for the generation of Ultrasonics, because they produce longitudinal 
waves. Y-cut slabs produce shear waves which can travel only in solids. 

 
 
 
 
 

 
2. PIEZO-ELECTRIC METHOD: 

Piezo-electric effect:  
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When certain crystals likequartz, tourmaline etc are stretched or compressed along certain axis, 
an electric potential difference is produced along a perpendicular axis, this is called Piezo-electric 
effect. 

The converse of this effect is also true, i.e. when an alternating potential difference is applied 
along the electric axis, the crystal is set into elastic vibration along the mechanical axis. If the 
frequency of electric oscillations coincides with the natural frequency of the crystal, the vibrations 
will be of large amplitude. This phenomenon is used for the production of Ultrasonic waves. The 
alternating potential difference is obtained by a valve oscillator. 

X-cut slabs are used for the generation of Ultrasonics, because they produce longitudinal 
waves. 

 

Cb = blocking capacitor 

Cg = grid condenser 

Rg = grid leak resistor 

C1 = variable condenser 

 Q = X-cut quartz crystal 

 

 

Description: 

The experimental arrangement is shown in figure. The high frequency alternating voltage 
which is applied to crystal is obtained by Hartley Oscillatory circuit. The Hartley circuit consists of 
tuned circuit i.e. Inductance (L1) and variable condenser (C1) in parallel. One end of the tuned circuit 
is connected to the plate of a valve while the other is connected to the grid. The coil (L1) is trapped at 
the centre and joined to the cathode. The X-cut quartz crystal Q is connected parallel to variable 
condenser C1. 

Procedure: 

The proper grid bias is obtained by means of grid leak resistor Rg and grid condenser Cg. The 
d.c. voltage is applied to the plate through radio frequency choke. The radio frequency choke 
prevents the radio frequency current to pass through high-tension battery. Cb is the blocking 
capacitor which prevents the direct current to pass through the tank circuit, while by passes the radio 
frequency currents. The capacity of the variable condenser C1 is adjusted so that the frequency of the 
oscillating circuit is tuned to the natural frequency of the crystal. Now the quartz crystal is set into 
mechanical vibrations and Ultrasonic waves are produced. The Ultrasonics of frequency 500 KHz are 
produced by this method. However, the frequency up to 15x 107 Hz can be produced by using 
tourmaline crystal. 
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The velocity of the quartz along X-direction is (ʋ) 


 Y

  

Where   Y = Young’s modulus of crystal 

              ρ = density of crystal  

If ‘t’ is the thickness of the quartz slab in meters, 

 ʋ = ν λ = ν (2t)          since, λ = 2t 

 
t2

   


 Y

t2

1
  

By adjusting the variable capacitor C1 of tank circuit, the crystal is made to vibrate at its natural 
frequency, then the frequency of oscillatory circuit gives the frequency of vibrations of quartz 
crystal. 

Thus,   112

1

CL
 

 

DETECTION OF ULTRASONICS: 

1. Piezo - electric detector: 

The quartz crystal can be used for the detection of Ultrasonics. One pair of faces of quartz 
crystal is subjected to Ultrasonics, on other faces which are perpendicular to the previous one varying 
electric charge are produced. These charges are very small. Hence, they are amplified and then 
detected by suitable means. 

2. Kundt’s tube: 

A Kundt’s tube can be used to detect Ultrasonics of relatively large wavelength. When Ultrasonics are 
passed through the tube, the lycopodium powder sprinkled in the tube collects in the form of heaps at 

the nodal points and it is blown off at the antinodal points. 

3. Sensitive flame method: 

When a sensitive flame is moved in a medium where Ultrasonics are present, the flame remains 
stationary at antinodes and flickers at nodes. 

4.Thermal detector method: 
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In this method a fine platinum wire is moved in the medium of Ultrasonics, the temperature of the 
medium changes due to alternative compressions and rarefactions. There is a change of temperature 
at nodes while at antinodes the temperature remains constant. Hence the resistance of platinum wire 
changes at nodes and remains constant at antinodes. The changes in the resistance of platinum wire 
with respect to time can be detected by using sensitive bridge arrangement. The bridge will be in the 
balanced position when the platinum wire is at antinodes. 

 APPLICATIONS OF ULTRASONIC WAVES: 

1. Detection of Submarines, Iceberg and other objects in Ocean: 

   A sharp Ultrasonic beam is directed in various directions into the sea. The reflection of waves 
from any direction shows the presence of some reflecting body in the Sea. 

2.Depth of the Sea (Sonar- Sound Navigation and Ranging): 

We know that Ultrasonic waves are highly energetic and show a little diffraction effect, hence 
they can be used to find the depth of the sea. The time interval between sending wave and the 
reflected wave from the sea is recorded. As the velocity of the wave is known, the depth of the sea 
can be estimated.  

3. Cleaning and Clearing: 

The ultrasonic waves can be used for cleaning utensils, washing clothes, removing dust and soot 
from the chimney. 

4. Direction Signalling: 

The ultrasonic waves can be concentrated into sharp beam due to smaller wavelength and 
hence they can be used for signalling in a particular direction. 

5. Soldering and metal cutting: 

Ultrasonic waves can be used for drilling and cutting process in metals. These waves can also be 
used for soldering. 

Ex: Aluminium cannot be soldered by normal methods. For solder aluminium   ultrasonic waves 
along with electrical soldering iron was used. Ultrasonic welding can be done at the room 
temperature. 

6. Ultrasonic mixing: 

Emulsion of two non- miscible liquids like oil and water can be formed by simultaneously subjecting 
to Ultrasonic radiations. Now a days most of the emulsion like polishes, paints, food products and 
pharmaceutical preparations are prepared by using ultrasonic mixing. 
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7. Destruction of lower life:   

The animals like rats, frogs, fishes etc can be killed or injured by using high intensity Ultrasonics. 

8. Treatment of neuralgic pain: 

The body parts affected due to neuralgic or rheumatic pains on being exposed to Ultrasonics gets 
great relief from pain. 

9. Detection of Abnormal growth: 

          Abnormal growth in the brain, certain tumours which cannot be detected by X-rays can be 
detected by using ultrasonic waves. 

10.Ultrasonics in metallurgy: 

To irradiate molten metals which are in the process of cooling so as to refine the grain size and to 
prevent the formation of cores and to release trapped gases the ultrasonic waves are used.  

*********** 
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Problems:  

1. A quartz crystal of thickness 0.005 metre is vibrating at resonance. Calculate 
the fundamental frequency. Given Y for quartz = 7.9 x 1010 newton and ρ for quartz = 
2650 kg/m3. 

Sol: we know       
 Y

  

Substituting the given values, we get 

2650

109.7 10
  

               υ = 5461 m/sec 

For the fundamental mode of vibration, thickness t = 
2


 

                                              λ = 2 t = 2 x 0.005 = 0.01 m 

Now,  ʋ = ν λ   or   
   

01.0

5461
  

     ν = 0.5461 x 106Hz 
 

     2. A piezo- electric crystal with vibrating length (t) = 3x 10-3 m having density   
   (ρ) = 3.5x103 kg/m3. If it is made of material of young’s modulus                  
   (Y) = 8x1010N/m3, what is its fundamental frequency? 

 
Sol: The fundamental frequency is given by 


 Y

t2

1
  

Substituting the given values, we get, 

3

10

3 105.3

108

)103(2

1





   

35

10

106

22 8

3
  

916.5106

1022
3

4




   
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916.56

10220 6




  

916.56

10414.120 6





 

                                                ν = 0.7967 x 106 Hz 
                                                ν = 0.7967 MHz 

3.A piezo- electric crystal has a thickness 0.002m. if the velocity sound wave in 
crystal is 5750m/s, calculate the fundamental frequency of the crystal.  

Sol: For the fundamental mode of vibration, thickness t = 
2


 

                                                    λ = 2 t = 2 x 0.002 = 0.004 m 
                                                   ʋ = 5750 m/s 


   

004.0

5750
  

                                                            ν = 1.4375 x 106 Hz 
                                                            ν = 1.4375MHz 

4. Calculate the capacitance to produce ultrasonic waves of 106 Hz with an  
    inductance of 1 Henry. 

Sol: The frequency of LC circuit is given by, 

LC


2

1


 


L

C
224

1


  

1)10()14.3(4

1
262 

C  

                                                    C = 0.025 x 10-12 F 
                                                    C = 0.025 PF        (1PF = 10-12F)  

***** 
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