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Model Question Paper

WavesandOscillations

SECTION-A
Answerthefollowing: 5x10=50M

1. A) Define simple harmonic motion. Derive the equation of a simple harmonic oscillator and
obtain its solution (L3. COI)
(OR)

B) Discuss the combination of two mutually perpendicular simple harmonic
vibrations (L3, CO1)

2. A) What are damped oscillations? Derive the equation of motion of a forced oscillator and
find its solution (L3, CO3)
(OR)

B) What are forced oscillations? Derive the equation of motion of a forced oscillator and
obtain its solution (L3, CO2)

3 A)StateFourier’stheoremandevaluatetheFouriercoefficients.(L3,CO3).
(OR)
B)AnalyseasquarewaveusingtheFouriertheorem.(L3,CO3)

4.A) Derive an expression for the velocity of a transverse wave along a stretched string.(L3,

COA4).
(OR)
B) Deduce the modes of vibration of a rod clamped at one end and free at the other end
(L2, CO4)

5 A)DescribetheMagnetostrictionmethodofproducingultrasonicwaves.(L2,COS)

B)DescribethePiezo-electricmethodofproducingflcl?clr{a)sonicwaves(L2,COS)
SECTION-B
AnsweranyTHREEofthefollowingquestions: 3x4=12M
6. Explainbrieflythephysicalcharacteristicsofsimpleharmonicmotion(L1,COI)
7. Definerelaxationtimeanddriveanexpressionforit.(L2,CO2)
8. MentionthelimitationsofFourier ’stheorem(L1,CO3)
9. Explainovertonesandharmonics.(L1,CO4)
10. WriteanyfiveapplicationsofUltrasonics.(L1,CO5)




Section—C 2X4=8M

AnsweranyTWOofthefollowing:

9. Aspringofforceconstant20NM " isloadedwithamassof0. 1kgandallowedto oscillate. Calculate
the time period and frequency of oscillation of the string (L4, COI)

10. The amplitude of an oscillator of frequency 200Hz falls to 1/1 0" of its initial value after a
time of 10s. Calculate its relaxation time and Q-factor. (L4, CO2)

11. 4 steel wire of length 50cm has a mass of 5gm. It is stretched with a tension of
400N.Calculate the frequency of the wire in the fundamental mode of vibration (L3, CO4)

12. Calculate the fundamental frequency of a quartz crystal of thickness 0.003m given Y-
8X10'"°Pa and density is 2500kgm™ for quartz (L3, COS5)




WAVESANDOSCILLATIONS

PRACTICALS
CourseCode:23PHMAP122 Offeredto:B.Sc.(H)
DomainSubject:PHYSICS Semester—II
Max. Marks:50(CIA:15+SEE:35) TheoryHrs./Week:2

Credits:01
COURSEOBIJECTIVE:

Todeveloppracticalskillsintheuseoflaboratoryequipmentandexperimental techniques for
measuring properties of matter and analyzing mechanical systems

Courseoutcomes:Onsuccessfulcompletionofthiscourse,thestudentswillbeableto:

CO 1 Gainhands-onexperienceinsettingupandconductingexperimentsrelatedto waves and
oscillations.

CO 2 Investigateandanalyzethebehaviorofdifferenttypesofwaves,suchas mechanical waves,
sound waves, and electromagnetic waves.

CO 3 Examine resonance phenomena in various systems and understand the

conditionsthat lead to resonance.

CO 4 Enhance skills in presenting findings through graphical representations and written
reports.

CO 5 Develop critical thinking skills by solving problems related to wave mechanics and
oscillatory systems.

ListofExperiments

1. Volumeresonatorexperiment

2. Determinationof ‘g’ bycompound/barpendulum

3. Simple pendulum normal distribution of errors-estimation of time period and the
error of the mean by statistical analysis
Determinationoftheforceconstantofaspringbystaticanddynamicmethods.
Determinationoftheelasticconstantsofthematerialofaflatspiralspring.
Coupledoscillators
Verificationoflawsofvibrationsofstretchedstring—sonometer
Determinationoffrequencyofabar—Melde 'sexperiment.

e S A

Study of a damped oscillation using the torsional pendulum immersed in liquid-
decay constant and damping correction of the amplitude.
10.  FormationofLissajousfiguresusingCRO.

Note:

1. 8 (Eight) Experiments are to be done and recorded in the lab. These experiments
will be evaluated by the CIA.

2. For certification minimum of 6 (Six) experiments must be done and recorded by




students who had put in 75 % of attendance in the lab.

3. ThebestbexperimentsaretobeconsideredfortheCIA.
4.  10+5(RECORD)=15marksforCIA

5. 35marksforthepracticalexam.

ThemarksdistributionfortheSemesterEndpracticalexaminationisasfollows:

Formula/Principle/Statementwithanexplanationofsymbols
Diagram/CircuitDiagram/TabularColumns
Settingupoftheexperimentandtakingreadings/Observations
Calculations(explicitlyshown)+Graph+ResultwithUnits
ProcedureandPrecautions

Result

Viva-voce
TotalMarks:

05
05
10
05
04
01
05
35




UNITT-I
FUNDEMENTALS OF VIBRATION

SIMPLE HARMONIC MOTION (SHM):

The acceleration of a body in periodic motion along a straight line is directly
proportional to its displacement but in opposite direction and is always directed towards a
fixed point, then the body is said to be in simple harmonic motion.

Properties:

1.The motion is periodic.

2. The motion is along a straight line about the mean position.

3. The acceleration is directly proportional to its displacement but in opposite
direction

4. Acceleration is always directed towards its mean position.

Ex: Simple pendulum, vibration of prongs of a tuning fork etc.

THE SIMPLE OSCILLATOR:
When a particle or a body moves such that its acceleration is always directed towards a
fixed point and varies directly as its distance from that point, the particle or body is said to
execute S.H.M. The particle or body executing simple harmonic motion is called a Simple
oscillator.

Equation of motion of simple oscillator:

Consider a particle ‘P’ of mass ‘m’ executing SHM about an equilibrium position ‘O’
along X- axis as shown in figure.

O P
| e
By definition, the restoring force is directly proportional to the displacement (x) but in

opposite direction.

e, Fa-x or F=-kX ------—-- (1)
Where k = proportionality constant or force constant
= force per unit displacement
‘~? ve sign indicates ‘F’ and ‘x’ are in opposite direction.

According to Newton’s-II Law of motion, the restoring force on mass m produces an
. d?x
acceleration, a = —zon the mass, so, that




F = mass x acceleration, i.e., F=ma 1i.e., F=m—5 ----- (2)

From equations (1) & (2) we get,

d2x
m-— =-kx
dt
dx  k
— =—tx
dt m
d’x k
- +— x=0
dt m
d’x e 0 3)
— O X=0 =mmmmmme
dt’
, k k
Where, ©™= — or o= 4/—
m m

Eq. (3) is known as differential equation of simple harmonic oscillator.

SOLUTION OF DIFFERENTIAL EQUATION OF SIMPLE OSCILLATOR:

2
dx d(dxj dv dx
Let, 2_ - — :_..' -
dt dt\ dt dt dt
dx = dt
2
dx dv
i) S E— 4)
dt dx

The equation of motion of Simple harmonic oscillator is,

2
dx 2
dt

2
Fromeq. (4) v. dv__ W x
dx

2
vdo=— @ xdx

2
On Integrating, _[U dv=-w _[x dx




2 2 2

@ X
5 = 5t C;, Where C;= Integrating constant

The value of C, is calculated by applying the condition at x =a (amplitude)
velocity of the particle is zero (v = 0)

0= +C
5 1
w'a’
.G = 5
2 2 2 2 2
v - X o a
R +
2 2 2

Uzah/(az—xz) ----------------- (5)

ASD=Z—);, eq (5) is written as
W/ (a P x 2) = ili—);
dx

V@ -x7)

To integrate eq. (6) substitute x=a Sinf.  Hence, dx =a Cos0d0

=w dt (6)

a Cos@ dO

— =wdt
\/(a —a Sin 0)

acos0do
——=wdt

Integrating eq. (7), we get 8 = (ot + @), where @ is a constant
Now, the displacement x =a Sin (ot + ¢) ---------------- (8)
This is the displacement of the particle at any instant.

If the motion of the particle is on Y-axis,
10




y=a Cos (ot + ¢) -------------- 9)

CHARACTERISTICS OF SHM

1. Displacement (x): The displacement of any particle at any instant executing SHM is

given by
x =a Sin (ot + ¢)
The maximum displacement from mean position is called amplitude.
Here, amplitude = a
2.Velocity (v): The velocity of the oscillating particle is given by

B  Cos (ot +
v Tan os (ot + ¢)

v=awy1-Sin (@1 +9)

U:(o\/a ' _a 2Sinz(a)t+¢5)

v=aun(a P x 2)

At mean position, x=0, v=ma 1S maximum
1.€., Upgy = ® A
At extreme position, x=a, v=0

3. Time Period (T): time taken for one complete oscillation is called time

period.
7= 2%
0]
2
dx 2
r-—— 2 .= wx
ld’x/d ¢ dt
X
X
T=2n,————
"Nd*xid
T2 }dlsplacem@t
acceleration
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4. Frequency (v): The number of oscillations made in one second is called

fi . V=
requency. T 27 27”/7 \/7

1 accelerati on

displaceme nt

5. Phase: Phase denote the position and direction of the particle at any instant
of time. The angle, (ot + ¢) is called phase of vibration.

6. Epoch: The value of phase when t = 0 is called the initial phase (or) epoch.

Here, ¢ is called epoch.

Relation between displacement, velocity and acceleration:

The displacement of the particle executing SHM is g
given by, x = a Sin (ot + ¢) 5 a ey T
. X .-ﬁi _________ i" ________ L _____ e _‘:
Its velocity, v= Ao Cos (ot + ¢) a8 Fr—— |
B R
8|8 : ; : 2o
d’x %o;‘"\ e {; L
' ’Si : o |
Its acceleration, ? = —aw” Sin (ot + ¢) 8 mi\\:{)/ :
£i] R i MRt ]
t | Velocity curve | ;
x| ! | i |
’ B8 e oz R WS o
v PR Y
2T WX £ T4_T2) y '
dat s PR
b
2 < Acceleration curve
7t
If ¢ =0, —aSmOJt—aSm(Tj,-

2
a):—ﬂ:27rv
T

v=am Cos [27”}
T

Acceleration = — a ®*Sin [MTtJ

12




TORSIONAL PENDULUM-MEASUREMENTS OF RIGIDITY MODULUS:

Torsional Pendulum consists of a heavy metal sphere or cylinder suspended from a rigid
support by means of experimental wire. When the sphere or cylinder is slightly twisted in the
horizontal plane and the released, the pendulum starts torsional oscillations about the axis of
suspension.

Theory:

Let a sphere or cylinder of mass M be suspended at one end of a wire of length / and
radius r keeping its other end fixed at a rigid support.

Let, a pendulum be slightly twisted in the horizontal plane through an angle 8 radians
and then released. The pendulum starts executing torsional oscillations. Let / be the moment
of inertia of cylinder or sphere about the axis of suspension.

Within the elastic limits, the couple or torque acting on the wire is proportional to the
displacement.

Therefore, T = I,

. aze . . daze
Where angular acceleration, ¢ = ey and internal couple acting, 7 = | prT

If C be the torsional rigidity of suspension wire (i.e., couple required to produce unit
radian twist in the wire), the restoring couple (7) required to produce 6 radians is —C6.

s Id29 - —CO 1
In equilibrium, Pre i O e ( )

Therefore, the equation of motion of the pendulum is,
Experimental
wire

d2o d2e

= — £ =
[—— +C6=0or — + -6 =0

d?e C
or—+ w?0 =0 where,w? = —omee (2)

This is the differential eq. of simple harmonic motion Cylinder

whose time period T is given by

2w 2
T= _TL'=_T[ —————————— (3)

w c

I

T
We know that torsional rigidity C of a wire is given byC = Zl ————————— 4)

Where 1 is the modulus of rigidity of the material of wire and [/ is the moment of inertia.

13




2
In case of sphere, I = EMRz,
Where M= mass of the sphere and R= radius of sphere.
. 1 2
In case of cylinder, [ = > MR-,

Where M= mass of the cylinder and R= radius of cylinder.

Substituting the value of C from eq, (4) in eq (3), we get.

I B 211
T=2m [nnr4] =21 [ﬂnr4]

21

2 _8m’Il _ 8ml
Or Comprt gt
_ 8m2Il

T?r4

o n

Measurement of Rigidity Modulus By Torsional Pendulum:

The following procedure is adopted:

(1) The sphere or the cylinder is suspended from a rigid support with the help of
experimental wire.

(ii)  The sphere or the cylinder is slightly rotated about the wire and released so that it
begins to execute torsional oscillations of small amplitude about the wire as axis.

(ii1)  Start stop watch and simultaneously count the number of oscillations. The time
__total number of oscillations

period is T

total time taken
(iv)  Measure the length / and radius 7 of the wire. The radius of the wire is measured

with the help of screw guage and length / with the help of meter scale.
(v)  With the help of Vernier Callipers measures the radius R of the sphere or cylinder.
(vi)  Measure the mass M (in Kg) of the (sphere or cylinder) with the help of physical
balance.

Calculate 1= %M R’ (for sphere)
I= % MR’(for cylinder)

8m?Il
Using the formulan = T2, We calculate the rigidity modulus of the wire.

. 8n2l (1 2\_ 4mMR?1
Therefore, For cylinder, n = 754" (E MR )— 2,4
8m?l (2 16mMR?1
For sphere, n = —.(— MRZ) = ——
p M= 1245 5T2r4

14




COMPOUND PENDULUM:

A compound pendulum is a rigid body, capable of oscillating about a horizontal axis
passing through it (not through its centre of gravity) in a vertical plane.

Consider the vertical section of an irregular rigid body pivoted at a point S. In the
equilibrium position of the body, the centre of mass lies vertically below S. Let mbe the mass
of the body and / the distance between the point of suspension S and centre of gravity G.

Let, at any instant ¢, the body be displaced through an angle 6. Let a restoring couple acts
on the body to bring it in its mean position of the rest. Due to inertia, it does not stop in the
position of rest but swings to opposite side, i.e., the body executes simple harmonic motion.

Theory:

The time period is calculated as follows,
Resorting couple = weight x perpendicular distance of G from S
~T=mgxl[sinf
ort=mglO(: sinf =06, when 0 is small).

If 7 is the moment of inertia of the body about an

axis through S perpendicular to the plane of oscillation,

2

dze ' ' ' 6
and PPy angular acceleration, the torque actingonit 7= ]F

aze
and thus ]ﬁ =—mgl.0

negative sign indicates that angular acceleration is always towards the position of rest.

Then,

d?e mgl. 2 mgl 2
— =———0 =—pOWhere, — =
dt? I P > p

This is the equation of simple harmonic motion whose time period T is given as,

T=2 =21 (ngl) (A)

If I, be the moment of inertia of the body about its centre of gravity, then from the
theorem of parallel axes

=1, =ml

15




or I=mk’ + ml’- (B)
where k is the radius of gyration about an axis through the centre of gravity.

Substituting the value of Ifrom eq. (B) into eq. (A)

Comparing the above time period with the periodic time of the simple pendulum
L k?
T=2m (E)’ we get L =—-+ l

It is, therefore, termed as the length of the equivalent simple pendulum.

PRINCIPLE OF SUPERPOSITION OF WAVES

According to the principle of superposition, when a medium is distributed
simultaneously by any number of waves, the instantaneous resultant displacement
of the medium at every instant is the algebraic sum of the displacements of the
medium due to individual waves in absence of others.

If y1,y2, y5..... be the displacement vectors due to waves 1,2, 3,.. acting separately, then
the resultant displacement is

Y= Yitys, Tyt

The following are the important cases of the superposition of waves:

(i) Two waves of the same frequency moving in the same direction (Interference of
waves).

(i1)) Two waves of the slightly different frequencies moving in the same direction
(Beats).

(iii)Two waves of the same frequency moving in the opposite direction (Stationary
Waves).

16




COMBINATION OF TWO MUTUALLY PERPENDICULAR SIMPLE
HARMONIC VIBRATIONS

EQUAL FREQUENCIES

Let us consider two simple harmonic motions having the same frequency one acting along
X-axis and the other acting along Y-axis. Let the two vibrations be represented by

x =a Sin (ot + ¢) ---------- (1)
and y=bSinwt --m--mmm- 2)
where a, b arethe amplitudes of ‘x’ and “y’ vibrations respectively.

The x motion is ahead of the y motion by angle ¢ i.e., the phase different between the two
vibrations is ¢.

The equation of resultant vibrations is obtained by eliminating t between egs. (1) and (2)
i =(X
From eq. (2), Sin ot = (b)

2

Cos ot = \/l—Sinza)t = 1—;;—2

Expanding eq (1) and substituting the values of sin wt and cos wt, we get

x
From eq. (1), ; = Sin ot Cos ¢ + Cos ot Sin ¢

2 2 2

X y 5 2xy s Yo,

— 4+ = _ —= = A

PR Cos™ ¢ b Cos ¢ =Sin” ¢ e Sin” ¢
2 2

2x
> + ;;—2 (Cos® ¢ + Sin® ¢)— a—by Cos ¢ = Sin’ ¢

17




This equation represents oblique ellipse, which is the resultant path of the
particle.

Special Cases:

1. when ¢ =0 (i.e., the two vibrations are in phase)

Cosp=1andsinp=0

2
X 2

FromEq. 3) g + 2y 2 fig (i
rom Eq. (3) 52" ab 1g (1)
X y2
(;‘z)zo
L4
+(2-2) =0
b
T y=F —X - 4)
a

This represents two coincident straight lines passing through the origin and inclined
to X-axis at an angle ‘0’.

b b
TanO= — (or)O= Tanl(—J
a a

This resultant path is shown in fig. (1)

2. When ¢ = %we have,
1 . 1
C = - d Sing=-—+— .
0s > an n ¢ > ‘;, 8 =n/4
R S G- 0 B § S ]
rom Eq. (3) a2 B2 ab 2 2 T (5)

This represents an oblique ellipse, shown in the figure.

Vs
3.When ¢ = ? we have,

v ¢
Cos¢p=0 and Sin¢d=1 s -

18




x y 2
PR (6)
The resultant path is an ellipse, whose major axis coincides with the coordinate axis

as shown in fig.

From Eq. (3)

Ifa=b, then )cz—kyzza2

So, the resultant path of the particle is a circle of radius ‘a’ as shown in figure.

R¥/1
4.When ¢ = T we have,
Cos ¢ = —% and Sin¢=

i’
a b* ab 2
This equation represents an oblique ellipse, as shown in figure

S.when ¢ =m. We have, cos¢=—-1 and sindp=0

2 2
X y: o 2xy
From Eq. (3) a—2+b—2+ E:O
X y ?
(; zj‘o
(L_j L ro2
a a b
T y=f —X -
O ®)

This again represents two coincident straight lines passing through the origin and
inclined to X-axis at an angle ‘0’.

b ;
Tanez—_(or)6’=Tanl[—2J sl T,
a a

This resultant path is shown in figure.

19




DIFFERENT FREQUENCIES (FREQUENCIES IN THE RATIO 1:2

Consider two simple harmonic motions have the same frequency in the ratio 2:1 one acting along
X-axis and the other acting along Y-axis. These vibrations are represented by

x =a Sin Qot + ¢) --------—-- (D)

and y=bSinot  -------—-- (2)

where a, b are their respective amplitudes and ¢ is the phase angle by which x-vibration the initially
ahead of y-vibration. The equation of the resultant vibration is obtained by eliminating ¢ between egs.

(D) & (2)

From eq. (2), Sin ot = (%), Coswt = V1 — sin?wt

2

cosmt =4/1— L

bZ

Expanding Eq. (1) we get,

X
P Sin 2wt Cos ¢ + Cos 2wt Sin ¢

X
P 2 sin otcos ot cos ¢ + (1-2 Sint) sin ¢
Substituting the value of sin wt and cos wt, we have

* 2y 1_y_2c +1_2y2 :
7D b2 0s ¢ ( F)smd)

2y%\ .- 2y y2
or — <1—b—2>s1n¢—7 —b—zcosd)
Squaring both sides
X2 2y2\%2 . 5. 2 292\ ., 4y? y3\ 2
a (1=37) st = (1= i g =5 (1 - 55 )oos™ ¢

2 4

2 4 2
X .2 4y ) 4y .2 2x . 4xy
—+sSINg+— SINO ——— SINO ——SIn O +
az d) b4 d) b2 d) a d) a bz

. 4y? 4
smd)=%cosz¢— 4 cos ¢

b4
£y sin“p— 2 Sin ) L (sin*d+cos” §)— ﬁ(sin2<1)+cos2 0) +4x—yzsin ¢ =0
a2 a b4 b? a b?

2 4 2 2
x . 4y 4y 4xy“ .
(a Q)) b* b2 ' ab? ¢

20




2

- simzs)2 +2 (Z‘i + 280 ¢ — 1) =0e-rmrmmremmreneeeees 3)

This is the equation of a curve having two loops, which is the resultant path.

Special Case

(i) When ¢ =0, mt, 21t, When the two component vibrations are in phase.

Substituting ¢=0 in eq. (3),

we have,(xz)2 + % (yz ) | — (4)

a? b2

This is represented in the figure.

(ii) When ¢=§.

In this case sin® NeR The eq. (3) is

2

(& -5) +Z(E-1+25)~005)

This represents a curve as shown in the figure.
(ii1) When qbzg, we have sin@ = 1. Then eq. (3) gives,
x 2 4y?y? _
G-1) +3%(G+i-1)-0

(-1 + 5+ -0

x 2y*\_
{G-1)+3)0
This represents two coincident parabolas, the equation of each parabola being
x 2y% 2y? _(x
G-1)+3F=0 o=-(3-1)

¥ = = 2k -a) v (6)

The pair of coincident parabolas symmetrical about x-axis is shown in the

figure.

(iv) When ¢=37n. In this case sin® =% . The eq. (3) reduces to the same

form as in case (ii).
Hence the path of resultant vibration is the same.

{




(v) When ¢p=m. In this case sin ¢)=0. Hence, the figure is again obtained as shown in the figure.

LISSAJOUS FIGURES

The resultant path traced out by a particle when it is acted upon simultaneously by two
simple harmonic motions at right angles to each other is known as Lissajous figure.

The nature of resultant path depends on,
(1) The amplitude of vibrations
(i1) The frequencies of two vibrations
(ii1) The phase difference between them.

USES OF LISSAJOUS FIGURES

1. The ratio of the frequencies of two vibrating systems can be obtained from
their  Lissajous  figure provided the ratio is in a whole number
re., 1:1,1:2,1:3, ...s0. on

2. The Lissajous figure provide a good method for adjusting the frequencies of
two forks to a given ratio.

3. Lissajous figures may be used to determine the frequency of a tuning fork
provided the frequency of the other tuning fork producing the figure is known
and are comparable i.e., in a whole number ratio.

4. These figures are useful in testing the accuracy of a tuning of some simple
intervals between two forks.

5. The figures may be employed to investigate how the period of a rod fixed at
one end varies with the length of the rod.

6. Helmholtz used these figures to investigate the variation of a violin string.

sk ke sk sk sk sk sk sk skok

Problems:
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1. A particle executing SHM has a maximum velocity of 0.4 m/s and a maximum
acceleration of 0.8 m/s”. Calculate the amplitude and the period of oscillation.
Sol: Ujpax=a ® = 0.4 m/s
ama=a ©° = 0.8 m/s’

a.. ao’ 2r

= ol a) e

_— aw T

27 0.8
a) = — :2

T 0.4

2 T
I''=—=——=7=314sec

0] 2

: O pax 0.4

Umax—a ® (or) amplitude, a = o = BN =0.2m

2.The displacement of a particle executing SHM is
x =0.01 Sin 1007 (t +0.005) m.
Calculate amplitude, periodic time, maximum velocity and displacement at the time of
start?
Sol: Given that, x = 0.01 Sin 100z (t +0.005) m
x =0.01 Sin (100x t +0.57) m
The general equation is, X = a Sin (ot + ¢)
On comparison we get,

(1) amplitude a=0.01lm and ® =100%
(i1) Time period T = 2% _ 2% _ .02 Sec
w 100 =
(iil) Umax=a ® =0.01X 100 =7 =3.14 m/s
(iv) displacement at the time of start (t = 0)
x =0.01 Sin 1007 (0.005)
x =0.01 Sin /2

x=0.01 m

3. A particle executing SHM makes 100 complete oscillations per minute and its
maximum speed is 5 m/s. what is the length of its path and maximum acceleration?

23




Find the velocity when the particle is half wave between its mean position and the
extreme position?

Sol: V= 100_ 10
60 6
O=2nv= 27x10 _ 20x3.14 _ 10.47 rad/s
Upax—a ® =5 m/s
litude.a = 2o = — 2 _ 048 m
amprude, 10.47

length of the path=2a=2x0.48=0.96 m
amax=a ®° = 0.48 X (10.47)> = 52.62 nv/s*

The velocity of the particle, 0=y (a P x 2)

2

v=amla’ - = _3a2
B 4 ~ @\ 74 atthe half wave, x = a/2

o= Y3 wa_1732x1047x0.48
2

=4.352 m/s

UNIT-IT
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DAMPED AND FORCED OSCILLATION

Free Vibrations

When a body is capable of vibrations is displaced from its mean position of equilibrium and
then released, it begins to vibrate. In an ideal harmonic oscillator, the amplitude of vibration remains
constant for an infinite time, such vibrations are called free vibrations and the frequency of vibration
is called as natural frequency.

Damped Vibrations

The vibrations of a freely vibrating body (such as a pendulum or spring) gradually diminish in
amplitude and ultimately die away, as the oscillating system is always subjected to frictional forces
arising from air resistance, such vibrations are known as damped vibrations.

Forced Vibrations

When a body is made to vibrates by an external periodic force (which may or may not
have its frequency equal to the natural frequency of the body), the body starts vibrating with its own
natural frequency but ultimately it vibrates with the frequency of applied force, such vibrations are
called forced vibrations The forces vibrations, after removal of external periodic force, become free
and die out in course of time.

DAMPED HARMONIC OSCILLATOR

In an ideal harmonic oscillator, the amplitude of vibration remains constant for an infinite time.
When a body vibrates in air or in any medium which offers resistance to its motion, the amplitude of
vibration decreases gradually and ultimately the body comes to rest i.e., the body is subjected to
frictional forces arising from air resistance and the motion of the body is known as damped simple
harmonic motion.

Examples:

1. If we displace a pendulum from its equilibrium position it will oscillate with a decreasing
amplitude and finally come to rest in equilibrium position.

2. Let a mass m is suspended from the spring and set to vibrate. The mass vibrates for a longer time in
air as compared to the mass which vibrates partially in air and partially in liquid kept below the mass.
The damped force is more when the mass moves in the liquid and hence the vibrations die out more
quickly in the liquid than in air.

DIFFERENTIAL EQUATION OF MOTION OF DAMPED HARMONIC
OSCILLATOR

There are two opposing forces acting on the damped oscillator,
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1. The restoring force (f;) is directly proportional to the displacement (x) but
opposite direction.
1.e., fi 0 —x (or) fi=—-ux
where p = proportionality constant (or) force constant i.e., force per unit displacement

2. A frictional force (f,) proportional to velocity (v) but in opposite direction

e, fHa—v (or) fza—d—x'.'d—x=u
dt dt
dx
or fh=—-1r=
() f=-r

where r = frictional force per unit velocity

The resultant force, F = fiT £

=—uxX-r ax
dt
But, F=ma where, m = mass of the particle
2 2
F=m d’; a= d);
dt dt
. : . d’x dx
Equation of the motion of the particle is, m P =-px-T
t

i v otx=0 (1)
dt’ a ~OTTE T

This is known as differential equation of damped harmonic oscillator.

r
where, . =2b Here, b = damping constant

1
— = decay modulus

b
o= ﬁ(or) w= \/Z
m m

in

SOLUTION OF THE EQUATION FOR VARIOUS BOUNDARY CONDITIONS

Equation (1) is a second-degree differential equation.
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Let its solution be, x=A — (2)
where A, a are arbitrary constants

Differentiating eq.(2) with respect to t, we get,

2

dx dx
—=Aae” and——= Ao’ e™
dt dt

Substituting these values in eq. (1) we get,
2
Ad?e”"+2bAae”+ @ Ae"=0
2
Ae” (o> + 2bot @) =0

2
Ae™#0, . o’+2bot @ =0
o —~b*+b* —4dac
2a

—2b£V4b’ -4’
5 -
The general solution of equation (1) is

(—b+\/b2—a)2j t N Aze(_b_ bz—wz) t

a=1.b=2b.c= @

o= ~b+b’ -0’
x=A4e

where A, A, are arbitrary constants.
Special Cases — Different Damping Conditions

Case (1): Over damped motion:
When b0’ In this case Vb’ -’ is real and less than b’ T - qb’o'

Hence, (-»++/b* -0 ) and (-b» - b? - »* ) are both negative.

f—>
Thus, the two-displacement x consists of two terms, both dying off exponentially to zero without
performing any oscillations, as shown in figure.

The rate of decrease of displacement is governed by the term (-5 ++/b> — > )t as the other term
reduces to zero.

In this case, the body once displaced returns to its equilibrium position quite slowly without performing
any oscillation, this type of motion is called over damped (or) dead beat.

Ex: 1. Pendulum moving in thick oil.
2. Dead beat moving coil galvanometer.

Case (2): Critical damping:
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When b’ =0’ By substituting b> =w”, the solution does not satisfy eq.(1)
Let us consider, +/b” - # 0 but, equal to very small quantity ‘h’
ie, Vh'-w*=h > 0
From eq. (3), x= A"+ 4,¢
x=¢ "(Are"™+Ae™
x=e "[A;(I+ht+...)+ A, (1- ht+...)]

(~b-h) t

x=¢ " [(A;+A,) + ht (A— Ay +...]

x=e "[ptqt] - (4)

Where, P= (A1+A2) and q= h (Al— Az)
This is a possible form of solution.
From eq. (4), as ‘t’ increases the factor (p + q t) increases, but the factor ¢ ™ decreases.So, the
displacement (x) first increases, due to the factor (p + q t) and approaches to zerodue to e Pas
increases.

In this case the particle tends to acquire equilibrium position much rapidly than case (1), this motion

is called critical damping.
Ex: This type of motion is exhibited by many pointer instruments such as Ammeter, Voltmeter, etc.,
in which the pointer moves to the correct position and comes to rest without any oscillations in the
minimum time.

Case (3): Under damped motion
When b*<0’ In this case Vb? —@* 1S imaginary
Let, Vb*> -0® =1 Vol-b>=1f
Where, i*=—1 (or)i=+~land B= o’ -b’
Fromeq. (3), x= Ale(‘b i) +A2e(‘b i)
x=e "(Ale P+ A e )
x =e " [A;(Cospt + iSin Bt)+ A,(Cospt — iSin Bt)]
x=e "[ (Aj+A,) CosPt + i(A-A,) Sin Bt]

x=¢ " [a Sin ¢ Cos Bt +a Cos ¢Sin Bt] \

D —

where, a Sin ¢ = (A+A;) a Cosd =i(A-A»)

. x=e¢ "aSin (Bt + ¢)
x=ae " Sin[ (Vo -5 t+ ] (5)

This is in Simple Harmonic Motion with amplitude “ a e ™.
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and Time period T = Z__ 2r

72- f—

p o’ —b’

The amplitude is continuously decreasing due to ‘e ', where, ¢ ™ is called damping
factor.

As Sin [ (Vw?-b? )t + @] varies between +1 and —1, the amplitude also varies between a

- bt
e®and —ae ™,

The decay of amplitude depends on damping coefficient ‘b’. It is called under damped motion as shown
in figure.

. . . . . . . 21 .
The time period is slightly increased or frequency decreased because the period is T while in the

L 2
absence of damping it was—.

Ex: Motion of a pendulum in air, motion of coil of ballistic galvanometer or the electric oscillations of
L-C-R circuit.

LOGARITHMIC DECREMENT:

Logarithmic decrementis defined as the natural logarithm of the ratio between two successive
maximum amplitudes which are separated by one period.
Logarithmic decrement measures the rate at which the amplitude dies away.

The amplitude of damped harmonic oscillator = a € o

At t=0, amplitude a,=a
Let aj, a,, a;..... be the amplitudes at time t =T, 2T,3T,...respectively,
where T = time period of oscillation.

-bT
Then a,=ae ®
azzae_bm)
~b(3T
ay=ae D .

From these equations, we get
Gy _ 4 _ 4

a, = Z = Z = eeeen =e¢ T =¢", Where bT = A = logarithmic decrement
Taking natural logarithm, we get
a, a, a,
A =log, a_1 = log. Z = log, Z = reeeen 1

RELAXATION TIME (T)
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The Relaxation Time (T) is defined as the time taken for the total mechanical energy to decay
to (1/e) of its original value.

1
The mechanical energy of damped oscillator, E = — a’pe >

2
L5
LetE=E;, whent=0, E0=?au ---------- (1)
Now, | S R —— )

E
Let T be the relaxation time, t= T(relaxation time) E= 70
Substituting the value of E in eq. (2), we get

E
From eq. (2), 70 =Eje "

-1 —2bt

e =e
-1=-2b~r
1
1=(3 b)—mm 3)
Fromeq. (2), E=Eqe R — 4)

Power dissipation, P = £
T

Quality factor (Q):
Quality factor (Q) defined as 2z times the ratio of the energy stored in the system to the energy lost

per period.
ie., Q=

Q=2m ot where P is power dissipatedand T is period time

Energy stored in the system

Energy lost per period

Where E = energy stored
P = power dissipation
T = Time period

We know that, P = £ where T = relaxation time
T
21 E 2T T
S0,Q = (E7/TT)T =7 Vo= 27”=(angular frequency)
Q=owr

Here, QaT, i.e., the higher the value of Q, the higher would be the value of relaxation time.
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FORCED VIBRATIONAS

The vibrations of a body which vibrates with a frequency other than its natural frequency under the
action of an external periodic force are called ‘forced vibrations’

“A body executing forced vibrations is called driven oscillator”
EQUATION OF FORCED VIBRATIONS:
The forces acting on the particle are,

1.The restoring force (f;) is directly proportional to the displacement (x) but in
opposite direction.

ie, fia—x (or) fi=—ux
where p = proportionality constant (or) force constant or force per unit displacement
2. The frictional force (f;) proportional to velocity (v) but in opposite direction

. dx .. dx
e, fro—v (or) fra—="rZ=v
£ (or) f¢ o

(or) fHh=-1 Z—x where r = frictional force per unit velocity
t
3. The external periodic force f, = F' Sin pt

where  F = maximum value of the force,

p = 2n n=driving frequency (or) n= 2£= frequency
T

. The Total force acting on the particle, f; = frt fr +fe

dx .
ft=—ux—rE+FSmpt

The impressed periodic force is called driver and the body executing forced vibrations is called

Driven Oscillators.

By Newtons’s second law of motion, it is equal to the product of mass m of the particle and
2

. . . X
instantaneous acceleration i.e., m — hence

dt
But, f,=ma Where, m = mass of the particle
d’x
ft:mdtz
d—zx— @JFFS' t
mdtz——ux—r I inp
d’x  dx

m;+r5+ux=FSinpt
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Sq

dt’ md m o m np

dzx+2b@+ ’x = fSin pt (1)
P g T OX=fSinpt -eoeeee

r F
where, —=2b , —=1, m2=ﬂ(or) oo=\/Z
m m m m

This is the differential equation of forced vibrations.

SOLUTION OF EQUATION OF FORCED OSCILLATIONS
(Amplitude and Phase of forced Vibrations)

When a steady state is set up, the particle vibrates with the frequency of applied force, and not with its

own natural frequency. The solution of differential eq. (1) is of the type

X = A Sin (pt —0) =--e-mm- (2)
where A is the steady amplitude of vibration and 6 is the angle by which the displacement x lags behind
the applied force F sin pt. A and 8 are arbitrary constants.
Differentiating eq. (2), we have,

éC—AC t—0
~= Ap Cos (pt-0)
2
X

—5=—Ap* Sin (pt-9)
dt

dx d 2x

Substituting the values of Eand ; in eq (1), we get
— A p” Sin (pt —0) + 2 bA p Cos (pt —9) + »*A Sin (pt —0)
=fSinpt= fSin [(pt-0) + 0]
A (o™= p?) Sin (pt —0) + 2bAp Cos (pt —0) = fSin (pt—0) Cosd +
fCos (pt—0) Sin 6
The relation holds good for all values of t, the coefficients of Sin (pt-0)’ and ‘Cos (pt—0) terms on both
sides of the equation are equal i.e.,

Comparing the coefficients of ‘Sin (pt-0)’ and ‘Cos (pt—0)’ on both sides, we get
A (@ =p))=fCo0sH  ---mmm- (3)
2bAp=fSin®  -------- (4)
naring and adding equations (3) & (4) we get,
A% (0= p + 4 b*A2 p? = f2

AT [(0*=p’) +4b7p]=f
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A
(a)2 - p2)2 +4b%p?

(5)

Amplitude of forced vibration, A= \/

Dividing equation (4) with (3) we get,

2bAp  2bp
A’ =p*) (" -p*)

Tan0 =

Phase of vibration ,80 = Tan™ 22 b - (6)
(0" =p7)
Substituting the value of A from eq (5) in eq. (2)
/

\/(a)z _p2)2 +4b2p2

Note: p = driving frequency of applied force =2n n, &w = \/%

Depending upon the relative values of p and w, three cases are possible:

Different cases of Amplitude and Phase

Case (1):When driving frequency is low i.e., p << . In this amplitude of vibrations are given

, f
b Amplitude, A=
Y \/(a)z _p2)2 +4b2p2

= Lz= Constant

2bp

and 6= Tan_l(mj = Tanil(o) ~(

This shows, the amplitude is independent of frequency of force. It depends on magnitude
of applied force and force constant ‘W’
The force and displacement are always in phase i.e., in the same phase.

Case (2):When p =w,i.e., frequency of force is equal to the frequency of particle (or)

body
In this case, the Amplitude of vibration is,
F F e I F
A= fz = U =— = [ « —=2Db, —=f andp=w]
\/(a)z_pz) +4p?p? 2p T, TO m m
m

6=Tan™ @ =Tan_1(oo)= i
0 2
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Thus, the amplitude of vibration is depends on ‘damping force’ and for small damping

forces, the amplitude will be quite large. The displacement lags behind the force by %

Case (3):When p >0, i.e., the frequency of force is greater than the natural frequency
w of the body.

: : F .. F
In this case, Amplitude, A= S = iz: 5 . —=f
Jp +ap’p> P mp m

2

—-P
Thus, the amplitude A goes on decreasing and phase difference tends towards ‘m’.

0= Tan_l[@j = Tan_l[_—%j ~ Tan_l(—O) =T
p

Resonance:
The phenomenon of making a body vibrates with its natural frequency under the influence
of another vibrating body with the same frequency is called resonance.

Example:
1. Tuning a radio (or) transistor, when natural frequency is so adjusted, by moving the tuning
knob of the receiver set that it equals the frequency of the radio waves, the resonance takes
place and the incoming sound waves can be listened after being amplified.

2. Musical instrument can be made to vibrate by bringing them in contact with vibrations
which have the frequency equal to the natural frequency of the instrument.

3. Soldiers crossing a suspension bridge are prohibited to march in steps and areadvised to
march on suspension bridges out of steps so as to avoid the  resonance between the natural
frequency of the bridge and the frequency of steps of soldiers which may cause the collapse of
the bridge.
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AMPLITUDE RESONANCE:

The amplitude of forced oscillations varies with the frequency of applied force and becomes

maximum at a particular frequency, this phenomenon is called amplitude resonance.
Conditions of Amplitude Resonance

In case of forced vibrations,

Amplitude, A= fz (1)
\/(a)z _pz) +4b2p2
_ 2b,
and @ =Tan ‘((wz _ppz)j (2)

Eq.(1) shows that the amplitude varies with the frequency of force (p).

For particular value of ‘p’ amplitude becomes maximum, this is called amplitude resonance.

The amplitude is maximum when the term \/ (a)2 - p2 )2 +4b p2 becomes minimum.
d
(o)~ [(@" = p*)* +4b°p*] =0
dp
2 (0™~ p°) (—2p) +4b* (2p) =0
(0’—p’) =2b°

p°=a"—2b> (0r) Pp= (@ —2b) wwrermeeee (3)

| 2 _ 2b2
Thus, the amplitude is maximum when frequency (fj of the impressed force becomes%
T T

This is the resonant frequency.

2 ~z2
It gives frequency of the system both in presence of damping i.e.,(a)z—zb)and in the
T

absence of damping i.e., % If the damping is small, then it is neglected and the condition of
maximum amplitude is reduced to p = w. ' .
Substituting the condition (3) in eq. (1), we get

f No damping D
Amax = g
\/ ((02 — (02 + 2b2 )2 + 4[)2 (a)2 — 2b2) l Low damping ?e';%:anca
A = f _ f g Ha A relzz)nance :
" Japt v ab’w? —8ht abiw® —4b® £

PN S |
" b Vet —p* 2b A p?+2b> =B e :

Forcing frequency —»

" pt =’ 2b
(or) ® =p°+2b’
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W T
T 2p | PP+’
f

For low damping, Apx =~ ——
2bp

Then, Apax— © as b—0

In figure, curve (1) shows amplitude when there is no damping i.e., b = 0. The amplitude
becomes infinite at p=w. It can never be attained in practise due to frictional resistance as slight
damping is always present.

Curves (2) & (3) shows the effect of damping on the amplitude. It is observed that peak of the
curve moves towards the left and the value of A, which is different for different values of b (damping),
diminishes as the value of b increases.

For smaller values of b, the fall in the curve about p=w is steeper than for large values, i.e.,
smaller is the value of damping, greater is the departure of amplitude of forced vibrations from the
maximum value vice-versa.
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Problems:
2

dx dx
1. The differential equation for a certain system is FJr 2k P +o0’x=0 ifo>>k,
t

find the time in which amplitude falls to 1/e times the initial value?

Sol: The given equation is of damped harmonic motion.

b —kt

The amplitude is given by, a=age "=age

a
According to given problem, a= 70

a
—L =g,e™ (or) el=e™

1
kt=1 (or) t= 7 se¢

2. The damped oscillator starting from rest reaches first amplitude of 500mm. It reduces
to S0mm after 100 oscillations. The periodic time is 2.3 sec. Find the damping
constant and relaxation time?

Sol: Given that, T = 2.3 sec

The amplitude is given by, a=ag e ~
—bT/4

bt

The first amplitude, a; =age (for 1 amplitude, t=T/4)
(for 201™ amplitude, t =100T + T/4)
(After 100 oscillations 201" amplitude is obtained)

a; = 500 mm and ayy; = 50 mm

The 201" amplitude, ayy; = ag e ~b(100T +T/4)

a —100bT
201 — o

-100bT

——=e (or)e """ =10

100 bT =log, 10 =2.303 log;o 10 =2.303
100 b x 2.3 =2.303
. LI
Damping constant, b = 100" 10 sec.
1 1 100

Relaxation time, T = B 02 2 50 sec.
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3. The quality factor of a sonometer wire is 2 x10°. On plucking it makes 240 vibrations
per second. Calculate the time in which amplitude decreases to half the initial
value?

Sol: Giventhat, Q=2x10’ and v=240 Hz
The quality factor, Q= t
=2nvt=2x3.14x2401
2x10°=2x3.14x2401
2x10°

1= ——=1.327 sec
2x3.14x240

1 1
But, 1= %(or) Z=2r=2x 1.327=2.654

The amplitude of damped vibrations is, a=a, ¢ ™
“ b
—_— e -

" given that, a= D
a, ’ 2

1
S=¢ P (or) e™=2 (or) bt=log.2=2.303log?2

bt=2.303x0.3010=0.6932
0.6932

t= T: 0.6932 x 2.654 = 1.84 sec.

4. The amplitude of a seconds pendulum falls to half of its initial value in 150 seconds.
Calculate quality factor?
Sol: The amplitude of damped vibrations is, a =a, ¢ ™

a

bt - 4
—=¢  giventhat, a= —and t=150 sec
a, 2

1
S=e B0t or) eM'=2 (or) 150 b=1log. 2 =2.303log;, 2
150 b=2.303 x 0.3010 =0.6932

0.6932
= ———=0.00462

150
For seconds pendulum, T = 2 sec
2r 27
o= ?: ?=n=3.14
1
"7 2 000924

3.14
0.00924

So, the quality factor, Q =t ® = ~ 340
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5. The quality factor of an oscillator is 500.Find its initial energy of its amplitude 0.01
m. Also calculate the energy lost in first cycle? Given that s=mao’ =100
N/m

Sol: Given that s=mo>= 100 N/m
Q=500
Amplitude, a=0.0lm
1

The initial energy of an oscillator, E = 5 m o’ a’ = 5 s a’

1
E=—x100x (0.01)*

E=5x10"]J

27 energy stored in system

The quality factor, Q = energy lost per period

27 F

500 = :
energy lost per period
. . 2r7E
Energy lost in first cycle (or) per period = 300
:2><3.14 x5x%107°
500
=6.28x10717

skskokskok
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UNIT-IIT
COMPLEX VIBRATIONS

FOURIER’S THEOREM:

Any single valued, finite, continuous periodic function can be represented as a
summation of an infinite number of simple harmonic terms having frequencies which
are multiples of the frequency of the function.

Mathematically,
y=f(ot)=A¢+ A Cos ot + A, Cos 20t + A; Cos 3wt + ...+ A, Cos rot +

....... + B, Sin ot + B, Sin 2ot +B5 Sin 3wt +....+B, Sin rot +...

y=f(ot)=Ay+ i(ArCos ro t+ B, Sin ro t) -------- (1)

r=1

Where y = f (t) = the displacement of a complex periodic motion of angular
frequency ‘o’

A Ay Az AL B,.B,, Bs...... B, ... are constants

Ao = The constant representing the displacement of the axis of motion
from the time axis.

Evaluation of A,:

In order to evaluate Ay, multiply eq. (1) with ‘dt’ and integrate between the limits
t=0and t=T, where, T = period of the function. Hence,

r T T T T
_[f(a) 1) di= AOI dt + AlfCoswt dtt...... + ArICos rot dt + BlfSinwt d +
0 0 0 0 0

T
....... + BrISin rot dt
0

T
_[f (w1) dt = A, T, all other integrals being zero
0
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Evaluation of A,:
In order to evaluate A,, multiply eq. (1) with ‘Cos rot dt’ and integrate between the

limitst=0tot=T, we get,
T T T T
Jf(a)t) Cosr ot dt = AojCosra)t d T A]ICoswt Cosr ot dt+-----+ArICos ‘rot dt T
0 0 0 0
T
BlfOT Sin wt.Coswtdt + ....... + BrISin raot Cosrwt dt
0

T
=A;[Cos’rot at, all other integrals being zero
0

f * (1+ Cos2raot
If(an‘) Cosr ot dt = A, I (#j dt '-'COSZ 0= 1+ Cos26
0 =0

A Sin2rot| AT ) 2
= t+——| =— Sm22nr=0,0===
2rm T

A= f(wt) Cosr ot dt —emmm-- 3)

O ey N

2
T
Evaluation of B,:

In order to evaluate B,, multiply eq. (1) with ‘Sin rot dt’ and integrate between the
limitst=0andt=T where, T = period of the function

T T T
If(wt) Sinr wt dt = Ao_[Sinr ot dtt+ Aleos ot Sinrot dtte.oooiii... +
0 0 0
T T T
ArICos rot Sinrot dt+ BljSinwt Sinrat dt+ ...+Berin2rwt dt
0 0 0

T
=B, _[ Sin’ret dt,  all other integrals being zero
0

(1 - CosZra)t)

T L _ T
j f(ot) Sinrot dt = Brf dt-:Sin®> 0 = % j f(wt) Sinrot dt =
0 t=0 0

B Sin2rot ] BT
- [Z—M} = — Sin 4nr = 0, o = =
2 2ro |, 2 T
2 T
J. B, = - [ f(@t) Sinror dt —ememo- @)
0
T . T
[Note: ICos rot dt= [Smr a)t} = L(SinO—SinZﬁ r)= 0
0 ra =0 ra
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: Sin2nr=0,0)=27ﬁ

' = L(CosO—Cos27z r): L(1— )=0

iy TO re

T
ISin rot dt = {Cosr a)t}
0

ro

v Cos2ar=1, 0= 27”

T
T
ISin rat Cosrot dt = % jSiana)t dt -+Sin 0 Cos 0 Z% Sin 20
0 =0

| Cos2rat | 5
— | T A v Cosdnr=1,0==
2 2ro |, T
_ 1 _ 1 _
= ——(COSO —Cos4r r)— - —(@1-1)=0
re 4rw

1.Sin A Sin B = % [Cos (A-B) — Cos (A+B)]
2. Cos A Cos B = % [Cos (A-B) + Cos (A+B)]
3. Sin A Cos B =% [Sin (A+B) + Sin (A-B)]
4.Cos A Sin B = %[Sin (A+B) — Sin (A-B)]

[Cos(wt —rot) — Cos(wt + rot)]dt
0

N | =
—

T
Note: jSinwz Sinrot dt=
0

t

T
Cos(1-r)otdt — % jcos(l +r)atdt= 0

=0

—_—

1
2 t

0

—

T
ICos wt Cosrwt dt = [Cos(wt —rot) + Cos (wt + rot)]dt
0

1
2 t

]
=1

1 T T
=3 j Cos(l—r)a)tdt+% j Cos(1+r)otdt =0

t=0 0

1=
T
j [Sin(wt + raot) + Sin(ot — rot)]dt

T
I Sinwt Cosr wt dt =
0 0

N | =

t

1 T T
= 5 ,;[0 Sin(1+ r)wtdt + %,IOSM(I - r)otdt = 0]
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Limitations of Fourier’s theorem:

(1) The function should be finite
i.e., the displacement should always have finite values and should never be
infinite at any time.
(i1)) The function should be single-valued i.e., the displacement should have only one
value at a given instant ‘t’
(i11) The function should be continuous
i.e., the function should have a finite number of jumps within its
time- interval
Fourier series of a function f (o t) between the limits — &t to +, is

A0=g_jﬁf(a)t)dt
Ar:i ff(a)t)Cosr o tdt
”—ﬂ

1+7Z
B, =~ I f (@ t)Sinr o tdt
ﬂ.—/r

FOURIER ANALYSIS OF SOUARE WAVE:

Y.

+a

Y
)

o Ti2 T 37/2

A square wave is shown in figure, the displacement is along the Y-axis and the time
. : : T
is along X-axis. The function has a constant value ‘a’ from t =0 to t = and ‘—a’ from t
Ltot=T.
2
T
So, y=f(ont)=a when t=0 to t=t=

And y=f(ot)=-a when t=t=§to t=T

Calculation of values Ay, A, and B,
The Value of A:

Here, the axis of vibration coincides with the time axis and hence A, =0
T/2 T

A= !f(wt) dt :% !f(wt) dt +% jf(a)t) dt

T T/2
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=% fa dt +f j( a) dt

T/2
——(t)’ -7 ()
Ay = £-a+% =a-a=0
2 2
The Value of A,:
2 T
= j f(et) Cosrot dt
0
2 T/2 2 T
A =— .[a Cosr wtdt + — '[(—a) Cosr wtdt
T 0 T T/2
T/2
A = Z_a '[ Cos[2 jtdt —_— .[COS(Zﬂrjtdt
T 0 T T/2 T
2a T/2 2a T
A= — | sin 27 rt r =% Sin 27 rt T
T T 27 r T T 2 r
=0 t=T/2
a . a . .
A,= —[Sinrn— 0] — — [ Sin 27 r— Sin rx]
r r
a
A,= —[Sin rt — Sin 27 r+ Sin rx]
r
a
A= iy [2Sintn—Sin2nr] =0 “* Sin2nr=0
The Value of B,:

2 T
= — ot) Sinrot dt
B. =~ !f( )

2 ' 2

B, = T Ia Sinr wtdt +— I( a) Sinr wtdt
0 T/2

2 T/2 2 T
B = =L | Sin(z e — =2 J'Sm(zmjtdt

T 0 T T T/2 T

2a 2 )| T 2a 27 1t \|
B,= |- - =1-

el e

a a
B,=—[-Cosrn+1]— —[—Cos2nr+ Cosrn |
r r

a
B, = iy [-Cosrn+ 1+1-Cos rn] *.© Cos2nr=1

_ 2z
on=="
T
.. 27
SO = —
T
T
2w r
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a a
B,= —[2-2Cosrn] = — [1-Cos ]
r r
When ‘r’ is even, i.e., r=2,4,6...,Cosrn=1

B= 2% 11=0
r_ﬂ}”[_]_

When ‘r’ is odd, i.e.,r=1,3,5..., Cos rn =—1

B=2% 0 = 22
r— T [_(_ )]_ T

. 4 qa 4a 4qa

--Blz_, B3=_, B5=_ ...... andB2=B4=B6=......=O
T RY/4 S5rx

Cf 0= 2 Sin ot~ Gin 30t + —9 Sin S0t +

y=f(ot)= - in ® ye in 30 e inSot+......

4 q
y=f(©)=——[Sinot+ %sm 3mt+§sm Sott......]

Component vibrations are shown in figure.

The curve ‘a’ shows the Simple harmonic wave of angular frequency ‘®’
The curve ‘b’ shows the Simple harmonic wave of angular frequency ‘3®’
The curve ‘¢’ shows the Simple harmonic wave of angular frequency ‘5w’
The addition of these curves yields a curve ‘d’. Approximately this represents a
square wave, we get a better approximation to the original curve if we add more and

more terms.

+a
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FOURIER ANALYSIS OF SAW-TOOTH WAVE FORM

A Saw-tooth Waveform is represented by a linear relation y= a when t =0 and y= 0
when t =T.

Consider a point P on the

curve whose coordinates "K
are (4, y) g i
.. . a
From similar triangle s
AOB and P t B, we have ‘
a_ T B
y (T-t) O 2 T 3 T
time t —»

t

—ar= _ ( _ _):
ory - al 1 - f @
So, in case of saw-tooth waveform, the displacement at an instant ¢ is represented by

y:f(t)za(l—%) for 0< t < T =mrmmmeemmmes (1)

According to Fourier series,

y=f(t) = Ay + A Cos ot + A, Cos 20t +--------- + A, Cos rot +
....... + B, Sin ot + B, Sin 2wt +---------+B, Sin rot +...------------(2)
Where, Ay = % [) f(®)de

2 T
A, = fo £(¢t) cos rwt dt
d 2 T _
an B, —;fo 7(©) sin rot dt

To calculate the values of the coefficients A, A, and B,

A= Lf) f@dr= L[ a(1-E)ar 2[e-L]r=2(r-1)

T

T T 271 0 T 2T
aT a
Ag=oT =2 (3)

Thus, the axis of the curve is at a distance (%) from the time axis.
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For A; we have

2 (T 2 (T t

A==y f®cosTwtdt = Zf a(l—;)cosrwtdt
2a T 2a (T

Ar=—=[, cosTwtdt- [ tcosTwt dt

__ 2a[sinrwt)lT 2a sinrwt\ T T sinrwt
A= Rl (59)0 - ey

T2 | rw TW T
. 2mrt 2nrt
2a sin (— ) cos ( T )| 1
A=0-2g 2 4 2T
T 2nr/t 2nr/T | O

. . t 2T
Since, [sin r wt], =0 where w =—
s 0 T

2a [ sin2nr CcOoS2T cos 0 ]
T2l 2mr/T 2nnr/T? 2mr /T2

_2a| 1 1
Crlemy (e
I\ T T

Since, sin 27tr = 0 and cos 2nr =1
A=0
Hence, all cosine terms of Fourier series have zero amplitude.

For B,, we have,

2 (T £\ . 2a (T . [2mrt 2a (T . [2mrt
B, = a(l——)smrwtdt=—af sm[m]dt-—z Sln[nr]dt
T T T T T

0 0 T 0
2a T | . 2nrt . T . 2nrt .
B=3J, tsin [ - ]dt Since, [, sin [ - ]dt—O
Integrating by parts,
_2a —cosZm"t/T}T . T —cos2nrt/T ]
B; T2 {t 2nr /T 0 fO 2nr /T
B = 2a tcos 2nrt/T . sin ant/T] T
B K 2nr/T (2nr/T)? 10
B = 2a [T cos2mr . sin2 sin0 ]
roor2 2nr /T (2nr/T)2 (2mr/T)?
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L 1 L _ : _
B, = = [T (zg)] m[smce, cos 2nr = 1 and sin2nr = 0]

~B,= (%), B, = (%), B; = (i) and so on.
Hence, the complete vibration is represented by,

y=f1t) =2 + 2 sinwt+ = sin2wt + = sin3wt +-ommemmv
2w 27 37T
a a . 1 . 1 .
y=At) = 3 + - [sma)t + 2 sin2wt + 3 sindwt+ — — — — —

having frequencies in the ratio 1:2:3...... and amplitudes

i . 11
in the ratio 1 03 and so on.

The addition of successive terms of the series in
indicated in the figure. It is observed that if a greater
number of terms are used then there is close resemblance
between the resultant curve and the curve under analysis.

sk ke sk sk sk sk sk skok
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UNIT-IV
IV (A)VIBRATING STRINGS

GENERAL WAVE EQUATION AND ITS SOLUTION:

(a) Pulse attime =0 (b) Pulse after t=t

Let the pulse is travelling to the right with a velocity ‘0’. After a time ‘t’ the pulse reaches a distance
‘vt’along X- axis.

The wave is be represented as, y =1f (x- vt)
The variable y depends on x and fand hence it is written as,  y (X,t)
Sy (x, t)=f(x-vt) (from Galilean transformations)
Hence, y (%, t) = f (x- vt) wave travelling in positive X- axis

y (x, t) = f (x+ vt) wave travelling in negative X- axis

. y=f(xxvt) ------- )
Now, we consider the special case, the variable is a harmonic function,

y (X, t) = A, Sin [k (x- vt) ]

Let, ‘X’ is replaced by ( x + 27”), then

y (X, t) = A, Sin [k (x+27ﬂ— ot) |
= A, Sin [k (x - vt) + 27]
y (X, t) = Ao Sin [k (x-vt)] (" Sin 2z +60)=Sin0)
The replacement of ‘x’ by (x + 277[) gives same value of ‘y’

In other words, A= 27”

2

or, k where, k = wave number

From eq. (1), we consider that, y = f (vt + X) ----------- 2)
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Partial differentiating eq.(2) w.r.to ‘x’ twice, then

oy

E=if1(uzix)
a—);=J_rf“(ut4_rx) ........... 3)
o x

Where, f'and f'' are some functions of (vt £ x)
Now, again Partial differentiating eq.(2) w.r.to ‘t’ twice, then

oy

“—~=v flottx
P A )
0”2)’ 2,11
=0 02N fu b o) J— 4
F tions (3) & () we get, 22 =02 22
romequations (3) & (4) we get, gy PR

This is called the differential form of the wave equation

General Solution of The Wave Equation:

The arbitrary function either (vt - x) or (vt + x) will be the solution of the wave equation
y=fiot=x)+f,(Lt+x)

Velocity of Transverse Wave Along A Stretched String:

Y

Mo X UK

A string is fixed between two rigid supports and stretched under a tension ‘T’ along X- axis. In
displaced position, consider a infinitesimal string element AB of length ‘dx’ between the coordinates x
and x+dx as shown

Let ‘y’ be its displacement at time ‘t’

Let 0, and 6, be the angles which the tension (T) makes with X- axis
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The components of ‘T’ in horizontal and vertical directions at A are T Cos 0; and T Sin 6; and atB
are T Cos 0, and T Sin 0, respectively.T Cos 6;and T Cos 0, are nearly equal and balances each

other,
The resultant upward force F in upward direction,
F,=TSin 0, —T Sin 0,
Fy=T[Sin 6, — Sin 6] ----------- (1)

As ‘AB’ is small 0; and 6, are also small,

Hence, Sin0;=Tan0; = (MJ

Ix),
and  Sin 6;= Tan 6, = 2y
ﬁx X +dx
SFy=T oy AN (2)
é’x X +dx é’x X
. R . oy ]
Using Taylor’s series, we expand | —< ,i.e.,
ax X +dx
2 3 5
R [ 03 U ) e i ] C3
X) o \FX), o x Jx 2 (3)

Neglecting high power terms, we have,

dy

Substituting the values of ( "

) from equations (2) & (3) we get,
x+dx

Let m = mass per unit length of the wire

Mass of the element ‘AB’ = m dx
Force, F, =mass X acceleration (a)

€=def§J ......... @ya:[ﬂg
ot ot

2 2
o
From equations (4) &(5) we get, m ( );] dx = T( 2] dx
ot




o’ T(o°
( yz}[ yZJ --------- ©
ot m\Jdx

The differential equation of a wave motion is

(é, )2}] ) Uz (é, );] _________ (7)
ot ox

Comparing equations (6) & (7) we get,v - T
m

This is the velocity of the transverse wave along the string.

MODES OF VIBRATION OF STRETCHED STRING CLAMPED AT BOTH THE ENDS:

Consider a uniform string of length ¢ ¢ ’ having mass per unit length ‘m’ and stretched by a

tension ‘T°.

The general solution of the wave equation is,

y = a; Sin (ot — kx) + a, Sin (ot + kx) + b; Cos (ot — kx) + b, Cos (ot + kx) ----(1)

where, a;, a5, b; and b, are arbitrary constants.

As the string is fixed at both ends, the boundary conditions are,

y =0 atx =0 for any time ‘t’ ------- (2)
y=0atx= ¢ foranytime ‘t" ------- 3)
Applying boundary conditions from eqs (1) & (2) we get,
0 =a; Sin ot + a, Sin ot + b; Cos ot + b, Cos wt
0 =(a; + ay) Sin wt + (b;+ by) Cos ot
As, Sinot# and Coswt#0
ajta=0 and bi+by=0
Thus, we have a; = — aand bi=-b,

Now Eq. (1) becomes

y = a;[Sin (ot — kx) —Sin (ot + kx] + b;[Cos (ot — kx) — Cos (ot + kx)]
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y =a; [ (Sin ot Cos kx — Cos wt Sin kx) — (Sin ot Cos kx + Cos ot Sin kx)]+
by [ (Cos ot Cos kx + Sin ot Sin kx) — (Cos wt Cos kx — Sin ot Sin kx)]

y =—2a;Cos ot Sin kx + 2b; Sin ot Sin kx

y = (- 2a;Cos ot + 2b; Sin ot) Sin kx ----------- ()

The solution now consists of two terms, i.e., on t and x. Thus, the first boundary condition reduces
the opposite travelling waves to a stationary wave.

Applying the second boundary condition eq. (3) to eq (4).
AsSinot#0 and Cos ot#0,
Hence, Sink ¢ =0,
which gives the general solution for angle 4/ to be
k¢ =nn where,n=1,2, 3.....

As ‘¢ ’is constant, k is limited to discrete set of values, known as eigen values.

kn = % where,n=1,2,3,.... ---——-- 5
"Vo=n |~ h 1,2,3 (6)
S Vp=n | — where,n=1,2,3,.... -

! 20
Since, K= 2m_ 27v_ 2nv (o =vh)

Av v
... _ ko
Sv=—
2z
From eq. (5), ="
q. 5) ot

(s

From eq. (6) it is clear that the string can have a set of eigen or proper frequencies only. The equation
represents modes of vibration corresponding to n™ harmonic frequency.

Different modes of vibration are shown in figure. ¢ ti
4= M2

(if) First mode of vibration (or) first harmonic g i)

(ii1) Second mode of vibration (or) Ik

Second harmonic, 1*' overtone el Wi
ceond over WG A e A A
(iv) Third mode of vibration (or)

e ivm 2




Third harmonic, 2™ overtone

Fundamental frequency corresponding to n =1 is,

e

Vl:L 11} :\/? ------------- (7)
20 \'m m

This is called first harmonic frequency.
The n™ harmonic mode of frequency is,

n |T

“20\m
This is called (n—1) overtone.

Vn

OVERTONES AND HARMONICS:

(1) When the string is plucked at the middle, it vibrates with nodes(N) at the end and antinode (A) at
the middle as shown in fig(ii). The frequency of vibration here is called the fundamental
frequency (or) first harmonic.

1 |T
The frequency, vi- —,—n=1
20 \'m

(i1) If the string is vibrating in two segments as shown in fig (iii),

2 /T
The frequency of vibration, V,- —,[—n =2
20 \'m

Vy = 2\/1
This is called second harmonic (or) first overtone.

(iii) If the string is vibrating in three segments as shown in fig (iv),

3 |T
The frequency of vibration, v;— —./—n=73
20 \'m

V3 = 3\/1
This is called third harmonic (or) second overtone.

(iv) If the string is vibrating in four segments, then
o 4 |T
The frequency of vibration, V4 —.[—n=4
20 \'m

V4 = 4V1
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This is called fourth harmonic (or) third overtone.
So, in case of stretched string the frequencies are in the ratio, vi:vy: v3...= 1: 2: 3....

Laws of Transverse Vibrations of Strings:

1 / T
The fundamental frequency of vibrating string,v = 2 \m
m

1
1* Law:v a m when T, and m are constant.

i.e., the fundamental frequency of vibrating string is inversely proportional to the length of the string,
when tension and linear density are constant.

2" Law:v o \/?’ when /and m are constant.

i.e., the fundamental frequency of vibrating string is directly proportional to the square root of tension
in the string, when length and linear density are constant.

1
3"Law:v a T when ¢ and T are constant.
m

i.e, the fundamental frequency of vibrating string is inversely proportional to the square root of linear
density of string, when tension and length of the string are constant.

PROBLEMS

1. A travelling wave propagates according to the expression y = 0.03 Sin (3x — 2t) where ‘y’
is the displacement at position ‘x’ at time ‘t’. Taking the units to be in S.I, determine (a)
The amplitude (b) The wave length (c) The frequency and (d) The period of the wave.

Sol: we know that, y = a Sin (kx — ot)
The given equationis, y=0.03 Sin (3x —2t)
On comparing, (a) amplitude, a =0.03 m
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2z

(b) wave length, A= 5 (k=3)
P = 2314 =2.09m
3
(c) Frequency, v= -2 = i=l(oa =2)
2 2w @
v=0.31 Hz

(d) Time period, T = 1. nt =3.14 sec
Vv

2. Standing waves are produced by the superposition of two waves y; = 10 Sin (37 t — 4x)
and y, = 10 Sin (37 t + 4x). Find the amplitude of motion at x =18 ?
Sol: given that, y1 =10 Sin (3w t — 4x)
y2 =10 Sin (37 t + 4x)
The resultant displacement is given by, y =y; + y»
y =10 Sin (3n t —4x) + 10 Sin (3w t + 4x)
=10 [Sin 31t Cos 4x — Cos 3n t Sin 4x + Sin 37 t Cos 4x + Cos 3n t Sin 4x]
=10 X 2 Sin 3w t Cos 4x
y =20 Sin 3wt Cos 4x =20 Cos 4x Sin 3x t
The amplitude of motion is A =20 Cos 4x

When x = 18, 4x=4X18=72=72x3—7i4rad=22.97trad

A =20 Cos (22.9 m) =20 x (0.9673)
A =19.35 units of length.

3. A string vibrates according to the equation y =5 Sin [?]Cos 40m t, where X, y are in cm, and t is in
sec. Find the distance between two successive nodes and the speed of the particle of the string at
position x = 1.5 cm when t = 9/8 sec?

Sol: At nodes y = 0, thus

0=5 Sin (?JCOS 407 t

As Cos 40mt#0, 5 Sin @‘J: 0

%C =NTw where,nZO, 1,2, 3,
x=3n=0,3,6,9,....

So, the distance between two successive nodes = 3 cm

o
Speed of the particle, 0,,;; - SSin(”;J 40m Sin40nt+ 5 Cos 40w t (ZJ Cos [zx]

When x=1.5 cm and t = 9/8 sec,

o
D ssin| ZX5) 407 Sin [ 407 9] + 5 Cos d0n [ 27 Cos [F X5
ot 3 8 8x3 3
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o
oy_ . ssm[”] 407 Sin 457 + 5 Cos 401 (WJ Cos [” ]
ot 2 8 2

=0 “* Cos (”J: 0and Sin 457=
ot 2

Hence, the particle is at rest at that position.

4. A steel wire 50 cm long has a mass of 5 gm. It is stretched with a tension of 400N. Find the
frequency of the wire in fundamental mode of vibration?

Sol: given that, ¢ =50cm=0.5m
Mass = 5gm =5 x 10 Kg
Tension, T =400 N

-3
Linear density, m =

=102 Kg/
0.5 &
T 1

1 400
Frequency,v= —,—= —— . [— = 1x 20x10
20 \m  2x0.5V10

Vv =200 Hz.

5. The fundamental frequency of a stretched string of length 1m is 256 Hz. Find the

frequency of the same string of half the original length under identical conditions?
1

Sol: va —
l
V¢ = constant
SVl =V,
Given that,v;= 256 Hzv,= ?
{=1m/,=05m

256x1=0.5V2

SV = %= 2x256=512 Hz.

. . 2 . .
6. Calculate the speed of transverse waves in a wire of 1lmm” cross-section under the tension

produced by 0.1 Kg weight. Specific gravity of material of wire is 9.81 gm/cm’ and
g =9.81m/sec’?

Sol: T=Mg=0.1x9.81=0.981 N
Linear density, m = area of cross-section x Specific gravity

m=10°x9.81x10°=9.81x 10° Kg/m
since, area of cross-section = lmm?= 10 m?

Specific gravity = 9.81 gm/cm’® = 9.81 x 10°Kg/m’
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2
9.81x10° _

0.081
Velocity, _ |I=
cloctly, v \/; \/9.81x10-3

IV (B) VIBRATING BARS

:

9.81

sk sk skoskoskeosk
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Velocity of longitudinal waves in a bar:

Consider a bar of length ‘I’ of uniform cross-section ‘a’. The bar is made of homogeneous and
isotropic material having a large length as compared to its area of cross section. The bar has only
longitudinal vibrations and not transverse vibrations.

It is also assumed that at any given time, the displacement of all the particles at any cross-sectional
area are the same.

A A B8 a'
1
x=0 — y be— d) x=]
N
- x+dx |

As shown in figure, consider a small part ‘AB’ of length ‘dx’ of the bar in unstrained position

at a distance x and x + dx. Under the influence of longitudinal waves, the planes A and B are
displaced to new positions A' and B' respectively.

Let the displacement of plane A to A' is ‘y’ at any time when longitudinal wave passed through it.
The displacement of B to B'is, y + dy .

oy
y+dy=y+ —= P dx (Taylor’s series first two terms)

The longitudinal extension of the element is

oy oy
(y+dy)_y: y+(0’)x] dx_y (é’X]d

oy dx
o - Change in length Ox Jy
Longitudinal Strain = original length = =y
Stress
Young’s modulus, Y= ———
Strain

oy
Longitudinal Stress =Y x Strain =Y [ﬁxj

Force on the surface element at A = Longitudinal Stress X area of cross- section
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o
Similarly, Force on the surface elementat B=Y a 0,,— (y+dy)
X

.". The resultant force to which the elementary part is subjected

( )
B PO o R O S
= aax aﬁxzx—aax
0,,2
=aﬁ);dx ------- (1)
X

This restoring force tries to bring the displaced mass of elementary part to its mean position.
At the same time, it produces acceleration in it.

According to Newton’s second law of motion,
Force on element ‘dx’ = mass x acceleration
Mass of the element = Volume X density

=a(dx)p where, p = density of the material
2
ay
We know that, Acceleration = 2
ot
e y e y J
Force = a (dx 2| =ap| L 2| AX e 2
(dx) p P Pl 5,2 (2)
From eq. (1) & (2) we get,
2
oy J
ap 2| dx=Ya 7); dx
ot Ox
2
Ty x|y 3
2 = —_— A | ———
ot P ox’
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o o
The wave equation is given by, [ J;J =0’ [ );J “)
ot

2 Y
Comparing eqs. (3) & (4) we get,U = '—0

'v—f (5)
or . p _____________

This is the velocity of longitudinal wave in a bar.

It is clear from eq. (5) that velocity of longitudinal wave is

(i) directlyproportional fo the square root of longitudinal elasticity.
(i1) inversely proportional to the square root of density of material, and
(ii1) independent of shape and size of the cross-section.

(iv)

GENERAL SOLUTION OF LONGITUDINAL WAVE EQUATION:
The general solution of wave equation for the transverse vibrations of strings is applied to the
longitudinal waves. Hence
y = fi(vt-x) + £, (vt + X) ~=—--mmemmemme - )
Here y varies as a harmonic function of time, the simple harmonic solution isType equation here. be

expressed as,
y = a; sin (wt — kx) + a; sin (wt + kx) + b; cos (wt — kx) + by cos (wt + kx) ------- 2)

where a; a, by and b, are amplitude constants.
w

We know that k=27n=—

v
Where, k is the propagation constant, w the angular frequency (2m ) and v, the velocity of

longitudinal waves.
Boundary Conditions:The following boundary conditions are applied,
(1) At a point where the bar is fixed, the displacement is zero at all time, i.e., y = 0 (at all time) ----(1)

(i))At the free end, there can be no internal elastic force, hence, Z—z =0 at all time % = ((at all time)

LONGITUDINAL VIBRATIONS OF A BAR RIGIDLY FIXED AT BOTH ENDS:

This is also known as fixed-fixed bar. When a bar is clamped at its ends, stationary waves are formed
with antinode at the middle and node at the ends.
Boundary conditions are, y = 0 when x = 0 at any time ‘t’

and y =0 when x= l at any time ‘t’  ———-—--—- 1)
We know, the general solution of longitudinal wave is,
y = a; Sin (ot — kx) + a; Sin (ot + kx) + by Cos (ot — kx) + b, Cos (ot + kx) --(2)
Applying the first boundary condition, y = 0 when x =0

0 =a; Sin ot + a, Sin ot + b; Cos ot + b, Cos wt
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0 =(a; +ay) Sin ot + (b; + by) Cos ot
As,Sinowt#0 and Coswt#0
agta=0 and b +by=0
Thus, a;=- ay, b= — by=—mm-- 3)
Substituting eq. (3) in eq. (2)
y = a; [Sin (ot — kx) — Sin (ot + kx)] + b; [Cos (ot — kx) — Cos (ot + kx)]
y =a; [ (Sin ot Cos kx — Cos ot Sin kx) — (Sin ot Cos kx + Cos wt Sin kx)] +
b; [ (Cos ot Cos kx + Sin ot Sin kx) — (Cos ot Cos kx — Sin ot Sin kx)]
y = a;[-2Cos wt Sin kx] + b[2Sin ot Sin kx]
y = (— 2a;Cos ot + 2b; Sin ot) Sin kx
y = (A Cos ot + B Sin ot) Sin kx----------- €))

where, A =—-2a; and B=2b;
Now apply boundary condition y = 0 when x = 14

0= (A Cos ot + B Sin ot) Sink ¢

Since, A & B # 0, (otherwise there will be no wave),
Hence, Sin k l =0
k?/ =nn where, n=1,2, 3...
n =0 isnot taken as it corresponds to the condition of no wave (or a wave of infinite length).
Replacing k by k, ( because of dependence of k on the integer), thus
nrx

or, ky,= 7 where,n=1,2,3, ..... - (5)

This equation shows only certain modes of vibration are allowed.
The frequency of allowed modes of vibration are given by,

n - 27 2mnv  2nv w
= Since, =—=—— = —
v l A v v v
(v =vA & ® =21v)
nmo
On = / where,n=1,2,3, .....
nmao
2n v, = /
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nv

Vn = 2£ n:1,2,3,....
Y
We know,v = |—
yo,
nywy e
«Vn = 2/ ; N il ” SN V4
In the fundamental mode of vibration, the
two ends of the rod are nodes and only one antinode at the i A o 5
midpoint. The higher harmonics are in the ratio 1:2:3: ... W A N>~ - -

-

The various modes vibration are shown in figure.

The complete solution of longitudinal wave is

o0}

y=Z(AnCosa)t+BnSina)t) Sink x.. Nty — AN W

n=l

Modes of vibrations of fixed- fixed bar

LONGITUDINAL VIBRATIONS OF A BAR CLAMPED AT THE MIDDLE:

When a bar is clamped at its middle point, stationary waves are formed with node at the middle
and antinode at the ends.

The boundary conditions are,

oy
— =0 whenx=0 forall time ‘t’
Ox

And y=0 whenx= 0 /2 for all time “t” ------- )

The general solution of longitudinal wave is,

y = a; Sin (ot — kx) + a; Sin (ot + kx) + b; Cos (ot — kx) + b, Cos (ot + kx)
Now,

y

ﬁx: —ka; Cos (ot — kx) + ka, Cos (ot + kx) + kb; Sin (ot — kx) — kb, Sin (ot + kx)

oy
Apply boundary condition, gc =0 whenx=0

0 =-ka; Cos ot + ka, Cos wt + kb; Sin wt — kb, Sin ot
0=k Cos ot (a;— a;) + k Sin ot (b; — by)
As,Sinot#0 and Coswt#0

aj=a, by=by - 3)
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substituting these values in (2) we get,
y = a; [Sin (ot — kx) + Sin (ot + kx)] + b; [Cos (ot — kx) + Cos (ot + kx)]
y =a; [ Sin ot Cos kx — Cos ot Sin kx + Sin ot Cos kx + Cos wt Sin kx]
+b; [ Cos ot Cos kx + Sin wt Sin kx + Cos ot Cos kx — Sin ot Sin kx]
y = a;[2Sin ot Cos kx] + b;[2 Cos ot Cos kx]

y = (2a;Sin ot + 2b; Cos wt) Cos kx

y = (A Cos ot + B Sin ot) Cos kx ----------- 4)
where, A =2b; and B =2a,
l
Apply boundary condition,y =0 when x = E
k¢
0 =(A Cos ot + B Sin wt) Cos 7 ---------- %)
kl
Since, A & B #0, Cos 7 =0
kt _
? _ @n-bz where, n=1,2,3, ...
These are allowed vibrations in case of a bar clamped at the middle,
2n—-Nr
Hence, k= g
l
Considering the dependence of k on integer, we have
@n-hHrz
or, K,= T where, n=1,2,3,...
a)l’l
The frequency, — =K, Since, = 2—” = 2LV= 2LV =9
) A Av v v
o, n-V)r&
v/
2n-1mv
Oy =", n=1,23,...
l
0y =21 vy
(2n—-1Drv
Therefore, 2w v, = T
(2n-1)v
Vh=""T"" - 6
2 (6)

The frequency of n™ mode is,
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@) Y Y

Vn= " T - 7 Since, =  |—
TR () s
The modes of vibration are shown in figure. ———
The odd harmonics are produced while even _ H“‘h._' N
harmonic is completely absent. A . n— A v
. . e, 1
Frequency are in the ratio 1: 3: 5: ... T
‘N'\ -
A ke N H-r’l' \\‘. N
\\‘ .__.z"’ \-\N A Vz

SN NN NN
A \\ 7 X 7 4

T
—r® '.‘\_' 4 b

A‘U‘a

-

LONGITUDINAL VIBRATIONS OF A BAR FIXED AT ONE END AND FREE AT THE OTHER:

This is also known as the fixed-free bar. The boundary conditions are

y=0atx=0 forall timet

Z—zIOathZfor all timet  -----------—--- )
The general solution of longitudinal wave is,

y = a; Sin (ot — kx) + a, Sin (ot + kx) + b; Cos (ot — kx) + b, Cos (ot + kx) ------------ )
Applying the first boundary condition, we have
0 =a; sin wt + a; Sinwt + b; Coswt + b, Coswt
0= (a; + a,) Sin ot + (b; + b,) Cos wt
~ay=—a, andbj=-b

Substituting these values in eq. (2)we get

y =a;[Sin (ot — kx)- Sin (ot + kx)] + b;[Cos (ot — kx)-Cos (®t + kx)]

y = aj[sin wtCoskx — CosotSin kx — SinwtCos kx- SinotCoskx-CoswtSin kx|
+ bi[CoswtCoskx + sin wtSin kx - CoswtCos kx + SinwtSin kx|

y = ay[ - 2CoswtSin kx] + by[ 2 sin wtSin kx|

Let -2a; = A and 2b; =B

y = (A Cosot + B sin wt)Sin k x-------------———- 3)

Now, applying the boundary conditions g—z =0atx=1/
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Differentiating eq. (3) with respect to x.

Hence, % = (A Cos ot + B sin wt)k cos k[

or 0 = (A Cos ot + B sin wt)k cosk

coskl=0 Since, A and B # 0-------------- 4)

The allowed frequencies should satisfy k / = (2n—1)§ wheren=1,2, 3...
Replacing k by k;,, we get

kn=(2n-l)% n=1.2,3...

wn=(2n-l)§ n=1,2,3.... —cemmmmmeeeen (5)
_ (@2n-1)9 _
19n - 4_l n 1,2, 3....

From eq. (5), it is clear that

(i) Only odd harmonics are present in a fixed- free bar
(i1) The fundamental frequency is half that of a free-free bar
(ii1) The quantity of sound is altereddue to the absence of even harmonics
The complete longitudinal wave solution, in respected of a fixed-fixed bar, may be
considered as sum of n harmonic solution, i.e., may be considered as the sum of n harmonics.

PROBLEMS:
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1.The density of aluminium is 2.8 x 10% Kg/m?® and its Young’s modulus is 7 x 10'° pascals. If the
frequency of the Aluminium rod is 500Hz, Calculate the velocity of sound and wavelength
through the rod?

Sol: given that, p = 2.8 x 10° Kg/m>

Y = 7 x 10" pascals

v =500 Hz A=? and U ="?
J? 7x10"  10°
Velocity of longitudinal wave U = _|—= 4|7 3= —"—
p l28x10” 2
U =5x10° m/s
3
\ U 5x10 o
“yTos00

2. A copper rod of length 4m is free at its ends, the diameter of the cross section of the rod is 0.01m.
Find the fundamental frequency of the longitudinal vibrations of the rod? (velocity of sound in
copper is 3560m/s)

Sol: Thef (@n-1o
ol: e frequency, v= ——
q % Y.
v
For fundamental frequency n=1, v= g
U =3560m/s and l=4m
3560 445 H
v = z
2x4

3. A steel rod of length one meter and density 7.1 gm/cc is clamped at itsmiddle and longitudinal
vibrations are set up in it. If the fundamental frequency is 2600 Hz. Find the velocity of sound in the
rod and Young’s modulus of material of the rod?

Sol: given that,
3

10
p=7.1gm/cc =7.1 x o Kg/m>=7.1 x 10° Kg/m?
10

f=1m and v =2600 Hz

v
V= ﬁ or velocity U =2 v€:2x2600x1=5200m/s
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_ Y 2 3
U = _|— orY=pU =7.1x10"x5200x 5200
P

Y =19.2 x 10%° N/m?

4. A brass rod of length one meter is clamped at its middle point. If it is madeto vibrate longitudinally,
find the fundamental frequency and frequencies of first two overtones?

(Y=10x 10" N/ m?and p = 8.3 x 10> Kg/m?)
Sol: given that, - 1m

Y=10x 10" N/ m?
p =8.3x 10° Kg/m®

The f @n]) 1Y
e frequency, v= 2 -
1 |Y
For fundamental frequency n=1, v= _—.|—
20\ p

Lo, 0347
VEoVg3 ¥ T Ty X

v=1735.5Hz
First overtone,v;=3v=3x1735.5=5206.5Hz ( n=2)

Second overtone,v,=5v=5x1735.5=8677.5Hz (n=3)

3k 3k 3k %k 3k Kk k
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UNIT-V
ULTRASONICS

Introduction:

Sound is produced from vibrating bodies. Sound waves are longitudinal mechanical waves.
The frequency range of these waves is very high.

The frequencies of sound between 20 Hz to 20,000 Hz are called audiable frequencies. The
human ear can recognize these sounds only.

The frequencies of sound below 20 Hz are called Infrasonic. Human ear cannot recognize
these sounds. The wavelength of these waves is more.

The frequencies of sound more than 20,000 Hz are called Ultrasonics. Human ear cannot
recognize these sounds also. The wavelength of these waves is less, it is about less than 1.8cm.
Hence, they can travel in a specific direction.

PROPERTIES OF ULTRASONICS:

1.Ultrasonics are highly energetic.
2. Their speed of propagation increases with frequency.

3. They show negligible diffraction due to their small wavelength. Hence, they can be transmitted
over long distances without any appreciable loss of energy.

4. Intense Ultrasonic radiation has a disruptive effect on liquid by causing bubbles to be formed.

5.When Ultrasonic waves are propagated in liquid bath a plane diffraction grating is formed, which
can diffract light.

(When Ultrasonic waves are propagated in liquid bath, stationary wave pattern is formed due to
the reflection of the wave from the other end. The density of the liquid thus varies from layer to layer
along the direction of propagation. In this way a plane diffraction grating is formed which can
diffract light.)

PRODUCTION OF ULTRASONICS:

Ultrasonics can be produced in two important methods

1. Magnetostriction method
2. Piezo-electric method
Magnetostriction method is used to produce
Ultrasonics of frequencies up to 100 KHz. For the A
production of Ultrasonics of frequencies more
than 100 KHzPiezo-electric method is used.

o +
D.C. T
1. MAGNETOSTRICTION METHOD: supply H.T.
o "




Magnetostriction:

When a rod of ferromagnetic material such as Iron or Nickel, is placed in a magnetic field parallel to its

length, a small expansion is occurred, this phenomenon is called Magnetostriction. This change in
length depends on magnitude of the field and nature of the material.

If the rod is placed inside a coil carrying an alternating current, then it suffers the same change
in length for each half cycle alternating current. This results in setting up vibrations in the rod whose
frequency is twice that of alternating current. However, if the frequency of the a.c. is the same as the
natural frequency of the rod, then resonance occurs and the amplitude of vibration is considerably
increased. Sound waves are emitted from the ends of the rod. More over if the applied frequency is the
order of Ultrasonics frequency, the rod sends out Ultrasonic waves.

Procedure: An experimental arrangement to produce Ultrasonic waves is shown in figure. The rod
is permanently magnetized by passing direct current (d.c.) in the coil which is wrapped round the
rod. There are two coils L, and L, which are also wrapped round the rod as shown in figure. The coil
L, is connected in the plate circuit of valve V, while L; is connected in the grid circuit. A variable
condenser C is connected across the coil L, a milli ammeter (mA) reads plate current.

As the internal diameter of the coils is more, the rod can freely produce longitudinal
vibrations. The values of the Inductance of the coil L, and the capacity of the variable condenser C
decides the frequency of the electric oscillator. When the frequency of the electric oscillator coincides
with the natural frequency of the rod then resonance occurs and the rod vibrates with maximum
amplitude and produces Ultrasonics. By varying the length of the rod and capacity of the variable
condenser C we can produce the Ultrasonics of required frequency.

, Y
The velocity of Ultrasonics in the rod is (v) U = ;

Where Y = Young’s modulus of the rod

p = density of the material of the rod

It/ *isthe length of the rod, then the fundamental wave length becomes 2 1

v 1 [y

V= — oV = —
Hence, the frequency Y or 7/

P

In this method Ultrasonic waves having less frequency were produced.

PIEZO-ELECTRIC EFFECT:

When certain crystals likequartz, tourmaline etc are stretched or compressed along certain axis,
an electric potential difference is produced along a perpendicular axis, this is called Piezo-electric
effect.
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The converse of this effect is also true, i.e. when an alternating potential difference is applied
along the electric axis, the crystal is set into elastic vibration along the mechanical axis.

Fig-1

Quartz crystal is six-sided prism with pyramid shaped ends as shown in figure-1 has following
three major axes.

a) Optic axis or Z-axis: The line joining the apexes of the end pyramids is
known as Z-axis.

b) The electric axis or X-axis: The axis passes through any set of opposite
corners known as X-axis.

c) The mechanical axis or Y-axis: The axis passes through the opposite faces known as Y-axis.

The X-cut and Y-cuts of the crystal are shown in figure-2.

Fig-2

The X-cut slab makes an angle 90° with the X-axis while Y-cut slab makes an angle 90° with
the Y-axis. X-cut slabs are used for the generation of Ultrasonics, because they produce longitudinal
waves. Y-cut slabs produce shear waves which can travel only in solids.

2. PIEZO-ELECTRIC METHOD:

Piezo-electric effect:

71




When certain crystals likequartz, tourmaline etc are stretched or compressed along certain axis,
an electric potential difference is produced along a perpendicular axis, this is called Piezo-electric
effect.

The converse of this effect is also true, i.e. when an alternating potential difference is applied
along the electric axis, the crystal is set into elastic vibration along the mechanical axis. If the
frequency of electric oscillations coincides with the natural frequency of the crystal, the vibrations
will be of large amplitude. This phenomenon is used for the production of Ultrasonic waves. The
alternating potential difference is obtained by a valve oscillator.

X-cut slabs are used for the generation of Ultrasonics, because they produce longitudinal
waves.

C . .
%"e !f Cy, = blocking capacitor
""""" I R

\ Ly ! 1 C, = grid condenser

b nR Gy m 0
—— __\ Cy ;_et?" J R, = grid leak resistor
e

= HT oo — | | -
= \ =/ it C, = variable condenser

a e

Ve F_'Q Q = X-cut quartz crystal
i |
Description:

The experimental arrangement is shown in figure. The high frequency alternating voltage
which is applied to crystal is obtained by Hartley Oscillatory circuit. The Hartley circuit consists of
tuned circuit i.e. Inductance (L;) and variable condenser (C;) in parallel. One end of the tuned circuit
is connected to the plate of a valve while the other is connected to the grid. The coil (L)) is trapped at
the centre and joined to the cathode. The X-cut quartz crystal Q is connected parallel to variable
condenser C;.

Procedure:

The proper grid bias is obtained by means of grid leak resistor Rg and grid condenser Cg. The
d.c. voltage is applied to the plate through radio frequency choke. The radio frequency choke
prevents the radio frequency current to pass through high-tension battery. C, is the blocking
capacitor which prevents the direct current to pass through the tank circuit, while by passes the radio
frequency currents. The capacity of the variable condenser C; is adjusted so that the frequency of the
oscillating circuit is tuned to the natural frequency of the crystal. Now the quartz crystal is set into
mechanical vibrations and Ultrasonic waves are produced. The Ultrasonics of frequency 500 KHz are
produced by this method. However, the frequency up to 15x 10’ Hz can be produced by using
tourmaline crystal.
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The velocity of the quartz along X-direction is (v)

Y
v=_|—

Y2
Where Y = Young’s modulus of crystal
p = density of crystal
If ‘t’ is the thickness of the quartz slab in meters,

v=vAi=v(2t) since, A = 2t

By adjusting the variable capacitor C; of tank circuit, the crystal is made to vibrate at its natural
frequency, then the frequency of oscillatory circuit gives the frequency of vibrations of quartz
crystal.

1
vV = ——
Thus, 27 A/L,C,

DETECTION OF ULTRASONICS:

1. Piezo - electric detector:

The quartz crystal can be used for the detection of Ultrasonics. One pair of faces of quartz
crystal is subjected to Ultrasonics, on other faces which are perpendicular to the previous one varying
electric charge are produced. These charges are very small. Hence, they are amplified and then
detected by suitable means.

2. Kundt’s tube:

A Kundt’s tube can be used to detect Ultrasonics of relatively large wavelength. When Ultrasonics are
passed through the tube, the lycopodium powder sprinkled in the tube collects in the form of heaps at
the nodal points and it is blown off at the antinodal points.

3. Sensitive flame method:

When a sensitive flame is moved in a medium where Ultrasonics are present, the flame remains
stationary at antinodes and flickers at nodes.

4. Thermal detector method:
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In this method a fine platinum wire is moved in the medium of Ultrasonics, the temperature of the
medium changes due to alternative compressions and rarefactions. There is a change of temperature
at nodes while at antinodes the temperature remains constant. Hence the resistance of platinum wire
changes at nodes and remains constant at antinodes. The changes in the resistance of platinum wire
with respect to time can be detected by using sensitive bridge arrangement. The bridge will be in the
balanced position when the platinum wire is at antinodes.

APPLICATIONS OF ULTRASONIC WAVES:

1. Detection of Submarines, Iceberg and other objects in Ocean:

A sharp Ultrasonic beam is directed in various directions into the sea. The reflection of waves
from any direction shows the presence of some reflecting body in the Sea.

2.Depth of the Sea (Sonar- Sound Navigation and Ranging):

We know that Ultrasonic waves are highly energetic and show a little diffraction effect, hence
they can be used to find the depth of the sea. The time interval between sending wave and the
reflected wave from the sea is recorded. As the velocity of the wave is known, the depth of the sea
can be estimated.

3. Cleaning and Clearing:

The ultrasonic waves can be used for cleaning utensils, washing clothes, removing dust and soot
from the chimney.

4. Direction Signalling:

The ultrasonic waves can be concentrated into sharp beam due to smaller wavelength and
hence they can be used for signalling in a particular direction.

5. Soldering and metal cutting:

Ultrasonic waves can be used for drilling and cutting process in metals. These waves can also be
used for soldering.

Ex: Aluminium cannot be soldered by normal methods. For solder aluminium ultrasonic waves
along with electrical soldering iron was used. Ultrasonic welding can be done at the room
temperature.

6. Ultrasonic mixing:

Emulsion of two non- miscible liquids like oil and water can be formed by simultaneously subjecting
to Ultrasonic radiations. Now a days most of the emulsion like polishes, paints, food products and
pharmaceutical preparations are prepared by using ultrasonic mixing.
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7. Destruction of lower life:

The animals like rats, frogs, fishes etc can be killed or injured by using high intensity Ultrasonics.

8. Treatment of neuralgic pain:

The body parts affected due to neuralgic or rheumatic pains on being exposed to Ultrasonics gets
great relief from pain.

9. Detection of Abnormal growth:

Abnormal growth in the brain, certain tumours which cannot be detected by X-rays can be
detected by using ultrasonic waves.

10.Ultrasonics in metallurgy:

To irradiate molten metals which are in the process of cooling so as to refine the grain size and to
prevent the formation of cores and to release trapped gases the ultrasonic waves are used.

sk ke sk sk ok sk sk sk skok
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Problems:

1. A quartz crystal of thickness 0.005 metre is vibrating at resonance. Calculate
the fundamental frequency. Given Y for quartz = 7.9 x 10'° newton and p for quartz =
2650 kg/m’.

Y

0
Substituting the given values, we get

\/7.9><10 10
U:
2650

For the fundamental mode of vibration, thickness t = —

2

Sol: we know v

v = 5461 m/sec

A=2t=2x0.005=001 m
Now. v=vA or V=—
oW, U=VA or P

5461
V=—-—
0.01

v=0.5461 x 10°Hz

2. A piezo- electric crystal with vibrating length (t) = 3x 10~ m having density
(p) = 3.5x10° kg/m’. If it is made of material of young’s modulus
(Y) = 8x10'"'N/m’, what is its fundamental frequency?

Sol: The fundamental frequency is given by
1 Y

26\ p

Substituting the given values, we get,

1 /8><1010
V:
2x(3x107) V3.5%x10°

242 [10°

V:
6x107° \ 35
24/2 x10*

VvV =
6x103x5.916
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L 20+/2 x10°
6x5.916

b= 20x1.414 x10°
6x5.916

v=0.7967 x 10° Hz

v=0.7967 MHz

3.A piezo- electric crystal has a thickness 0.002m. if the velocity sound wave in
crystal is 5750m/s, calculate the fundamental frequency of the crystal.

A
Sol: For the fundamental mode of vibration, thickness t = ?
A=2t=2x0.002=0.004 m
v=>5750 m/s
v
Vv =—
A
5750
VvV =
0.004

v=1.4375x 10° Hz
v =1.4375MHz

4. Calculate the capacitance to produce ultrasonic waves of 106 Hz with an
inductance of 1 Henry.

Sol: The frequency of LC circuit is given by,
1

27 LC

VvV =

1
4L
B 1
4(3.14)2 X (106)2 x 1

C=0.025x 10 F
C=0.025PF  (1PF=10"F)

skskkskok
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