
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/321239267

Lecture	Notes	on	Graph	Theory

Book	·	November	2017

CITATIONS

0

READS

1,599

1	author:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

A	Study	on	Certain	Graph	Parameters	and	Their	Applications	View	project

Some	New	Studies	on	Graph	Coloring	Problems	View	project

Sudev	Naduvath

Vidya	Academy	of	Science	&	Technology

134	PUBLICATIONS			515	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Sudev	Naduvath	on	30	November	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/321239267_Lecture_Notes_on_Graph_Theory?enrichId=rgreq-6d29135a4906d1af3299b167427dd7e8-XXX&enrichSource=Y292ZXJQYWdlOzMyMTIzOTI2NztBUzo1NjY1MDc2MTM3NTc0NDBAMTUxMjA3NzM0ODAxOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/321239267_Lecture_Notes_on_Graph_Theory?enrichId=rgreq-6d29135a4906d1af3299b167427dd7e8-XXX&enrichSource=Y292ZXJQYWdlOzMyMTIzOTI2NztBUzo1NjY1MDc2MTM3NTc0NDBAMTUxMjA3NzM0ODAxOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/A-Study-on-Certain-Graph-Parameters-and-Their-Applications?enrichId=rgreq-6d29135a4906d1af3299b167427dd7e8-XXX&enrichSource=Y292ZXJQYWdlOzMyMTIzOTI2NztBUzo1NjY1MDc2MTM3NTc0NDBAMTUxMjA3NzM0ODAxOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Some-New-Studies-on-Graph-Coloring-Problems?enrichId=rgreq-6d29135a4906d1af3299b167427dd7e8-XXX&enrichSource=Y292ZXJQYWdlOzMyMTIzOTI2NztBUzo1NjY1MDc2MTM3NTc0NDBAMTUxMjA3NzM0ODAxOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6d29135a4906d1af3299b167427dd7e8-XXX&enrichSource=Y292ZXJQYWdlOzMyMTIzOTI2NztBUzo1NjY1MDc2MTM3NTc0NDBAMTUxMjA3NzM0ODAxOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sudev_Naduvath?enrichId=rgreq-6d29135a4906d1af3299b167427dd7e8-XXX&enrichSource=Y292ZXJQYWdlOzMyMTIzOTI2NztBUzo1NjY1MDc2MTM3NTc0NDBAMTUxMjA3NzM0ODAxOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sudev_Naduvath?enrichId=rgreq-6d29135a4906d1af3299b167427dd7e8-XXX&enrichSource=Y292ZXJQYWdlOzMyMTIzOTI2NztBUzo1NjY1MDc2MTM3NTc0NDBAMTUxMjA3NzM0ODAxOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Vidya_Academy_of_Science_Technology?enrichId=rgreq-6d29135a4906d1af3299b167427dd7e8-XXX&enrichSource=Y292ZXJQYWdlOzMyMTIzOTI2NztBUzo1NjY1MDc2MTM3NTc0NDBAMTUxMjA3NzM0ODAxOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sudev_Naduvath?enrichId=rgreq-6d29135a4906d1af3299b167427dd7e8-XXX&enrichSource=Y292ZXJQYWdlOzMyMTIzOTI2NztBUzo1NjY1MDc2MTM3NTc0NDBAMTUxMjA3NzM0ODAxOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sudev_Naduvath?enrichId=rgreq-6d29135a4906d1af3299b167427dd7e8-XXX&enrichSource=Y292ZXJQYWdlOzMyMTIzOTI2NztBUzo1NjY1MDc2MTM3NTc0NDBAMTUxMjA3NzM0ODAxOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

LECTURE NOTES ON

GRAPH THEORY

For Fifth Semester B.Tech. Programme
in

Computer Science & Engineering

SUDEV NADUVATH

Associate Professor in Mathematics
Vidya Academy of Science & Technology

Thalakkottukara, Thrissur-680501, Kerala, India.

As per the syllabus of
APJ Abdul Kalam Kerala Technological University

Thiruvananthapuram.

CENTRE FOR STUDIES IN DISCRETE MATHEMATICS

Vidya Academy of Science & Technology
Thalakkottukara, Thrissur-680501, Kerala., India.

Copyright c© 2017 Sudev Naduvath

Mathematics Subject Classification 2010 : 05CXX
Published by

Centre for Studies in Discrete Mathematics
Vidya Academy of Science & Technology
Thrissur-680501, Kerala, India.

http://www.csdm.org.in

The book is typeset in LATEX by the author and the template of the book is a modified version
of the template “The Legrand Orange Book".

Cover page design by : Ms. Smitha Rose.
Licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) License (the
“License”). You may not use this file except in compliance with the License. You may ob-
tain a copy of the License at https://creativecommons.org/licenses/by/4.0/. See
the License for the specific language governing permissions and limitations under the License.

First printing, November 2017

ISBN 978-93-5291-147-9

9 789352 911479

http://www.csdm.org.in
https://creativecommons.org/licenses/by/4.0/
http://www.csdm.org.in/books.html

Dedication

To my wife Chithra.

Preface

Graph theory is a well-known area of Discrete Mathematics which has so many theoretical
developments and applications not only to different branches of Mathematics, but also to
various other fields of basic sciences, technology, social sciences and computer science.
Graphs are widely used as efficient and effective tools to model many types of practical
and real-world problems in physical, biological, social and information systems. Graph-
theoretical models and methods are based on mathematical combinatorics and related fields.

This book is written for the students of Computer Science, who study the subject Graph
Theory under their university curriculum. The content of the book is prepared as per the
syllabus of fifth semester Bachelor of Technology in Computer Science and engineering
under APJ Abdul Kalam Kerala Technological University, Thiruvananthapuram, Kerala,
India. I started writing the lecture notes one and a half year ago as per the requests and
requirements of the under-graduate and post-graduate students of Computer Science and
Computer Applications programmes under various universities in the state of Kerala, India.

In coming years, I also plan to extend the content of the book by including some major
and important areas like graph colouring, matching, coverings and network flows. Then,
students of other universities and programmes can also make use of the book.

On this occasion, I would like to thank all members of my family for the support they
have offered to me during the preparation of the book. I also gratefully acknowledge the
support and encouragements of my colleagues, the Principal and the Management of Vidya
Academy of Science & Technology, Thrissur, India. My dear students, I will not forget your

vi

involvements in the preparation of this book. I once again use this opportunity to thank all
who have extended helping hands to me during this period.

Graph Theory has nominal dependence on many other areas of Mathematics and so
students of even non-mathematics programmes can learn this subject very easily. But, I
expect that the readers have a sound mathematical background for a better understanding of
the subject. A proper understanding of the technique of writing proofs in a logical manner is
essential for the readers or learners to have a fruitful learning experience.

The Centre for Studies in Discrete Mathematics (CSDM), Vidya Academy of Sciences
& Technology, Thrissur, India. is the publisher of this book. CSDM is a noble initiative
to encourage quality research in Discrete Mathematics and allied areas, in collaboration
with other reputed institutions and centres of excellence. The Centre works closely with
people associated with teaching and research in related disciplines like computer science and
electronics engineering. CSDM publishes this book electronically as an open access material.
Anybody can download the book from the website of the Centre and use it for his or her
requirements by giving due acknowledgements to the publisher and the author.

I wholeheartedly invite criticism and suggestions from the readers of this book for
improving the content and presentation style.

Thrissur Sudev Naduvath
November 2017.

Contents

Preface . iv

Contents . vii

SYLLABUS

Syllabus . xiii

I INTRODUCING GRAPHS

1 Introduction to Graphs . 3

1.1 Basic Definitions 3

1.2 Degrees and Degree Sequences in Graphs 5

1.3 Subgraphs and Spanning Subgraphs 8

1.4 Fundamental Graph Classes 8

1.5 Isomorphic Graphs 11

1.6 Exercises 12

2 Graphs and Their Operations . 15

2.1 Union, Intersection and Ringsum of Graphs 15

2.2 Complement of Graphs 17

2.3 Join of Graphs 18

2.4 Deletion and Fusion 18

2.5 Subdivision and Smoothing 20

2.6 Exercises 21

3 Connectedness of Graphs . 23

3.1 Paths, Cycles and Distances in Graphs 23

3.2 Connected Graphs 25

3.3 Edge Deleted and Vertex Deleted Subgraphs 28

3.4 Exercises 30

II TRAVERSABILITY IN GRAPHS & DIGRAPHS

4 Traversability in Graphs . 35

4.1 Königsberg Seven Bridge Problem 35

4.2 Eulerian Graphs 36

4.3 Chinese Postman Problem 38

4.4 Hamiltonian Graphs 39

4.5 Some Illustrations 43

4.6 Weighted Graphs 43

4.7 Travelling Salesman’s Problem 44

4.8 Exercises 45

5 Directed Graphs . 47

5.1 Directed Graphs 47

5.2 Types of Directed graphs 50

5.3 Networks 50

III TREES

6 Trees . 55

6.1 Properties of Trees 55

6.2 Distances in Trees 58

6.3 Degree Sequences in Trees 59

6.4 On Counting Trees 60

6.5 Spanning Trees 60

6.6 Fundamental Circuits 63

6.7 Rooted Tree 64

6.8 Binary Tree 65

6.9 Exercises 68

IV CONNECTIVITY & PLANARITY

7 Connectivity in Graphs . 71

7.1 Cut-Vertices and Vertex-Cuts of a Graph 71

7.2 Cut-Sets of a Graph 73

7.3 Fundamental Cut-Sets 75

7.4 Connectivity in Graphs 76

7.5 Exercises 79

8 Planar Graphs . 81

8.1 Three Utility Problem 81

8.2 Planarity of Graphs 82

8.3 Kuratowski Graphs and Their Nonplanarity 85

8.4 Detection of Planarity and Kuratowski’s Theorem 88

8.5 Euler Theorem and Consequences 89

8.6 Geometric Dual of a Graph 93

8.7 Exercises 97

V GRAPHS AND MATRICES

9 Matrix Representations of Graphs 101

9.1 Incidence Matrix of a Graph 101

9.2 Cycle Matrix 106

9.3 Cut-Set Matrix 111

9.4 Relation between A f ,B f and C f 114

9.5 Adjacency Matrix 115

9.6 Path Matrix 119

9.7 Exercises 121

VI GRAPH THEORETIC ALGORITHMS

10 Graph Algorithms . 125

10.1 Computer Representation of a Graph 125

10.2 Algorithm for Connectedness and Components 127

10.3 Spanning Tree Algorithm 130

10.4 Minimal Spanning Tree Algorithms 131

10.5 Shortest Path Problems 135

10.6 Exercises 139

REFERENCES

LIST OF FIGURES & TABLES

List of Figures . 149

List of Tables . 151

INDEX

Index . 157

SYLLABUS

Syllabus

Module-1

Introductory concepts - What is a graph? - applications of graphs - finite and infinite
graphs - incidence and degree - isolated vertex and pendent vertex - null graph - paths and
circuits - isomorphism of graphs - subgraphs - walks, paths and circuits - connected graphs -
disconnected graphs.

Hours allotted: 09 Marks: 15%

Module-2

Euler graphs, Hamiltonian paths and circuits, Dirac’s theorem for Hamiltonicity, travelling
salesman problem. directed graphs – types of digraphs, digraphs and binary relation.

Hours allotted: 10 Marks: 15%

Module-3

Trees – properties, pendent vertex, distance and centres - rooted and binary trees, counting
trees, spanning trees.

Hours allotted: 07 Marks: 15%

xiv

Module-4
Vertex connectivity, edge connectivity, cut-sets and cut-vertices, fundamental circuits, planar
graphs, different representation of planar graphs, Euler’s theorem, geometric dual, combina-
torial dual.

Hours allotted: 09 Marks: 15%

Module-5
Matrix representation of graphs- adjacency matrix, incidence matrix, circuit matrix, funda-
mental circuit matrix and rank, cut-set matrix, path matrix

Hours allotted: 08 Marks: 20%

Module-6
Graphs theoretic algorithms - algorithm for computer representation of a graph, algorithm for
connectedness and components, spanning tree algorithms, shortest path algorithms.

Hours allotted: 07 Marks: 20%

Reference Books:
1. Douglas B. West, Introduction to Graph Theory, Prentice Hall of India Ltd., 2001.
2. Narasingh Deo, Graph Theory, PHI, 1979.
3. Robin J. Wilson, Introduction to Graph Theory, Longman Group Ltd., 2010.
4. R. Diestel, Graph Theory, free online edition, 2016:

diestel-graph-theory.com/basic.html.

diestel-graph-theory.com/basic.html.

I
1 Introduction to Graphs 3
1.1 Basic Definitions
1.2 Degrees and Degree Sequences in Graphs
1.3 Subgraphs and Spanning Subgraphs
1.4 Fundamental Graph Classes
1.5 Isomorphic Graphs
1.6 Exercises

2 Graphs and Their Operations 15
2.1 Union, Intersection and Ringsum of Graphs
2.2 Complement of Graphs
2.3 Join of Graphs
2.4 Deletion and Fusion
2.5 Subdivision and Smoothing
2.6 Exercises

3 Connectedness of Graphs 23
3.1 Paths, Cycles and Distances in Graphs
3.2 Connected Graphs
3.3 Edge Deleted and Vertex Deleted Subgraphs
3.4 Exercises

INTRODUCING GRAPHS

1. Introduction to Graphs

Graph Theory is a well-known area of discrete mathematics which deals with the study of
graphs. A graph may be considered as a mathematical structure that is used for modelling the
pairwise relations between objects.

Graph Theory has many theoretical developments and applications not only to different
branches of mathematics, but also to various other fields of basic sciences, technology, social
sciences, computer science etc. Graphs are widely used as efficient tools to model many
types of practical and real-world problems in physical, biological, social and information
systems. Graph-theoretical models and methods are based on mathematical combinatorics
and related fields.

1.1 Basic Definitions
Definition 1.1.1 — Graph. A graph G can be considered as an ordered triple (V,E,ψ),
where

(i) V = {v1,v2,v3, . . .} is called the vertex set of G and the elements of V are called the
vertices (or points or nodes);

(ii) E = {e1,e2,e3, . . .} is the called the edge set of G and the elements of E are called
edges (or lines or arcs); and

(iii) ψ is called the adjacency relation, defined by ψ : E → V ×V , which defines the
association between each edge with the vertex pairs of G.

Usually, the graph is denoted as G = (V,E). The vertex set and edge set of a graph G are

4 Chapter 1. Introduction to Graphs

also written as V (G) and E(G) respectively.

v1 v2

v3v4

e1

e2

e3

e4e5

e6

e7

Figure 1.1: An example of a graph

If two vertices u and v are the (two) end points of an edge e, then we represent this edge
by uv or vu. If e = uv is an edge of a graph G, then we say that u and v are adjacent vertices
in G and that e joins u and v. In such cases, we also say that u and v are adjacent to each
other.

Given an edge e = uv, the vertex u and the edge e are said to be incident with each other
and so are v and e. Two edges ei and e j are said to be adjacent edges if they are incident with
a common vertex.

Definition 1.1.2 — Order and Size of a Graph. The order of a graph G, denoted by
ν(G), is the number of its vertices and the size of G, denoted by ε(G), is the number of its
edges.

A graph with p-vertices and q-edges is called a (p,q)-graph. The (1,0)-graph is called a
trivial graph. That is, a trivial graph is a graph with a single vertex. A graph without edges is
called an empty graph or a null graph. The following figure illustrates a null graph of order 5.

v1 v2

v5

v4

v3

Figure 1.2: Null graph of order 5.

Definition 1.1.3 — Finite and Infinite Graphs. A graph with a finite number of vertices
as well as a finite number of edges is called a finite graph. Otherwise, it is an infinite
graph.

Definition 1.1.4 — Self-loop. An edge of a graph that joins a node to itself is called loop
or a self-loop. That is, a loop is an edge uv, where u = v.

Lecture Notes on Graph Theory 5

Definition 1.1.5 — Parallel Edges. The edges connecting the same pair of vertices are
called multiple edges or parallel edges.

In Figure 1.2, the edges e6 and e7 are loops and the edges e4 and e5 are parallel edges.

Definition 1.1.6 — Simple Graphs and Multigraphs. A graph G which does not have
loops or parallel edges is called a simple graph. A graph which is not simple is generally
called a multigraph.

Figure 1.3: Some examples of simple graphs

1.2 Degrees and Degree Sequences in Graphs

Definition 1.2.1 — Degree of a vertex. The number of edges incident on a vertex v, with
self-loops counted twice, is called the degree of the vertex v and is denoted by degG(v) or
deg(v) or simply d(v).

Definition 1.2.2 — Isolated vertex. A vertex having no incident edge is called an isolated
vertex. In other words, isolated vertices are those with zero degree.

Definition 1.2.3 — Pendant vertex. A vertex of degree 1, is called a pendent vertex or
an end vertex.

Definition 1.2.4 — Internal vertex. A vertex, which is neither a pendent vertex nor an
isolated vertex, is called an internal vertex or an intermediate vertex.

Definition 1.2.5 — Minimum and Maximum Degree of a Graph. The maximum degree
of a graph G, denoted by ∆(G), is defined to be ∆(G) = max{d(v) : v ∈V (G)}. Similarly,
the minimum degree of a graph G, denoted by δ (G), is defined to be δ (G) = min{d(v) :
v ∈V (G)}. Note that for any vertex v in G, we have δ (G)≤ d(v)≤ ∆(G).

The following theorem is a relation between the sum of degrees of vertices in a graph G
and the size of G.

6 Chapter 1. Introduction to Graphs

Theorem 1.2.1 In a graph G, the sum of the degrees of the vertices is equal to twice the
number of edges. That is, ∑

v∈V (G)
d(v) = 2ε .

Proof. Let S = ∑
v∈V (G)

d(v). Notice that in counting S, we count each edge exactly twice.

That is, every edge contributes degree 1 each to both of its end vertices and a loop provides
degree 2 to the vertex it incidents with. Hence 2 to the sum of degrees of vertices in G. Thus,
S = 2|E|= 2ε . �

The above theorem is usually called the first theorem on graph theory. It is also known as
the hand shaking lemma. The following two theorems are immediate consequences of the
above theorem.

Theorem 1.2.2 For any graph G, δ (G)≤ 2|E|
|V | ≤ ∆(G).

Proof. By Theorem-1, we have 2ε = ∑
v∈V (G)

d(v). Therefore, note that 2|E|
|V | =

∑d(v)
|V | , the

average degree of G. Therefore, δ (G)≤ 2|E|
|V | ≤ ∆(G). �

Theorem 1.2.3 For any graph G, the number of odd degree vertices is always even.

Proof. Let S = ∑
v∈V (G)

d(v). By Theorem 1.2.1, we have S = 2ε and hence S is always even.

Let V1 be the set of all odd degree vertices and V2 be the set of all even degree vertices in G.
Now, let S1 = ∑

v∈V1

d(v) and S2 = ∑
v∈V2

d(v). Note that S2, being the sum of even integers, is

also an even integer.
We also note that S= S1+S2 (since V1 and V2 are disjoint sets and V1∪V2 =V). Therefore,

S1 = S−S2. Being the difference between two even integers, S1 is also an even integer. Since
V1 is a set of odd degree vertices, S1 is even only when the number of elements in V1 is even.
That is, the number of odd degree vertices in G is even, completing the proof. �

Definition 1.2.6 — Degree Sequence. The degree sequence of a graph of order n is the
n-term sequence (usually written in descending order) of the vertex degrees. In Figure-1,
δ (G) = 2, ∆(G) = 5 and the degree sequence of G is (5,4,3,2).

Definition 1.2.7 — Graphical Sequence. An integer sequence is said to be graphical if
it is the degree sequence of some graphs. A graph G is said to be the graphical realisation
of an integer sequence S if S the degree sequence of G.

Problem 1.1 Is the sequence S = 〈5,4,3,3,2,2,2,1,1,1,1〉 graphical? Justify your answer.
Solution: The sequence S = 〈ai〉 is graphical if every element of S is the degree of some
vertex in a graph. For any graph, we know that ∑v∈V (G) d(v) = 2|E|, an even integer. Here,
∑ai = 25, not an even number. Therefore, the given sequence is not graphical. �

Lecture Notes on Graph Theory 7

Problem 1.2 Is the sequence S = 〈9,9,8,7,7,6,6,5,5〉 graphical? Justify your answer.
Solution: The sequence S = 〈ai〉 is graphical if every element of S is the degree of some
vertex in a graph. For any graph, we know that ∑v∈V (G) d(v) = 2|E|, an even integer. Here,
∑ai = 62, an even number. But note that the maximum degree that a vertex can attain in a
graph of order n is n−1. If S were graphical, the corresponding graph would have been a
graph on 9 vertices and have ∆(G) = 9. Therefore, the given sequence is not graphical. �

Problem 1.3 Is the sequence S = 〈9,8,7,6,6,5,5,4,3,3,2,2〉 graphical? Justify your an-
swer.
Solution: The sequence S = 〈ai〉 is graphical if every element of S is the degree of some
vertex in a graph. For any graph, we know that ∑v∈V (G) d(v) = 2|E|, an even integer. Here,
we have ∑ai = 60, an even number. Also, note that the all elements in the sequence are less
than the number of elements in that sequence.
Therefore, the given sequence is graphical and the corresponding graph is drawn below. �

v1

v2

v3
v4

v5

v6

v7

v8

v9
v10

v11

v12

Figure 1.4: Graphical realisation of the degree sequence S.

1.2.1 Neighbourhoods

Definition 1.2.8 — Neighbourhood of a Vertex. The neighbourhood (or open neigh-
bourhood) of a vertex v, denoted by N(v), is the set of vertices adjacent to v. That is,
N(v) = {x ∈ V : vx ∈ E}. The closed neighbourhood of a vertex v, denoted by N[v], is
simply the set N(v)∪{v}.

Then, for any vertex v in a graph G, we have dG(v) = |N(v)|. A special case is a loop
that connects a vertex to itself; if such an edge exists, the vertex is said to belong to its own
neighbourhood.

Given a set S of vertices, we define the neighbourhood of S, denoted by N(S), to be the
union of the neighbourhoods of the vertices in S. Similarly, the closed neighbourhood of S,
denoted by N[S], is defined to be S∪N(S).

Neighbourhoods are widely used to represent graphs in computer algorithms, in terms
of the adjacency list and adjacency matrix representations. Neighbourhoods are also used
in the clustering coefficient of graphs, which is a measure of the average density of its

8 Chapter 1. Introduction to Graphs

neighbourhoods. In addition, many important classes of graphs may be defined by properties
of their neighbourhoods, or by symmetries that relate neighbourhoods to each other.

1.3 Subgraphs and Spanning Subgraphs

Definition 1.3.1 — Subgraph of a Graph. A graph H(V1,E1) is said to be a subgraph
of a graph G(V,E) if V1 ⊆V and E1 ⊆ E.

Definition 1.3.2 — Spanning Subgraph of a Graph. A graph H(V1,E1) is said to be a
spanning subgraph of a graph G(V,E) if V1 =V and E1 ⊆ E.

Figure 1.5: Examples of Subgraphs

In the above figure, the second graph is a spanning subgraph of the first graph, while the
third graph is a subgraph of the first graph.

1.3.1 Induced Subgraphs

Definition 1.3.3 — Induced Subgraph. Suppose that V ′ be a subset of the vertex set V
of a graph G. Then, the subgraph of G whose vertex set is V ′ and whose edge set is the
set of edges of G that have both end vertices in V ′ is denoted by G[V] or 〈V 〉 called an
induced subgraph of G.

Definition 1.3.4 — Edge-Induced Subgraph. Suppose that E ′ be a subset of the edge
set V of a graph G. Then, the subgraph of G whose edge set is E ′ and whose vertex set is
the set of end vertices of the edges in E ′ is denoted by G[E] or 〈E〉 called an edge-induced
subgraph of G.

Figure 1.6 depicts an induced subgraph and an edge induced subgraph of a given graph.

1.4 Fundamental Graph Classes
1.4.1 Complete Graphs

Definition 1.4.1 — Complete Graphs. A complete graph is a simple undirected graph
in which every pair of distinct vertices is connected by a unique edge. A complete graph

Lecture Notes on Graph Theory 9

a b

c

d

e

(a) The graph G

a

c

d

(b) The induced subgraph
G[a,c,d]

a b

c

d

e

(c) The induced subgraph
G[ab,cd,ce,de]

Figure 1.6: Induced and edge-induced subgraphs of a graph G.

on n vertices is denoted by Kn.

Figure 1.7: First few complete graphs

Problem 1.4 Show that a complete graph Kn has n(n−1)
2 edges.

Solution: Note that any two vertices in a complete graph are adjacent to each other. Hence,
the number of edges in a complete graph is equal to the number of distinct pairs of vertices in
it. Therefore, the number of such pairs of vertices in Kn is

(n
2

)
= n(n−1)

2 . That is, the number
of edges in Kn is n(n−1)

2 . �

We can write an alternate solution to this problem as follows:
Solution: Note that every vertex in a complete graph Kn is adjacent to all other n− 1
vertices in Kn. That is, d(v) = n− 1 for all vertices in Kn. Since Kn has n vertices, we
have ∑ lim

v∈V (Kn)
d(v) = n(n− 1). Therefore, by the first theorem on graph theory, we have

2|E(Kn)|= n(n−1). That is, the number of edges in Kn is n(n−1)
2 . �

Problem 1.5 Show that the size of every graph of order n is at most n(n−1)
2 .

Solution: Note that every graph on n vertices is a spanning subgraph of the complete graph
Kn. Therefore, E(G) ⊆ E(Kn). That is, |E(G)| ≤ |E(Kn)| = n(n−1)

2 . That is, any graph of
order n can have at most n(n−1)

2 edges. �

1.4.2 Bipartite Graphs

Definition 1.4.2 — Bipartite Graphs. A graph G is said to be a bipartite graph if its
vertex set V can be partitioned into two sets, say V1 and V2, such that no two vertices in

10 Chapter 1. Introduction to Graphs

the same partition can be adjacent. Here, the pair (V1,V2) is called the bipartition of G.

Figure 1.8 gives some examples of bipartite graphs. In all these graphs, the white vertices
belong to the same partition, say V1 and the black vertices belong to the other partition, say
V2.

Figure 1.8: Examples of bipartite graphs

Definition 1.4.3 — Complete Bipartite Graphs. A bipartite graph G is said to be a
complete bipartite graph if every vertex of one partition is adjacent to every vertex of the
other. A complete bipartite graph with bipartition (X ,Y) is denoted by K|X |,|Y | or Ka,b,
where a = |X |,b = |Y |.

The following graphs are also some examples of complete bipartite graphs. In these examples
also, the vertices in the same partition have the same colour.

Figure 1.9: Examples of complete bipartite graphs

Problem 1.6 Show that a complete bipartite graph Ka,b has ab vertices.
Solution: Let Ka,b be a complete bipartite graph with bipartition (X ,Y). Note that all
a vertices in X have the same degree b and all b vertices in Y have the same degree a.
Therefore, ∑

v∈V (Ka,b)
d(v) = ab+ ba = 2ab. By the first theorem on graph theory, we have

2|E(Ka,b)|= 2ab. That is, |E(Ka,b)|= ab. �

Theorem 1.4.1 The complete graph Kn can be expressed as the union of k bipartite graphs
if and only if n≤ 2k.

Proof. First assume that Kn can be expressed as the union of k bipartite graphs. We use the
method of induction on k. First let k = 1. Note that Kn contains triangle K3 (and K3 is not
bipartite) except for n≤ 2. Therefore, the result is true for k = 1.

Lecture Notes on Graph Theory 11

Now assume that k > 1 and the result holds for all complete graphs having fewer than
k complete bipartite components. Now assume that Kn = G1 ∪G2 ∪ . . . ,∪Gk, where each
Gi is bipartite. Partition the vertex set V into two components such that the graph Gk has
no edge within X or within Y . The union of other k−1 bipartite subgraphs must cover the
complete subgraphs induced by X and Y . Then, by Induction hypothesis, we have |X | ≤ 2k−1

and |Y X | ≤ 2k−1. Therefore, n = |X |+ |Y | ≤ 2k−1 +2k−1 = 2k. Therefore, the necessary part
follows by induction. �

1.4.3 Regular Graphs

Definition 1.4.4 — Regular Graphs. A graph G is said to be a regular graph if all its
vertices have the same degree. A graph G is said to be a k-regular graph if d(v) = k ∀ v ∈
V (G). Every complete graph is an (n−1)-regular graph.

The degree of all vertices in each partition of a complete bipartite graph is the same.
Hence, the complete bipartite graphs are also called biregular graphs. Note that, for the
complete bipartite graph K|X |,|Y |, we have dX (v) = |Y | and dY (v) = |X |.

(a) A 2-regular graph (b) A 3-regular graph (c) Petersen Graph

Figure 1.10: Examples of regular graphs

1.5 Isomorphic Graphs

Definition 1.5.1 — Isomorphism of Two Graphs. An isomorphism of two graphs G and
H is a bijective function f : V (G)→ V (H) such that any two vertices u and v of G are
adjacent in G if and only if f (u) and f (v) are adjacent in H.

That is, two graphs G and H are said to be isomorphic if
(i) |V (G)|= |V (H)|,

(ii) |E(G)|= |E(H)|,
(iii) viv j ∈ E(G) =⇒ f (vi) f (v j) ∈ E(H).

This bijection is commonly described as edge-preserving bijection.
If an isomorphism exists between two graphs, then the graphs are called isomorphic

graphs and denoted as G' H or G∼= H.
For example, consider the graphs given in Figure 1.11.

12 Chapter 1. Introduction to Graphs

v1 v2

v3

v4v5

(a) G1.

u1 u2

u3

u4u5

(b) G2.

Figure 1.11: Examples of isomorphic graphs

In the above graphs, we can define an isomorphism f from the first graph to the second
graph such that f (v1) = u1, f (v2) = u3, f (v3) = u5, f (v4) = u2 and f (v5) = u4. Hence, these
two graphs are isomorphic.

1.6 Exercises

1. Show that every loop-less graph G has a bipartite subgraph with at least ε

2 edges.
2. Verify whether graph isomorphism is an equivalence relation?
3. For k > 0, show that a k-regular bipartite graph has the same number of vertices in

each of its partite sets.
4. Show that every simple graph on n vertices subgraph of Kn.
5. Show that every subgraph of a bipartite graph is bipartite.
6. Verify whether the integer sequences (7,6,5,4,3,3,2) and (6,6,5,4,3,3,1) are graph-

ical.
7. Show that if G is simple and connected but not complete, then G has three vertices u,v

and w such that uv,vw ∈ E(G), but uw /∈ E.
8. Show that every induced subgraph of a complete graph Kn is also a complete subgraph.
9. If G is an r-regular graph, then show that r divides the size of G.

10. Show that every subgraph of a bipartite graph is bipartite.
11. If G is an r-regular graph and r is odd, then show that ε

r is an even integer.
12. Let G be a graph in which there is no pair of adjacent edges. What can you say about

the degree of the vertices in G?
13. Check whether the following pairs of graphs are isomorphic? Justify your answer.

(a) G (b) H

Lecture Notes on Graph Theory 13

(a) G (b) H

(a) G (b) H

(a) G (b) H

(a) G (b) H

14. Let G be a graph with n vertices and e edges and let m be the smallest positive integer
such that m≥ 2e

n . Prove that G has a vertex of degree at least m.
15. Prove that it is impossible to have a group of nine people at a party such that each one

knows exactly five of the others in the group.
16. Let G be a graph with n vertices, t of which have degree k and the others have degree

k+1. Prove that t = (k+1)n−2e, where e is the number of edges in G.
17. Let G be a k-regular graph, where k is an odd number. Prove that the number of edges

in G is a multiple of k.
18. Let G be a graph with n vertices and exactly n− 1 edges. Prove that G has either a

14 Chapter 1. Introduction to Graphs

vertex of degree 1 or an isolated vertex.
19. What is the smallest integer n such that the complete Kn has at least 500 edges?
20. Prove that there is no simple graph with six vertices, one of which has degree 2, two

have degree 3, three have degree 4 and the remaining vertex has degree 5.
21. Prove that there is no simple graph on four vertices, three of which have degree 3 and

the remaining vertex has degree 1.
22. Let G be a simple regular graph with n vertices and 24 edges. Find all possible values

of n and give examples of G in each case.

2. Graphs and Their Operations

We have already seen that the notion of subgraphs can be defined for any graphs as similar to
the definition of subsets to sets under consideration. Similar to the definitions of basic set
operations, we can define the corresponding basic operations for graphs also. In addition to
these fundamental graph operations, there are some other new and useful operations are also
defined on graphs. In this chapter, we discuss some basic graph operation.

2.1 Union, Intersection and Ringsum of Graphs

Definition 2.1.1 — Union of Graphs. The union of two graphs G1 and G2 is a graph G,
written by G = G1∪G2, with vertex set V (G1)∪V (G2) and the edge set E(G1)∪E(G2).

Definition 2.1.2 — Intersection of Graphs. The intersection of two graphs G1 and G2 is
another graph G, written by G = G1∩G2, with vertex set V (G1)∩V (G2) and the edge set
E(G1)∩E(G2).

Definition 2.1.3 — Ringsum of Graphs. The ringsum of two graphs G1 and G2 is another
graph G, written by G = G1 ⊕G2, with vertex set V (G1)∩V (G2) and the edge set
E(G1)⊕E(G2), where ⊕ is the symmetric difference (XOR Operation) of two sets.

Figure 2.1 illustrates the union, intersection and ringsum of two given graphs.

16 Chapter 2. Graphs and Their Operations

v1

v2

v3v4

v5

e1

e2

e6

e3

e4

e5

(a) G1

v1

v2

v4

v5

v6
e1

e7

e6
e8

e9e10

(b) G2

v1

v2

v3v4

v5

v6
e1

e7

e2

e6

e3

e4

e8

e5

e9e10

(c) G1∪G2

v1

v2v5

(d) G1∩G2

v1

v2

v3v4

v5

v6
e7

e2

e3

e4

e8

e5

e9e10

(e) G1⊕G2

Figure 2.1: Illustrations to graph operations

R
1. The union, intersection and ringsum operations of graphs are commutative. That

is, G1∪G2 = G2∪G1,G1∩G2 = G2∩G1 and G1⊕G2 = G2⊕G1.
2. If G1 and G2 are edge-disjoint, then G1 ∩G2 is a null graph, and G1⊕G2 =

G1∪G2.
3. If G1 and G2 are vertex-disjoint, then G1⊕G2 is empty.
4. For any graph G, G∩G = G∪G and G⊕G is a null graph.

Definition 2.1.4 — Decomposition of a Graph. A graph G is said to be decomposed
into two subgraphs G1 and G2 , if G1∪G2 = G and G1∩G2 is a null graph.

Lecture Notes on Graph Theory 17

2.2 Complement of Graphs

Definition 2.2.1 — Complement of Graphs. The complement or inverse of a graph G,
denoted by Ḡ is a graph with V (G) =V (Ḡ) such that two distinct vertices of Ḡ are adjacent
if and only if they are not adjacent in G.

R Note that for a graph G and its complement Ḡ, we have

(i) G1∪ Ḡ = Kn;
(ii) V (G) =V (Ḡ);

(iii) E(G)∪E(Ḡ) = E(Kn);
(iv) |E(G)|+ |E(Ḡ)|= |E(Kn)|=

(n
2
)
.

A graph and its complement are illustrated below.

v1

v2

v3v4

v5

(a) G

v1

v2

v3v4

v5

(b) Ḡ

Figure 2.2: A graph and its complement

2.2.1 Self-Complementary Graphs

Definition 2.2.2 — Self-Complementary Graphs. A graph G is said to be self-complementary
if G is isomorphic to its complement. If G is self complementary, then |E(G)|= |E(Ḡ)|=
1
2 |E(Kn)|= 1

2

(n
2

)
= n(n−1)

4 .

The following are two examples of self complementary graphs.

v1

v2

v3 v4

v5

(a) Bull graph G.

v1

v2

v3 v4

v5

(b) Ḡ.

Figure 2.3: Example of self-complementary graphs

18 Chapter 2. Graphs and Their Operations

(a) G2 (b) G2.

Figure 2.4: Example of self-complementary graphs

Problem 2.1 For any self-complementary graph G of order n, show that n≡ 0,1(mod 4).
Solution: For self-complementary graphs, we have

(i) V (G) =V (Ḡ);
(ii) |E(G)|+ |E(Ḡ)|= n(n−1)

2 ;
(iii) |E(G)|= |E(Ḡ)|.

Therefore, |E(G)|= |E(Ḡ)|= n(n−1)
4 . This implies, 4 divides either n or n−1. That is, for

self-complementary graphs of order n, we have n≡ 0,1(mod 4). �

(Note that we say a≡ b(mod n), which is read as “a is congruent to b modulo n”, if a−b
is completely divisible by n).

2.3 Join of Graphs

Definition 2.3.1 The join of two graphs G and H, denoted by G+H is the graph such that
V (G+H) =V (G)∪V (H) and E(G+H) = E(G)∪E(H)∪{xy : x ∈V (G),y ∈V (H)}.

In other words, the join of two graphs G and H is defined as the graph in which every
edge of the first graph is adjacent to all vertices of the second graph.

Figure 2.5 illustrates the join of two graphs P3 and P4 and Figure 2.6 illustrates the join of
two graphs C5 and P2.

Figure 2.5: The join of the paths P4 and P3.

2.4 Deletion and Fusion
Definition 2.4.1 — Edge Deletion in Graphs. If e is an edge of G, then G− e is the
graph obtained by removing the edge of G. The subgraph of G thus obtained is called an
edge-deleted subgraph of G. Clearly, G− e is a spanning subgraph of G.

Lecture Notes on Graph Theory 19

(a) C5 (b) P2 (c) C5 +P2.

Figure 2.6: The join of the cycle C5 and the path P2.

Similarly, vertex-deleted subgraph of a graph is defined as follows:

Definition 2.4.2 — Vertex Deletion in Graphs. If v is a vertex of G, then G− v is the
graph obtained by removing the vertex v and all edges G that are incident on v. The
subgraph of G thus obtained is called an vertex-deleted subgraph of G. Clearly, G− v will
not be a spanning subgraph of G.

Figure 2.7 illustrates the edge deletion and the vertex deletion of a graph G.

v
e

(a) G

v

(b) G− e (c) G− v

Figure 2.7: Illustrations to edge deletion and vertex deletion

Definition 2.4.3 — Fusion of Vertices. A pair of vertices u and v are said to be fused (or
merged or identified) together if the two vertices are together replaced by a single vertex
w such that every edge incident with either u or v is incident with the new vertex w (see
Figure 2.8).

Note that the fusion of two vertices does not alter the number of edges, but reduces the
number of vertices by 1.

2.4.1 Edge Contraction

Definition 2.4.4 — Edge Contraction in Graphs. An edge contraction of a graph G is an
operation which removes an edge from a graph while simultaneously merging its two end
vertices that it previously joined. Vertex fusion is a less restrictive form of this operation.

A graph obtained by contracting an edge e of a graph G is denoted by G◦ e.

20 Chapter 2. Graphs and Their Operations

x y

vu

zt

(a) G

x y

w

zt

(b) G− e

Figure 2.8: Illustrations to fusion of two vertices

x y

vu

zt

(a) G

x y

w

zt

(b) G◦uv

Figure 2.9: Illustrations to edge contraction of a graph.

2.5 Subdivision and Smoothing

2.5.1 Subdivision of a Graph

Definition 2.5.1 — Subdivision of an Edge. Let e = uv be an arbitrary edge in G. The
subdivision of the edge e yields a path of length 2 with end vertices u and v with a new
internal vertex w (That is, the edge e = uv is replaced by two new edges, uw and wv).

(a) G (b) G

Figure 2.10: Subdivision of an edge

Definition 2.5.2 — Subdivision of a Graph. A subdivision of a graph G (also known as
an expansion of G) is a graph resulting from the subdivision of (some or all) edges in G
(see 2.11). The newly introduced vertices in the subdivisions are represented by white
vertices.

Definition 2.5.3 — Homeomorphic Graphs. Two graphs are said to be homeomorphic
if both can be obtained by the same graph by subdivisions of edges.

Lecture Notes on Graph Theory 21

(a) G (b) (c)

Figure 2.11: Illustrations to Subdivision of graphs

In Figure 2.11, the second and third graphs are homeomorphic, as they are obtained by
subdividing the edges of the first graph in the figure.

2.5.2 Smoothing a Vertex

Definition 2.5.4 — Smoothing Vertices in Graphs. The reverse operation, smoothing
out or smoothing a vertex w of degree 2 with regards to the pair of edges (ei,e j) incident
on w, removes w and replaces the pair of edges (ei,e j) containing w with a new edge e
that connects the other endpoints of the pair (ei,e j) (see the illustration).

u w v

(a)

u v

(b) G

Figure 2.12: Smoothing of the vertex w

Smoothing of a vertex of a graph G is also called an elementary transformation of G.
Problem 2.2 Show that a graph obtained by subdividing all edges of a graph G is a bipartite
graph.

Solution: Let H be the subdivision of G. Let X =V (G) and Y be the newly introduced
vertices during subdivision. Clearly, X ∪Y =V (H). Note that adjacency is not defined among
the vertices of Y . When we subdivide an edge uv in G, then the edge uv will be removed and
hence u and v becomes non-adjacent in H. Therefore, no two vertices in X can be adjacent in
H. Thus, H is bipartite. �

2.6 Exercises

1. Show that the complement of a complete bipartite graph is the disjoint union of two
complete graphs.

2. The isomorphic image of a graph walk W is a walk of the same length.
3. For any graphs G and H, the ringsum G⊕H is empty if and only if E(G) = E(H).
4. Show that the ringsum of two edge-disjoint collections of circuits is a collection of

circuits.
5. For any graph G with six vertices, then G or its complement Ḡ contains a triangle.

22 Chapter 2. Graphs and Their Operations

6. Every graph G contains a bipartite spanning subgraph whose size is at least half the
size of G.

7. Any graph G has a regular supergraph H of degree ∆(G) such that G is an induced
subgraph of H.

8. how that if a self-complementary graph contains pendent vertex, then it must have at
least another pendent vertex.

9. Draw all the non-isomorphic self complementary graphs on four vertices.
10. Prove that a graph with n vertices (n > 2) cannot be bipartite if it has more than n2

4
edges.

11. Verify whether the join of two bipartite graphs is bipartite. Justify your answer.
12. What is the order and size of the join of two graphs?
13. Does the join of two graphs hold commutativity? Illustrate with examples.

3. Connectedness of Graphs

3.1 Paths, Cycles and Distances in Graphs

Definition 3.1.1 — Walks. A walk in a graph G is an alternating sequence of vertices and
connecting edges in G. In other words, a walk is any route through a graph from vertex to
vertex along edges. If the starting and end vertices of a walk are the same, then such a
trail is called a closed walk.

A walk can end on the same vertex on which it began or on a different vertex. A walk can
travel over any edge and any vertex any number of times.

Definition 3.1.2 — Trails and Tours. A trail is a walk that does not pass over the same
edge twice. A trail might visit the same vertex twice, but only if it comes and goes from a
different edge each time. A tour is a trail that begins and ends on the same vertex.

Definition 3.1.3 — Paths and Cycles. A path is a walk that does not include any vertex
twice, except that its first vertex might be the same as its last. A cycle or a circuit is a path
that begins and ends on the same vertex.

Definition 3.1.4 — Length of Paths and Cycles. The length of a walk or circuit or path
or cycle is the number of edges in it.

A path of order n is denoted by Pn and a cycle of order n is denoted by Cn. Every edge of
G can be considered as a path of length 1. Note that the length of a path on n vertices is n−1.

24 Chapter 3. Connectedness of Graphs

A cycle having odd length is usually called an odd cycle and a cycle having even length
is called an even cycle.

Definition 3.1.5 — Distance between two vertices. The distance between two vertices
u and v in a graph G, denoted by dG(u,v) or simply d(u,v), is the length (number of edges)
of a shortest path (also called a graph geodesic) connecting them. This distance is also
known as the geodesic distance.

Definition 3.1.6 — Eccentricity of a Vertex. The eccentricity of a vertex v, denoted by
ε(v), is the greatest geodesic distance between v and any other vertex. It can be thought of
as how far a vertex is from the vertex most distant from it in the graph.

Definition 3.1.7 — Radius of a Graph. The radius r of a graph G, denoted by rad(G),
is the minimum eccentricity of any vertex in the graph. That is, rad(G) = min

v∈V (G)
ε(v).

Definition 3.1.8 — Diameter of a Graph. The diameter of a graph G, denoted by
diam(G) is the maximum eccentricity of any vertex in the graph. That is, diam(G) =

max
v∈V (G)

ε(v).

Here, note that the diameter of a graph need not be twice its radius unlike in geometry. We
can even see many graphs having same radius and diameter. Complete graphs are examples
of the graphs with radius equals to diameter.

Definition 3.1.9 — Center of a Graph. A center of a graph G is a vertex of G whose
eccentricity equal to the radius of G.

Definition 3.1.10 — Peripheral Vertex of a Graph. A peripheral vertex in a graph of
diameter d is one that is distance d from some other vertex. That is, a peripheral vertex is
a a vertex that achieves the diameter. More formally, a vertex v of G is peripheral vertex
of a graph G, if ε(v) = d.

For a general graph, there may be several centers and a center is not necessarily on a
diameter.

The distances between vertices in the above graph are given in Table 3.1. Note that a
vertex vi is represented by i in the table (to save the space).

Note that the radius of G is given by r(G) = min{ε(v)} = 4 and the diameter of G is
given by diam(G) = max{ε(v)}= 6 and all eight central vertices are represented by white
vertices in Figure 3.1.

Definition 3.1.11 — Geodetic Graph. A graph in which any two vertices are connected
by a unique shortest path is called a geodetic graph.

Lecture Notes on Graph Theory 25

v1 v2 v3 v4 v5

v6v7v8v9v10

v11 v12

v13

v14 v15

v16

Figure 3.1: A graph with eight centers.

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ε

1 0 1 2 3 4 6 5 4 3 4 2 3 3 4 4 4 6
2 1 0 1 2 3 5 4 3 2 3 1 2 2 3 3 3 5
3 2 1 0 1 2 4 3 4 3 4 2 2 1 1 2 3 4
4 3 2 1 0 1 3 2 3 4 5 5 3 2 2 1 3 5
5 4 3 2 1 0 4 3 4 5 6 4 4 3 3 2 4 6
6 6 5 4 3 4 0 1 2 3 4 4 4 4 3 2 3 6
7 5 4 3 2 3 1 0 1 2 3 3 3 3 2 1 2 5
8 4 3 4 3 4 2 1 0 1 2 2 2 3 2 2 1 4
9 3 2 3 4 5 3 2 1 0 1 1 2 3 3 3 2 5
10 4 3 4 5 6 4 3 2 1 0 2 3 4 4 4 3 6
11 2 1 2 3 4 4 3 2 1 1 0 1 2 3 4 2 4
12 3 2 2 3 4 4 2 1 2 3 1 0 1 2 3 1 4
13 3 2 1 2 3 4 3 3 3 4 2 1 0 1 2 2 4
14 4 3 2 2 3 3 2 2 3 4 3 2 1 0 1 1 4
15 4 3 2 1 2 2 1 2 3 4 4 3 2 1 0 2 4
16 4 3 3 3 4 3 2 1 2 3 2 3 2 1 2 0 4

Table 3.1: Eccentricities of vertices of the graph in Figure 3.1.

Theorem 3.1.1 If G is a simple graph with diam(G)≥ 3, then diam(Ḡ)≤ 3.

Proof. If diam(G) ≥ 3, then there exist at least two non-adjacent vertices u and v in G
such that u and v have no common neighbours in G. Hence, every vertex x in G−{u,v} is
non-adjacent to u or v or both in G. This makes x adjacent to u or v or both in Ḡ. Moreover,
uv ∈ E(Ḡ). So, for every pair of vertices x,y, there is an x,y path of length at most 3 in Ḡ
through the edge uv. Hence, diam(Ḡ)≤ 3. �

3.2 Connected Graphs
Definition 3.2.1 — Connectedness in a Graph. Two vertices u and v are said to be
connected if there exists a path between them. If there is a path between two vertices u and
v, then u is said to be reachable from v and vice versa. A graph G is said to be connected

26 Chapter 3. Connectedness of Graphs

if there exist paths between any two vertices in G.

Definition 3.2.2 — Component of a Graph. A connected component or simply, a com-
ponent of a graph G is a maximal connected subgraph of G.

Each vertex belongs to exactly one connected component, as does each edge. A connected
graph has only one component.

A graph having more than one component is a disconnected graph (In other words, a
disconnected graph is a graph which is not connected). The number of components of a graph
G is denoted by ω(G).

In view of the above notions, the following theorem characterises bipartite graphs.

Theorem 3.2.1 A connected graph G is bipartite if and only if G has no odd cycles.

Proof. Suppose that G is a bipartite graph with bipartition (X ,Y). Assume for contradiction
that there exists a cycle v1,v2,v3, ,vk,v1 in G with k odd. Without loss of generality, we
may additionally assume that v1 ∈ X . Since G is bipartite, v2 ∈ Y , v3 ∈ X , v4 ∈ Y and so on.
That is, vi ∈ X for odd values of i and vi ∈ Y for even values of i. Therefore, vk ∈ X . But,
then the edge vk,v1 ∈ E is an edge with both endpoints in X , which contradicts the fact that
G is bipartite. Hence, a bipartite graph G has no odd cycles.

Conversely, assume that G is a graph with no odd cycles. Let d(u,v) denote the distance
between two vertices u and v in G. Pick an arbitrary vertex u ∈ V and define X = {x ∈
V (G) : d(x,u) is even}. Clearly, u ∈ X as d(u,u) = 0. Now, define another Y = {y ∈V (G) :
d(u,y) is odd}. That is, Y =V −X . If possible, assume that there exists an edge vw ∈ E(G)

such that v,w ∈ X (or v,w ∈ Y). Then, by construction d(u,v) and d(u,w) are both even (or
odd). Let P(u,w) and P(u,v) be the shortest paths connecting u to w, and u to v respectively.
Then, the cycle given by P(u,w)∪{wv}∪P(v,u) has odd length 1+d(u,w)+d(u,v), which
is a contradiction. Therefore, no such edge wv may exist and G is bipartite. �

Theorem 3.2.2 A graph G is disconnected if and only if its vertex set V can be partitioned
into two non-empty, disjoint subsets V1 and V2 such that there exists no edge in G whose
one end vertex is in subset V1 and the other in the subset V2.

Proof. Suppose that such a partitioning exists. Consider two arbitrary vertices u and v of
G, such that u ∈V1 and v ∈V2. No path can exist between vertices u and v; otherwise, there
would be at least one edge whose one end vertex would be in V1 and the other in V2. Hence,
if a partition exists, G is not connected.

Conversely, assume that G is a disconnected graph. Consider a vertex u in G. Let V1

be the set of all vertices that are joined by paths to u. Since G is disconnected, V1 does not
include all vertices of G. The remaining vertices will form a (nonempty) set V2. No vertex in
V1 is joined to any vertex in V2 by an edge. Hence, we get the required partition. �

Lecture Notes on Graph Theory 27

Theorem 3.2.3 If a graph has exactly has two vertices of odd degree, then there exists a
path joining these two vertices.

Proof. Let G be a graph with two vertices v1 and v2 of odd degree and all other vertices of
even degree. Then, by Theorem 1.2.3, both of them should lie in the same component of G.
Since every component of G must be connected, there must be a path between v1 and v2. �

Theorem 3.2.4 Let G be a graph with n vertices and k components. Then, G has at most
1
2 (n− k)(n− k+1) edges.

Proof. Let G be a graph with n vertices and k components. Let the number of vertices in
each of the k components of G be n1,n2, . . . ,nk respectively. Then we have,

n1 +n2 + . . .+nk = n; ni ≥ 1 (3.1)

First, note that any connected graph on n vertices must have at least n−1 edges. The proof

of the theorem is based on the inequality
k
∑

i=1
n2

i ≤ n2− (k−1)(2n− k), which can be proved

as follows.

k

∑
i=1

(ni−1) = n− k(
k

∑
i=1

(ni−1)

)2

= (n− k)2

k

∑
i=1

(n2
i −2ni)+ k+non-negative cross terms = n2 + k2−2nk

k

∑
i=1

n2
i −2

k

∑
i=1

ni + k ≤ n2 + k2−2nk

k

∑
i=1

n2
i −2n+ k ≤ n2 + k2−2nk

k

∑
i=1

n2
i ≤ n2 + k2−2nk+2n− k

∴
k

∑
i=1

n2
i ≤ n2− (k−1)(2n− k).

Hence, we have
k

∑
i=1

n2
i ≤ n2− (k−1)(2n− k) (3.2)

Now, note that the number edges in Kn is n(n−1)
2 . Hence, the maximum number of edges in

i-th component of G (which is a simple connected graph) is ni(ni−1)
2 . Therefore, the maximum

28 Chapter 3. Connectedness of Graphs

number of edges in G is

k

∑
i=1

ni(ni−1)
2

=
k

∑
i=1

n2
i −ni

2

=
1
2

k

∑
i=1

(n2
i −ni)

=
1
2

[
k

∑
i=1

n2
i −

k

∑
i=1

ni

]

≤ 1
2
[
n2− (k−1)(2n− k)−n

]
(By Eq. (3.1) and Ineq. (3.2))

=
1
2
[
n2−2nk+ k2 +2n− k−n

]
=

1
2
[
n2−2nk+ k2 +n− k

]
=

1
2
[
(n− k)2 +(n− k)

]
=

1
2
(n− k)(n− k+1).

�

Problem 3.1 Show that an acyclic graph on n vertices and k components has n− k edges.
Solution. The solution follows directly from the first part of the above theorem.
Problem 3.2 Show that every graph on n vertices having more than (n−1)(n−2)

2 edges is
connected.
Solution. Consider the complete graph Kn and v be an arbitrary vertex of Kn. Now remove all
n−1 edges of Kn incident on v so that it becomes disconnected with Kn−1 as one component
and the isolated vertex v as the second component. Clearly, this disconnected graph has
(n−1)(n−2)

2 edges (all of which belong to the first component). Since all pairs of vertices in
the first component Kn−1 are any adjacent to each other, any new edge drawn must be joining
a vertex in Kn−1 and the isolated vertex v, making the revised graph connected. �

3.3 Edge Deleted and Vertex Deleted Subgraphs

Definition 3.3.1 — Edge Deleted Subgraphs. Let G(V,E) be a graph and F ⊆ E be a
set of edges of G. Then, the graph obtained by deleting F from G, denoted by G−F , is the
subgraph of G obtained from G by removing all edges in F . Note that V (G−F) =V (G).
That is, G−F = (V,E−F).

Note that any edge deleted subgraph of a graph G is a spanning subgraph of G.

Definition 3.3.2 — Vertex Deleted Subgraphs. Let W ⊆V (G) be a set of vertices of G.
Then the graph obtained by deleting W from G, denoted by G−W , is the subgraph of G

Lecture Notes on Graph Theory 29

v1

v2v3

v4

v5

v6

v7v8

v9

v10

(a) G

v1

v2v3

v4

v5

v6

v7
v8

v9

v10

(b) G′ = G−{v1v6,v2v4,v2v7}.

Figure 3.2: A graph and its edge deleted subgraph.

obtained from G by removing all vertices in W and all edges incident to those vertices.

See Figure 3.3 for illustration of a vertex-deleted subgraph of a given graph.

v1

v2v3

v4

v5

v6

v7v8

v9

v10

(a) G

v2v3

v4

v7
v8

v9

v10

(b) G′ = G−{v1,v5,v6}.

Figure 3.3: A graph and its edge deleted subgraph.

Cut-Edges and Cut-Vertices

Definition 3.3.3 — Cut-Edge. An edge e of a graph G is said to be a cut-edge or a bridge
of G if G− e is disconnected.

In the above graph G, the edge v4v5 is a cut-edge, since G− v4v5 is a disconnected graph.
The following is a necessary and sufficient condition for an edge of a graph G to be a cut

edge of G.

Theorem 3.3.1 An edge e of a graph G is a cut-edge of G if and only if it is not contained
in any cycle of G.

Proof. Let e = uv be a cut edge of G. Then, the vertices u and v must be in different
components of G− e. If possible, let e is contained in cycle C in G. Then, C− e is a path
between u and v in G− e, a contradiction to the fact that u and v are in different components
of G− e. Therefore, e can not be in any cycle of G.

30 Chapter 3. Connectedness of Graphs

v1

v2

v3

v4 v5

v6

v7

v8

(a) Connected graph G

v1

v2

v3

v4 v5

v6

v7

v8

(b) G◦uv

Figure 3.4: Disconnected graph G− v4v5

Conversely, assume that e is not in any cycle of G. Then, there is no (u,v)-path other than
e. Therefore, u and v are in different components of G−e. That is, G−e is disconnected and
hence e is a cut-edge of G. �

Definition 3.3.4 — Cut-Vertex. A vertex v of a graph G is said to be a cut-vertex of G if
G− v is disconnected.

v1

v2

v3

v4 v5

v6

v7

v8

(a) Connected graph G

v1

v2

v3

v5

v6

v7

v8

(b) G◦uv

Figure 3.5: disconnected graph G− v4

In graph G, v4 is a cut-vertex as G− v4 is a disconnected graph. Similarly, v5 is also a
cut-vertex of G.

Since removal of any pendent vertex will not disconnect a given graph, every cut-vertex
will have degree greater than or equal to 2. But, note that every vertex v, with d(v)≥ 2 need
not be a cut-vertex.

3.4 Exercises
1. Show that every uv-walk contains a uv-path.
2. Show that every closed walk contains a cycle.

Lecture Notes on Graph Theory 31

3. Show that every graph with n vertices and k edges, n > k has n− k components.
4. If every vertex of a graph G has degree greater than or equal to 2, then G has some

cycles.
5. If G is a simple graph with d(v)≥ k, ∀v ∈V (G), then G contains a path of length at

least k. If k ≥ 2, then G contains a cycle of length k+1.
6. Show that if G is simple and δ (G)≥ k, then G has a path of length k.
7. If a connected graph G is decomposed into two subgraphs G1 and G2, then show that

there must be at least one common vertex between G1 and G2.
8. If we remove an edge e from a graph G and G− e is still connected, then show that e

lies along some cycle of G.
9. If the intersection of two paths is a disconnected graph, then show that the union of the

two paths has at least one circuit.
10. If P1 and P2 are two different paths between two given vertices of a graph G, then show

that P1⊕P2 is a circuit or a set of circuits in G.
11. Show that the complement of a complete bipartite graph is the disjoint union of two

complete graphs.
12. For a simple graph G, with n vertices, if δ (G) = n−1

2 , then G is connected.
13. Show that any two longest paths in a connected graph have a vertex in common.
14. For k ≥ 2, prove that a k-regular bipartite graph has no cut-edge.
15. Determine the maximum number of edges in a bipartite subgraph of the Petersen graph.
16. If H is a subgraph of G, then show that dG(u,v)≤ dH(u,v).
17. Prove that if a connected graph G has equal order and size, then G is a cycle.
18. Show that eccentricities of adjacent vertices differ by at most 1.
19. Prove that if a graph has more edges than vertices then it must possess at least one

cycle.
20. If the intersection of two paths is a disconnected graph, then show that the union of the

two paths has at least one cycle.
21. The radius and diameter of a graph are related as rad(G)≤ diam(G)≤ 2r(G).

22. Find the eccentricity of the vertices and the radius, the diameter and center(s) of the
following graphs:

32 Chapter 3. Connectedness of Graphs

II
4 Traversability in Graphs 35
4.1 Königsberg Seven Bridge Problem
4.2 Eulerian Graphs
4.3 Chinese Postman Problem
4.4 Hamiltonian Graphs
4.5 Some Illustrations
4.6 Weighted Graphs
4.7 Travelling Salesman’s Problem
4.8 Exercises

5 Directed Graphs . 47
5.1 Directed Graphs
5.2 Types of Directed graphs
5.3 Networks

TRAVERSABILITY IN GRAPHS &
DIGRAPHS

4. Traversability in Graphs

4.1 Königsberg Seven Bridge Problem

The city of Königsberg in Prussia (now Kaliningrad, Russia) was situated on either sides of
the Pregel River and included two large islands which were connected to each other and the
mainlands by seven bridges (see the below picture).

Figure 4.1: Königsberg’s seven bridge problem.

The problem was to devise a walk through the city that would cross each bridge once and

36 Chapter 4. Traversability in Graphs

only once, subject to the following conditions:
(i) The islands could only be reached by the bridges;

(ii) Every bridge once accessed must be crossed to its other end;
(iii) The starting and ending points of the walk are the same.

The Königsberg seven bridge problem was instrumental to the origination of Graph
Theory as a branch of modern Mathematics.

In 1736, a Swiss Mathematician Leonard Euler introduced a graphical model to this
problem by representing each land area by a vertex and each bridge by an edge connecting
corresponding vertices (see the following figure).

A

B

C

D

Figure 4.2: Graphical representation of seven bridge problem

Using this graphical model, Euler proved that no such walk (trail) exists.

4.2 Eulerian Graphs
Definition 4.2.1 — Traversable Graph. An Eulerian trail or Euler walk in an undirected
graph is a walk that uses each edge exactly once. If an Euler trail exists in a given graph
G, then G is called a traversable graph or a semi-Eulerian graph.

Definition 4.2.2 — Eulerian Graph. An Eulerian cycle or Eulerian circuit or Euler tour
in an undirected graph is a cycle that uses each edge exactly once. If such an Euler cycle
exists in the graph concerned, then the graph is called an Eulerian graph or a unicursal
graph.

The following theorem characterises the class of Eulerian graphs:

Theorem 4.2.1 — Euler Theorem. A connected graph G is Eulerian if and only if every
vertex in G is of even degree.

Proof. If G is Eulerian, then there is an Euler circuit, say P, in G. Every time a vertex is
listed, that accounts for two edges adjacent to that vertex, the one before it in the list and the

Lecture Notes on Graph Theory 37

one after it in the list. This circuit uses every edge exactly once. So, every edge is accounted
for and there are no repeats. Thus every degree must be even.

Conversely, let us assume that each vertex of G has even degree. We need to show that G
is Eulerian. We prove the result by induction on the number of edges of G. Let us start with
a vertex v0 ∈ V (G). As G is connected, there exists a vertex v1 ∈ V (G) that is adjacent to
v0. Since G is a simple graph and d(vi)≥ 2, for each vertex vi ∈V (G), there exists a vertex
v2 ∈ V (G), that is adjacent to v1 with v2 6= v0. Similarly, there exists a vertex v3 ∈ V (G),
that is adjacent to v2 with v3 6= v1. Note that either v3 = v0, in which case, we have a circuit
v0v1v2v0 or else one can proceed as above to get a vertex v4 ∈V (G) and so on. As the number
of vertices is finite, the process of getting a new vertex will finally end with a vertex vi being
adjacent to a vertex vk, for some i, 0≤ i≤ k−2. Hence, vi−vi+1−vi+2− . . .−vk−vi forms
a circuit, say C, in G.

If C contains every edge of G, then C gives rise to a closed Eulerian trail and we are done.
So, let us assume that E(C) is a proper subset of E(G). Now, consider the graph G1 that is
obtained by removing all the edges in C from G. Then, G1 may be a disconnected graph but
each vertex of G1 still has even degree. Hence, we can do the same process explained above
to G1 also to get a closed Eulerian trail, say C1. As each component of G1 has at least one
vertex in common with C, if C1 contains all edges of G1, then C∪C1 is a closed Euler trail
in G. If not, let G2 be the graph obtained by removing the edges of C1 from G1. (That is,
G2 = G1−E(C∪C1)).

Since G is a finite graph, we can proceed to find out a finite number of cycles only. Let
the process of finding cycles, as explained above, ends after a finite number of steps, say
r. Then, the reduced graph Gr = Gr−1−E(Cr−1) = G−E(C∪C1∪Cr−1) will be an empty
graph (null graph). Then, C∪C1∪C2 . . .∪Cr−1 is a closed Euler trail in G. Therefore, G is
Eulerian. This completes the proof. �

Illustrations to an Eulerian graph and a non-Eulerian graph are given in Figure 4.3.

(a) An Eulerian graph. (b) A non-Eulerian graph

Figure 4.3: Examples of Eulerian and non-Eulerian graphs

In the first graph in Figure 4.3, every vertex has even degree and hence by Theorem 4.2.1,
it is Eulerian. In the second graph, some vertices have odd degree and hence it is not Eulerian.

Note: In an Euler graph, it can be noted that every edge of G is contained in exactly one
cycle of G. Hence, we have the following Theorem.

38 Chapter 4. Traversability in Graphs

Theorem 4.2.2 A connected graph G is Eulerian if and only if it can be decomposed into
edge-disjoint cycles.

Proof. Assume that G can be decomposed into edge-disjoint cycles. Since the degree of
every vertex in a cycle is 2, the degree of every vertex in G is two or multiples of 2. That is,
all vertices in G are even degree vertices. Then, by Theorem 4.2.1, G is Eulerian.

Converse part is exactly the same as that of Theorem 4.2.1. �

Theorem 4.2.3 A connected graph G is traversable if and only if it has exactly two odd
degree vertices.

Proof. In a traversable graph, there must be an Euler trail. The starting vertex and terminal
vertex need not be the same. Therefore, these two vertices can have odd degrees. Remaining
part of the theorem is exactly as in the proof of Theorem 4.2.1. �

4.3 Chinese Postman Problem
In his job, a postman picks up mail at the post office, delivers it, and then returns to the
post office. He must, of course, cover each street in his area at least once. Subject to this
condition, he wishes to choose his route in such a way that walks as little as possible. This
problem is known as the Chinese postman problem, since it was first considered by a Chinese
mathematician, Guan in 1960.

We refer to the street system as a weighted graph (G,w) whose vertices represent the
intersections of the streets, whose edges represent the streets (one-way or two-way) and the
weight represents the distance between two intersections, of course, a positive real number.
A closed walk that covers each edge at least once in G is called a postman tour. Clearly, the
Chinese postman problem is just that of finding a minimum-weight postman tour. We will
refer to such a postman tour as an optimal tour.
An algorithm for finding an optimal Chinese postman route is as follows:

S-1 : List all odd vertices.
S-2 : List all possible pairings of odd vertices.
S-3 : For each pairing find the edges that connect the vertices with the minimum weight.
S-4 : Find the pairings such that the sum of the weights is minimised.
S-5 : On the original graph add the edges that have been found in Step 4.
S-6 : The length of an optimal Chinese postman route is the sum of all the edges added to

the total found in Step 4.
S-7 : A route corresponding to this minimum weight can then be easily found.

� Example 4.1 Consider the following weighted graph:
1. The odd vertices are A and H; There is only one way of pairing these odd vertices,

namely AH;
2. The shortest way of joining A to H is using the path {AB,BF,FH}, a total length of

160;

Lecture Notes on Graph Theory 39

Figure 4.4: An example for Chinese Postman Problem

3. Draw these edges onto the original network.
4. The length of the optimal Chinese postman route is the sum of all the edges in the

original network, which is 840m, plus the answer found in Step 4, which is 160m.
Hence the length of the optimal Chinese postman route is 1000m.

5. One possible route corresponding to this length is ADCGHCABDFBEFHFBA, but
many other possible routes of the same minimum length can be found.

�

4.4 Hamiltonian Graphs

Definition 4.4.1 — Traceable Graphs. A Hamiltonian path (or traceable path) is a path
in an undirected (or directed graph) that visits each vertex exactly once. A graph that
contains a Hamiltonian path is called a traceable graph.

Definition 4.4.2 — Hamiltonian Graphs. A Hamiltonian cycle, or a Hamiltonian circuit,
or a vertex tour or a graph cycle is a cycle that visits each vertex exactly once (except for
the vertex that is both the start and end, which is visited twice). A graph that contains a
Hamiltonian cycle is called a Hamiltonian graph.

Hamiltonian graphs are named after the famous mathematician William Rowan Hamilton
who invented the Hamilton’s puzzle, which involves finding a Hamiltonian cycle in the edge
graph of the dodecahedron.

A necessary and sufficient condition for a graph to be a Hamiltonian is still to be deter-
mined. But there are a few sufficient conditions for certain graphs to be Hamiltonian. The
following theorem is one of those results.

Theorem 4.4.1 — Dirac’s Theorem. Every graph G with n ≥ 3 vertices and minimum
degree δ (G)≥ n

2 has a Hamilton cycle.

Proof. Suppose that G = (V,E) satisfies the hypotheses of the theorem. Then G is connected,
since otherwise the degree of any vertex in a smallest component C of G would be at most

40 Chapter 4. Traversability in Graphs

(a) (b)

Figure 4.5: Dodecahedron and a Hamilton cycle in it.

|C|−1 < n
2 , contradicting the hypothesis δ (G)≥ n

2 .
Let P = x0x1 . . .xk be a longest path in G, as seen in the figure given below:

x0 x1 x2 x3 x4 xk−3 xk−2 xk−1 xk

Note that the length of P is k. Since P cannot be extended to a longer path, all the
neighbours of x0 lie on P. Assume the contrary. Let y be an adjacent vertex of x0 which is not
in P. Then, the path P′ = yx0,x2 . . .xk is a path of length k+1 (see the graph given below),
contradicting the hypothesis that P is the longest path in G.

y
x0 x1 x2 x3 x4 xk−3 xk−2 xk−1 xk

Similarly, we note that and all the neighbours of xk will also lie on P, unless we reach at
a contradiction as mentioned above (see the graph given below).

x0 x1 x2 x3 x4 xk−3 xk−2 xk−1 xk y

Hence, at least n
2 of the vertices x0, . . . ,xk−1 are adjacent to xk, and at least n

2 of the vertices
x1, . . . ,xk are adjacent to x0. Another way of saying the second part of the last sentence is: at
least n

2 of the vertices xi ∈ {x0, . . . ,xk−1} are such that x0xi+1 ∈E. Combining both statements
and using the pigeon-hole principle, we see that there is some xi with 0≤ i≤ k−1, xixk ∈ E
and x0xi+1 ∈ E.

Consider the cycle C = x0xi+1xi+2 . . .xk−1xkxixi−1 . . .x1x0 as given in the following graph.
We claim that the above cycle C is a Hamilton cycle of G. Otherwise, since G is connected,

there would be some vertex x j of C adjacent to a vertex y not in C, so that e = x jy ∈ E. But

Lecture Notes on Graph Theory 41

x0 x1 x2 x3 xi−2 xi−1 xi xi+1 xi+2 xk−2 xk−1 xk

then we could attach e to a path ending in x j containing k edges of C, constructing a path in
G longer than P (see the graph given below), which is a contradiction to the hypothesis that
P is the longest path in G.

x0 x1 x2 x3 x j−1 x j

y

x j+1 xi xi+1 xi+2 xk−1 xk

Therefore, C must cover all vertices of G and hence it is a Hamiltonian cycle in G. This
completes the proof. �

Theorem 4.4.2 — Ore’s Theorem. Let G be a graph with n vertices and let u and v be
non-adjacent vertices in G such that d(u)+d(v)≥ n. Let G+uv denote the super graph
of G obtained by joining u and v by an edge. Then G is Hamiltonian if and only if G+uv
is Hamiltonian.

Proof. Let G be a graph with n vertices and suppose u and v are non-adjacent vertices in G
such that d(u)+d(v)≥ n. Let G′ = G+uv be the super graph of G obtained by adding the
edge uv. Note that, except for u and v, dG(x) = dG′(x)∀x ∈V (G).

Let G be Hamiltonian. The only difference between G and G′ is the edge uv. Then,
obviously G′ is also Hamiltonian as a Hamilton cycle in G will be a Hamilton cycle in G′ as
well.

Conversely, let G′ be Hamiltonian. We have to show that G is Hamiltonian. Assume the
contrary. Then, by (contrapositive of) Dirac’s Theorem, we have δ (u) < n

2 and δ (u) < n
2

and hence we have d(u)+d(v)< n, which contradicts the hypothesis that d(u)+d(v)≥ n.
Hence G is Hamiltonian. �

The following theorem determines the number of edge-disjoint Hamilton cycles in a
complete graph Kn, where n is odd.

Theorem 4.4.3 In a complete graph Kn, where n≥ 3 is odd, there are n−1
2 edge-disjoint

Hamilton cycles.

42 Chapter 4. Traversability in Graphs

Proof. Note that a complete graph has n(n−1)
2 edges and a hamilton cycle in Kn contains only

n edges. Therefore, the maximum number of edge-disjoint hamilton cycles is n−1
2 .

Now, assume that n≥ 3 and is odd. Construct a subgraph G of Kn as explained below:
The vertex v1 is placed at the centre of a circle and the remaining n−1 vertices are placed

on the circle, at equal distances along the circle such that the angle made at the centre by
two points is 360

n−1 degrees. The vertices with odd suffixes are placed along the upper half of
the circle and the vertices with even suffixes are placed along the lower half circle. Then,
draw edges vivi+1, where 1≤ i≤ n, with the meaning that vn+1 = v1, are drawn as shown in
Figure 4.7.

Figure 4.6: A Hamilton cycle G of Kn.

Clearly, the reduced graph G1 is a cycle covering all vertices of Kn. That is If we rotate
the vertices along the curve for 360

n−1 degrees, we get another Hamilton subgraph G2 of Kn,
which has no common edges with G1. (see figure 4.7).

Figure 4.7: Another Hamilton cycle G2 of Kn.

In a similar way, rotate the polygonal pattern clockwise by 360
(n−1) degrees. After (n−1)-th

rotation, all vertices will be exactly as in Figure 4.6. Therefore, n− 1 rotations are valid.
But, it can be noted that the cycle Gi obtained after the i-th rotation and the cycle G n−1

2 +i are
isomorphic graphs, because all vertices in the upper half cycle in Gi will be in the lower half
cycle in G n−1

2 +i and vice versa, in the same order(see Figure 4.8).

That is, we have now that there are n−1
2 distinct such non-isomorphic edge-disjoint cycles

Lecture Notes on Graph Theory 43

Figure 4.8: Isomorphic Hamilton cycles G1 and G n−1
2 +1 of Kn.

in Kn. Hence, the number of edge-disjoint Hamilton cycles is n−1
2 . �

4.5 Some Illustrations

We can find out graphs, which are either Eulerian or Hamiltonian or simultaneously both,
whereas some graph are neither Eulerian nor Hamiltonian. We note that the dodecahedron is
an example for a Hamiltonian graph which is not Eulerian (see Figure 4.5a).

Let us now examine some examples all possible types of graphs in this category.

(a) A graph which is both Eulerian and Hamil-
tonian

(b) A graph which is Eulerian, but not Hamil-
tonian.

(c) A graph which is Hamiltonian, but not Eu-
lerian.

(d) A graph which is neither Eulerian nor
Hamiltonian.

Figure 4.9: Traversability in graphs

4.6 Weighted Graphs

44 Chapter 4. Traversability in Graphs

Definition 4.6.1 — Weighted Graphs. A weighted graph is a graph G in which each
edge e has been assigned a real number w(e), called the weight (or length) of the edge e.

Figure 4.10 illustrates a weighted graph:

v1 v2

v3v4

5

8

7

42

3

7

Figure 4.10: An example of a weighted graph

If H is a subgraph of a weighted graph, the weight w(H) of H is the sum of the weights
w(e1)+w(e2)+ . . .+w(ek) where {e1,e2, . . . ,ek} is the set of edges of H.

Many optimisation problems amount to finding, in a suitable weighted graph, a certain
type of subgraph with minimum (or maximum) weight.

4.7 Travelling Salesman’s Problem
Suppose a travelling salesman’s territory includes several towns with roads connecting certain
pairs of these towns. As a part of his work, he has to visit each town. For this, he needs to
plan a round trip in such a way that he can visit each of the towns exactly once.

We represent the salesman’s territory by a weighted graph G where the vertices correspond
to the towns and two vertices are joined by a weighted edge if and only if there is a road
connecting the corresponding towns which does not pass through any of the other towns, the
edge’s weight representing the length of the road between the towns.

Then, the problem reduces to check whether the graph G is a Hamiltonian graph and
to construct a Hamiltonian cycle of minimum weight (or length) if G is Hamiltonian. This
problem is known as the Travelling Salesman Problem.

It is sometimes difficult to determine if a graph is Hamiltonian as there is no easy
characterisation of Hamiltonian graphs. Moreover, for a given a weighted graph G which
is Hamiltonian there is no easy or efficient algorithm for finding an optimal circuit in G, in
general. These facts make our problem difficult.

To find out an optimal Hamilton cycle, we use the following algorithm with an assumption
that the given graph G is a weighted complete graph.

Two Optimal Algorithm

1. Let C = v1v2,v3 . . . ,vnv1 be any Hamiltonian cycle of the weighted graph G and let w
be the weight of C. That is, w = w(v1v2)+w(v2,v3)+ ...+w(vnv1).

Lecture Notes on Graph Theory 45

2. Set i = 1.
3. Set j = i+2.
4. Let Ci j = v1v2v2v3 . . .viv jv j−1 . . .vi+1v j+1v j+2 . . .vnv1 be the Hamiltonian cycle and

let wi j denote the weight of Ci j, so that wi j = w−w(vivi+1)−w(v jv j+1)+w(viv j)+

w(vi+1v j+1).
If wi j < w, (that is, if w(viv j)+w(vi+1v j+1)< w(vivi+1)+w(v jv j+1)), then replace C
by Ci j and w by wi j and return to Step 1, taking the sequence of vertices v1v2v3 . . .vnv1

as given by our new C.
5. Set j = j+ 1. If j < n, do Step 4. Otherwise, set i = i+ 1. If i < n− 2, do Step 3.

Otherwise, stop.

4.8 Exercises
1. Draw a graph that has a Hamilton path, but not a Hamilton Cycle.

46 Chapter 4. Traversability in Graphs

2. Show that if G is Eulerian,then every block (see Chapter 7 for the notion of blocks) of
G is Eulerian.

3. Show that a Hamilton path of a graph G, if exists, is the longest path in G.
4. Show that if G is a self-complementary graph, then G has a Hamilton path.
5. Show that every complete graph Kn;n≥ 3 is Hamiltonian.
6. Verify whether Petersen graph is Eulerian. Justify your answer.
7. Verify whether Petersen graph is Hamiltonian. Justify your answer.
8. Verify whether the following graphs are Eulerian and Hamiltonian. Justify your answer.
9. Show that every even graph (a graph without odd degree vertices) can be decomposed

into cycles.
10. Show that if either

(a) G is not 2-connected, or
(b) G is bipartite with bipartition (X ,Y) where |X | ≤ |Y |.

Then G is non-Hamiltonian.
11. Characterise all simple Euler graphs having an Euler tour which is also a Hamiltonian

cycle.
12. Let G be a Hamiltonian graph. Show that G does not have a cut vertex.
13. There are n guests at a dinner party, where n ≥ 4. Any two of these guests know,

between them, all the other n−2. Prove that the guests can be seated round a circular
table so that each one is sitting between two people they know.

14. Let G be a simple k-regular graph, with 2k−1 vertices. Prove that G is Hamiltonian.

5. Directed Graphs

5.1 Directed Graphs
Definition 5.1.1 — Directed Graphs. A directed graph or digraph G consists of a set
V of vertices and a set E of edges such that e ∈ E is associated with an ordered pair of
vertices. In other words, if each edge of the graph G has a direction, then the graph is
called a directed graph.

The directed edges of a directed graph are also called arcs. The initial vertex of an arc a is
called the tail of a and the terminal vertex v is called the head of the arc a. An arc e = (u,v)
in a digraph D is a loop if u = v. Two arcs e, f are parallel edges if they have the same tails
and the same heads. If D has no loops or parallel edges, then we say that D is simple.

Definition 5.1.2 — Degrees in Digraphs. The indegree of vertex v in a directed graph D
is the number of edges which are coming into the vertex v (that is, the number of incoming
edges) and is denoted by d−(v). The out-degree vertex v in a directed graph D is the
number of edges which are going out from the vertex v (that is, the number of outgoing
edges) and is denoted by d+(v).

Definition 5.1.3 — Orientation of Graphs. If we assign directions to the edges of a given
graph, then the new directed graph D is called an orientation of G.

48 Chapter 5. Directed Graphs

Definition 5.1.4 — Underlying Graphs of Directed Graphs. If remove the directions of
the edges of a directed graph D, then the reduced graph G is called the underlying graph
of D.

Note that the orientation of a graph G is not unique. Every edge of G can take any one
of the two possible directions. Therefore, a graph G = (V,E) can have at most 2|E| different
orientations. But, a directed graph can have a unique underlying graph.

Figure 5.1b illustrates an undirected graph G and an orientation D of G.

(a) A graph G (b) Orientation of G

Figure 5.1: An undirected graph and one of its orientations.

Definition 5.1.5 — Sources and Sinks. A vertex with zero in-degree is called a source
and a vertex with zero out-degree is called a sink.

Theorem 5.1.1 In a directed graph D, the sum of the in-degrees and the sum of out-
degrees of the vertices is equal to twice the number of edges. That is, ∑

v∈V (D)
d+(v) =

∑
v∈V (D)

d−(v) = ε .

Proof. Let S+ = ∑
v∈V (D)

d+(v) and S− = ∑
v∈V (D)

d−(v). Notice that every arc (edge) of D

contributes exactly 1 to S+ and 1 to S−. That is, we count each edge exactly once in S+ and
once in S−. Hence, S+ = S− = |E|= ε . �

Definition 5.1.6 — Tournaments. If the edges of a complete graph are each given an
orientation, the resulting directed graph is called a tournament.

Definition 5.1.7 — Complete Digraph. A complete digraph is a directed graph in which
every pair of distinct vertices is connected by a pair of unique edges (one in each direction).

Definition 5.1.8 — Paths and Cycles in Directed Graphs. A directed walk in a digraph
D is a sequence v0,e1,v2, . . . ,en,vn so that vi ∈V (D) for every 0≤ i≤ n, and ei is an edge
from vi−1 to vi for every 1 ≤ i ≤ n. We say that this is a walk from v0 to vn. If v0 = vn,

Lecture Notes on Graph Theory 49

(a) A tournament on 4 vertices (b) A complete digraph on 4 vertices

Figure 5.2: A tournament and a complete digraph

then the walk is called a closed directed walk and if v0,v1, . . . ,vn are distinct we call it a
directed path. In a directed path v0,e1,v2, . . . ,en,vn, if v0 = vn, then the directed path is
called a directed cycle.

Definition 5.1.9 — Weakly and Strongly Connected Digraphs. A digraph D is said to
be weakly connected if its underlying graph G is connected. A digraph D is said to be
strongly connected if there is a directed path between any two vertices u,v ∈V (D).

Some observations on directed graphs are given below.
1. Let D be a digraph in which every vertex has outdegree at least 1. Then D contains a

directed cycle.
2. A digraph D is acyclic if it has no directed cycles. The digraph D is acyclic if and only

if there is an ordering v1,v2, . . . ,vn of V (D) so that every edge (vi,v j) satisfies i < j.

Definition 5.1.10 — Eulerian Digraphs. A closed directed walk in a digraph D is called
Eulerian if it contains every edge exactly once. A digraph D is said to be an Eulerian
digraph if it contains an Eulerian closed directed walk.

The following theorem describes a necessary and sufficient condition for a digraph to be
Eulerian.

Theorem 5.1.2 A digraph D, whose underlying graph is connected, is Eulerian if and only
if d+(v) = d−(v) for every v ∈V (D).

Proof. (Necessary Part:) First assume that D is Eulerian. Then, D consists of an Eulerian
closed directed walk. That is, whenever there is an incoming edge to v, then there is an
outgoing edge from v. Therefore, d+(v) = d−(v) for every v ∈V (D).
(Converse Part:) Choose a closed walk v0,e1,v1,e2,v2 . . . ,en,vn which uses each edge at
most once and is maximum in length, subject to the given constraint. Suppose that this walk
is not Eulerian. Then, as in the undirected case, it follows from the fact that the underlying

50 Chapter 5. Directed Graphs

graph is connected that there exists an edge e ∈ E(D) which does not appear in the walk so
that e is incident with some vertex in the walk, say vi. Let H = D−{e1,e2, . . . ,en}. Then,
every vertex of H has indegree equal to its outdegree, so by the previous proposition, there
is a list of directed cycles in H containing every edge exactly once. In particular, there is a
directed cycle C ⊆ H with e ∈C. But then, the walk obtained by following v0,e1, . . . ,vi, then
following the directed cycle C from vi back to itself, and then following ei+1,vi, . . . ,vn is a
longer closed walk which contradicts our choice. This completes the proof. �

5.2 Types of Directed graphs

Definition 5.2.1 — Symmetric Digraphs. Symmetric directed graphs are the directed
graphs where all edges are bidirected (that is, for every arrow that belongs to the digraph,
the corresponding inversed arrow also belongs to it). Note that, symmetric digraphs are
the graphical representations of symmetric relations.

Definition 5.2.2 — Transitive Digraphs. A digraph D is said to be a transitive digraph, if
any three vertices (x,y,z) such that edges (x,y) and (y,z) in G imply (x,z) in D. Unlabeled
transitive digraphs are called digraph topologies.

Definition 5.2.3 — Directed Acyclic Graphs. Directed acyclic graphs (DAGs) are di-
rected graphs with no directed cycles.

5.3 Networks
Definition 5.3.1 — Networks. A network is a directed graph D+(V,A) in which a unique
non-negative real number is assigned to every arc of D.

Definition 5.3.2 — Capacity Function. This assignment c : A→R is called the capacity
function of the network D. The non-negative real number assigned an arc a of D is called
its capacity and is denoted by c(a).

Definition 5.3.3 — Flow Function. To a network, we may assign another function f :
E → R, called the flow function, that assigns a non-negative real number such that
0≤ f (a)≤ c(a), for any arc a ∈ A(D).

Definition 5.3.4 — In-flow and Out-flow in Networks. The inflow to a vertex v, denoted
by fin(v), is defined by fin(v) = ∑uv∈A f (uv) and the outflow from v, denoted by fout(v),
is defined by fout(v) = ∑vw∈A f (vw). Note that fin(v) = fout(v) for v ∈V (D).

The vertex set of a network can be partitioned into three types:
(i) Source: A vertex with indegree 0 is called a source vertex and is denoted by s and the

set of all source vertices is called the source, and is denoted by S.

Lecture Notes on Graph Theory 51

(ii) Sink: A vertex with outdegree 0 is called a sink vertex and is denoted by t and the set
of all sink vertices is called the sink, and is denoted by S̄.

(iii) A vertex that is neither a source nor a sink is called an intermediate vertex and is
denoted by s and the set of all source vertices is called the intermediate, and is denoted
by I.

Note the following points:
(i) The flow over any arc can be no more than the capacity of that arc.

(ii) The inflow on any intermediate vertex is equal to the outflow of that vertex. That is,
the flow is not obstructed or reduced at any intermediate vertices.

The value of a flow f , denoted by val f is defined as

val f = ∑
v∈X

fout(v)− fin(v)

= fout(X)− fin(X).

Definition 5.3.5 — Cuts in Networks. A cut of a network D, denoted by (S, S̄) or K, is the
set of arcs {ss̄ : s∈ S, s̄∈ S̄}, whose removal disconnects the network into two components.

The capacity of a cut K, denoted by capK and is defined as

cap K = ∑
a∈K

c(a).

Consider a u− v path P and flow f on a network D. For an arc a ∈ P, define the function
` f (a) by

` f (a) =

{
c(a)− f (a), if a directs towards v;

f (a), if a points towards u.

Then, the f -augment of P, denoted by ` f (P) and is defined as ell f (P) = min
a∈P

` f (a). A

u− v path P is said to be f -augmenting if and only if u is a source, v is a sink and the
f -augment of P is positive. Given an f -augmenting path P, we can construct a new flow f ′

whose value is
val f ′ = val f + ` f (P).

That is, for every arc on the path P,
(i) increase the flow by a quantity ` f (P), if it is a forward arc;

(ii) decrease the flow by a quantity ` f (P), if it is a backward arc.
Our problem in this context is the natural optimisation problem: What is the maximum

value attained by any flow?

Theorem 5.3.1 — Min-cut Max-Flow Theorem. For any network D, the value of the
maximum flow is equal to the capacity of the minimum cut.

Proof. We need to show that maximum of all flows (the value of maximum flow) is equal to
the minimum capacity of all cut capacities (the capacity of the minimum cut). To prove this

52 Chapter 5. Directed Graphs

we the following steps.
Claim-1: For any flow f and any cut k in any given network D, val f ≤ cap K.

Proof of Claim-1: Let K = (S, S̄). If X comprised of all sources and intermediates, we
have

val f = fout(S)− fin(S) = fout(X)− fin(X)

(as intermediate contributes nothing to the flow).
Now, let a be an arc with both its end vertices ae in S. Then, its inflow and outflow are

both counted in S and hence make no impact on the net value of flow. Therefore, the only
flows which have a positive impact on val f are those which originate in S and terminate
in S̄, which must precisely pass through the cut K = (S, S̄). Therefore, val f ≤ ∑

a∈K
f (a)≤

∑
a∈K

c(a) = cap K. Hence, our claim is valid.

Corollary 5.3.2 If f ∗ is the maximum flow and K∗ is the minimum cut on the network,
then val f ∗ ≤ cap K∗.

Claim 2: Given a network, there exists a flow f and cut K on the network such that
val f = cap K.

Proof of Claim-2: Let f be a flow in the network D such that there are no f -augmenting
paths in D. (We can construct such a flow by starting with the zero flow, and adjust the flow
as described in the augmenting procedure until no more augmenting is possible.)

Let S be the set consisting of al source vertices and all vertices v such that there exists
an x− v path from some source vertices x to v with positive f -augment. Then, note that S̄
contains the network sinks. Now, Let K = (S, S̄).

If possible, let f (a)< c(a) for some arcs a = ss̄ ∈ K. Note that x− s path with positive
augment from source x can be extended to an x− s̄ path with positive f -augment, which
implies s̄ ∈ S, a contradiction.

We noted in the first conclusion that only the flows over the cut K positively impact val f .
Then, we have val f = cap K. Hence our claim is true. Now, we proceed to prove the result
as follows. Let f ∗ be the maximum flow and ∗ be the minimum cut on a given network. Then,
we have

(i) val f ≤ val f ∗; and
(ii) cap K∗ ≤ cap K.

Then, by Claim -1 and Claim-2, we note that there exists some flow f and cut K such that
cap K = val f ≤ cap K∗. This is possible only when val f = cap K∗, as K∗ is the minimum
cut.

By the corollary of Claim-1, we note that val f ∗ ≤ cap K∗ = val f , which is possible
only when val f ∗ = cap K∗. That is, the value of the maximum flow is equal to the capacity
of the minimum cut, completing the proof. �

III
6 Trees . 55
6.1 Properties of Trees
6.2 Distances in Trees
6.3 Degree Sequences in Trees
6.4 On Counting Trees
6.5 Spanning Trees
6.6 Fundamental Circuits
6.7 Rooted Tree
6.8 Binary Tree
6.9 Exercises

TREES

6. Trees

Definition 6.0.1 — Tree. A graph G is called a tree if it is connected and has no cycles.
That is, a tree is a connected acyclic (circuitless) graph.

Figure 6.1: Examples of trees

Definition 6.0.2 — Tree. An acyclic graph may possibly be a disconnected graph whose
components are trees. Such graphs are called forests.

6.1 Properties of Trees

Theorem 6.1.1 A graph is a tree if and only if there is exactly one path between every
pair of its vertices.

Proof. Let G be a graph and let there be exactly one path between every pair of vertices in
G. So G is connected. If G contains a cycle, say between vertices u and v, then there are

56 Chapter 6. Trees

two distinct paths between u and v, which is a contradiction to the hypothesis. Hence, G is
connected and is without cycles, therefore it is a tree.

Conversely, let G be a tree. Since G is connected, there is at least one path between every
pair of vertices in G. Let there be two distinct paths, say P and P′ between two vertices u and
v of G. Then, the union of P∪P′ contains a cycle which contradicts the fact that G is a tree.
Hence, there is exactly one path between every pair of vertices of a tree. �

Then, by Definition 3.1.11, we have the following result:

Theorem 6.1.2 All trees are geodetic graphs.

Theorem 6.1.3 A tree with n vertices has n−1 edges.

Proof. We prove the result by using mathematical induction on n, the number of vertices.
The result is obviously true for n = 1,2,3. See illustrations in Figure 6.2.

(a) (b) (c)

Figure 6.2: Trees with n = 1,2,3.

Let the result be true for all trees with fewer than n vertices. Let T be a tree with n
vertices and let e be an edge with end vertices u and v. So, the only path between u and v is e.
Therefore, deletion of e from T disconnects T .

Now, T −e consists of exactly two components T1 and T2 say, and as there were no cycles
to begin with, each component is a tree. Let n1 and n2 be the number of vertices in T1 and
T2 respectively. Then, note that n1 +n2 = n. Also, n1 < n and n2 < n. Thus, by induction
hypothesis, the number of edges in T1 and T2 are respectively n1−1 and n2−1. Hence, the
number of edges in T is n1−1+n2−1+1 = n1 +n2−1 = n−1. �

Theorem 6.1.4 Any connected graph with n vertices and n−1 edges is a tree.

Proof. Let G be a connected graph with n vertices and n−1 edges. We show that G contains
no cycles. Assume to the contrary that G contains cycles. Remove an edge from a cycle so
that the resulting graph is again connected. Continue this process of removing one edge from
one cycle at a time till the resulting graph H is a tree. As H has n vertices, so the number of
edges in H is n−1. Now, the number of edges in G is greater than the number of edges in
H. That is, n−1 > n−1, which is not possible. Hence, G has no cycles and therefore is a
tree. �

Lecture Notes on Graph Theory 57

Theorem 6.1.5 Every edge of a tree is a cut-edge of G.

Proof. Since a tree T is an acyclic graph, no edge of T is contained in a cycle. Therefore, by
Theorem 3.3.1, every edge of T is a cut-edge. �

A graph is said to be minimally connected if removal of any one edge from it disconnects
the graph. Clearly, a minimally connected graph has no cycles.

The following theorem is another characterization of trees.

Theorem 6.1.6 A graph is a tree if and only if it is minimally connected.

Proof. Let the graph G be minimally connected. Then, G has no cycles and therefore is a
tree. Conversely, let G be a tree. Then, G contains no cycles and deletion of any edge from G
disconnects the graph. Hence, G is minimally connected. �

Theorem 6.1.7 A graph G with n vertices, n−1 edges and no cycles is connected.

Proof. Let G be a graph without cycles with n vertices and n−1 edges. We have to prove that
G is connected. Assume that G is disconnected. So G consists of two or more components
and each component is also without cycles. We assume without loss of generality that G has
two components, say G1 and G2. Add an edge e between a vertex u in G1 and a vertex v in
G2. Since there is no path between u and v in G, adding e did not create a cycle. Thus G∪{e}
is a connected graph (tree) of n vertices, having n edges and no cycles. This contradicts the
fact that a tree with n vertices has n−1 edges. Hence, G is connected. �

Theorem 6.1.8 Any tree with at least two vertices has at least two pendant vertices.

Proof. Let the number of vertices in a given tree T be n, where (n > 1). So the number of
edges in T is n−1. Therefore, the degree sum of the tree is 2(n−1) (by the first theorem
of graph theory). This degree sum is to be divided among the n vertices. Since a tree is
connected it cannot have a vertex of zero degree. Each vertex contributes at least 1 to the
above sum. Thus, there must be at least two vertices of degree exactly 1. That is, every tree
must have at least two pendant vertices. �

Theorem 6.1.9 Let G be a graph on n vertices. Then, the following statements are
equivalent:

(i) G is a tree.
(ii) G is connected and has n−1 edges.

(iii) G is acyclic (circuitless) and has n−1 edges.
(iv) There exists exactly one path between every pair of vertices in G.
(v) G is a minimally connected graph.

58 Chapter 6. Trees

Proof. The equivalence of these conditions can be established using the results (i) =⇒
(ii),(ii) =⇒ (iii),(iii) =⇒ (iv),(iv) =⇒ (v) and (v) =⇒ (i).

Part-(i) =⇒ (ii): This part states that if G is a tree on n vertices, then G is connected
and has n−1 edges. Since G is a tree, clearly, by definition of a tree it is connected. The
remaining part follows from the result that every tree on n vertices has n−1 vertices.

Part-(ii) =⇒ (ii): This part states that if G is connected and has n−1 edges, then G is
acyclic and has n− 1 edges. Clearly, This result follows from the result that a connected
graph on n vertices and n−1 edges is acyclic.

Part-(iii) =⇒ (iv): This part states that if G is an acyclic graph on n vertices and has
n− 1 edges, then there exists exactly one path between every pair of vertices in G. By a
previous theorem, we have an acyclic graph G on n vertices and n−1 edges is connected.
Therefore, G is a tree. Hence, by our first theorem, there exists exactly one path between
every pair of vertices in G.

Part-(iv) =⇒ (v): This part states that if there exists exactly one path between every
pair of vertices in G, then G is minimally connected. Assume that every pair of vertices in G
is connected by a unique path.

Let u and v be any two vertices in G and P be the unique (u,v)-path in G. Let e be any
edge in this path P. If we remove the edge from P, then there will be no (u,v)-path in G− e.
That is, G− e is disconnected. Therefore, G is minimally connected.

Part-(v) =⇒ (i): This part states that if G is minimally connected, then G is a tree.
Clearly, G is connected as it is minimally connected. Since G is minimally connected,
removal of any edge makes G disconnected. That is, every edge of G is a cut edge of G. That
is, no edge of G is contained in a cycle in G. Therefore, G is acyclic and hence is a tree. �

Theorem 6.1.10 A vertex v in a tree is a cut-vertex of T if and only if d(v)≥ 2.

Proof. Let v be a cut-vertex of a tree T . Since, no pendant vertex of a graph can be its
cut-vertex, clearly we have d(v)≥ 2.

Let v be a vertex of a tree T such that d(v)≥ 2. Then v is called an internal vertex (or
intermediate vertex) of T . Since d(v)≥ 2, there are two at least two neighbours for v in T . Let
u and w be two neighbours of v. Then, u− v−w is a (u−w)-path in G. By Theorem-1, we
have the path u−v−w is the unique (u−w)-path in G. Therefore, T −v is disconnected and
u and w are in different components of T . Therefore, v is a cut-vertex of T . This completes
the proof. �

6.2 Distances in Trees
Definition 6.2.1 — Metric. A metric on a set A is a function d : A×A→ [0,∞), where
[0,∞) is the set of non-negative real numbers and for all x,y,z∈ A, the following conditions
are satisfied:

1. d(x,y)≥ 0 (non-negativity or separation axiom);
2. d(x,y) = 0⇔ x = y (identity of indiscernibles);

Lecture Notes on Graph Theory 59

3. d(x,y) = d(y,x) (symmetry);
4. d(x,z)≤ d(x,y)+d(y,z) (sub-additivity or triangle inequality).
Conditions 1 and 2, are together called a positive-definite function.

A metric is sometimes called the distance function.
In view of the definition of a metric, we have

Theorem 6.2.1 The distance between vertices of a connected graph is a metric.

Definition 6.2.2 — Center of a graph. A vertex in a graph G with minimum eccentricity
is called the center of G.

Theorem 6.2.2 Every tree has either one or two centers.

Proof. The maximum distance, maxd(v,vi) from a given vertex v to any other vertex occurs
only when vi is a pendant vertex. With this observation, let T be a tree having more than two
vertices. Tree T has two or more pendant vertices.

Deleting all the pendant vertices from T , the resulting graph T ′ is again a tree. The
removal of all pendant vertices from T uniformly reduces the eccentricities of the remaining
vertices (vertices in T ′) by one. Therefore, the centers of T are also the centers of T ′. From
T ′, we remove all pendant vertices and get another tree T ′′. Continuing this process, we
either get a vertex, which is a center of T , or an edge whose end vertices are the two centers
of T . �

6.3 Degree Sequences in Trees

Theorem 6.3.1 The sequence 〈di〉;1≤ i≤ n of positive integers is a degree sequence of a
tree if and only if (i) di ≥ 1 for all i,1≤ i≤ n and (ii) ∑di = 2n−2 .

Proof. Since a tree has no isolated vertex, we have di ≥ 1 for all i. Also, ∑di = 2|E| =
2(n−1) , as a tree with n vertices has n−1 edges.

We use induction on n to prove the converse part. For n = 2, the sequence is {1,1} and is
obviously the degree sequence of K2 . Suppose the claim is true for all positive sequences of
length less than n. Let 〈di〉 be the non-decreasing positive sequence of n terms, satisfying
conditions (i) and (ii). Then d1 = 1 and dn > 1.

Now, consider the sequence D′ = {d2,d3, . . . ,dn−1,dn− 1} , which is a sequence of
length n− 1. Obviously in D′, we have di ≥ 1 and ∑di = d2 + d3 + . . .+ dn−1 + dn− 1 =

d1 +d2 +d3 + . . .+dn−1 +dn−1−1 = 2n−2−2 = 2(n−1)−2 (because d1 = 1). So D′

satisfies conditions (i) and (ii) and by induction hypothesis, there is a tree T0 realising D′. In
T0, add a new vertex and join it to the vertex having degree dn−1 to get a tree T . Therefore,
the degree sequence of T is {d1,d2, . . . ,dn}. This completes the proof. �

60 Chapter 6. Trees

Theorem 6.3.2 Let T be a tree with k edges. If G is a graph whose minimum degree
satisfies δ (G)≥ k, then G contains T as a subgraph. In other words, G contains every tree
of order at most δ (G)+1 as a subgraph.

Proof. We use induction on k. If k = 0, then T = K1 and it is clear that K1 is a subgraph of
any graph. Further, if k = 1, then T = K2, and K2 is a subgraph of any graph whose minimum
degree is one.

Assume that the result is true for all trees with k−1 edges (k ≥ 2) and consider a tree T
with exactly k edges. We know that T contains at least two pendant vertices. Let v be one of
them and let w be the vertex that is adjacent to v.

Consider the graph T − v. Since T − v has k−1 edges, the induction hypothesis applies,
so T − v is a subgraph of G. We can think of T − v as actually sitting inside G (meaning w is
a vertex of G, too).

Since G contains at least k+1 vertices, and T − v contains k vertices, there exist vertices
of G that are not a part of the subgraph T − v. Further, since the degree of w in G is at least k,
there must be a vertex u not in T − v that is adjacent to w. The subgraph T − v together with
u forms the tree T as a subgraph of G. �

6.4 On Counting Trees
A labelled graph is a graph, each of whose vertices (or edges) is assigned a unique name
(v1,v2,v3, . . . or A,B,C, . . .) or labels (1,2,3, . . .).

The distinct vertex labelled trees on 4 vertices are given in Figure 6.3.
The distinct unlabelled trees on 4 vertices are given in Figure 6.4.

6.5 Spanning Trees

Definition 6.5.1 — Spanning Tree. A spanning tree of a connected graph G is a tree
containing all the vertices of G. A spanning tree of a graph is a maximal tree subgraph of
that graph. A spanning tree of a graph G is sometimes called the skeleton or the scaffold
graph.

Theorem 6.5.1 Every connected graph G has a spanning tree.

Proof. Let G be a connected graph on n vertices. Pick an arbitrary edge of G and name it
e1. If e1 belongs to a cycle of G, then delete it from G. (Else, leave it unchanged and pick it
another one). Let G1 = G− e1. Now, choose an edge e2 of G1. If e2 belongs to a cycle of
G1, then remove e2 from G1. Proceed this step until all cycles in G are removed iteratively.
Since G is a finite graph the procedure terminates after a finite number of times. At this
stage, we get a subgraph T of G, none of whose edges belong to cycles. Therefore, T is a
connected acyclic subgraph of G on n vertices and hence is a spanning tree of G, completing
the proof. �

Lecture Notes on Graph Theory 61

Figure 6.3: Distinct labelled trees on 4 vertices

Figure 6.4: Distinct unlabelled trees on 4 vertices

Definition 6.5.2 — Branches and Chords of Graphs. Let T be a spanning tree of a
given graph G. Then, every edge of T is called a branch of T . An edge of G that is not in
a spanning tree of G is called a chord (or a tie or a link).

Note that the branches and chords are defined in terms of a given spanning tree.

Theorem 6.5.2 Show that every graph with n vertices and ε edges has n−1 branches and
ε−n+1 chords.

Proof. Let G be a graph with n vertices and ε edges and let T be a spanning tree of G. Then,
by Theorem 6.1.3, T has n− 1 edges. Therefore, the number of branches is n− 1. The
number chords in G with respect to T is |E(G)|− |E(T)|= ε− (n−1) = ε−n+1. �

The set of all chords of a tree T is called a chord set or a co-tree or a tie set and is usually
denoted by T̄ . Therefore, we have T ∪ T̄ = G.

62 Chapter 6. Trees

Definition 6.5.3 — Rank and Nullity of Graphs. The number of branches in a spanning
tree T of a graph G is called its rank, denoted by rank(G). The number of chords of a
graph G is called its nullity, denoted by nullity(G).

Therefore, we have

rank(G)+nullity(G) = |E(G)|, the size of G.

Theorem 6.5.3 Let T and T ′ be two distinct spanning trees of a connected graph G and
e ∈ E(T)−E(T ′). Then, there exists an edge e′ ∈ E(T ′)−E(T) such that T − e+ e′ is a
spanning tree of G.

Proof. By Theorem 6.1.5, we know that every edge of a tree is a cut-edge. Let X1 and X2

be the two components of T − e. Since T ′ is a spanning tree and hence T ′ has an edge e′

whose one end vertex in X1 and the other in X2. Therefore, the graph T − e+ e′ is a graph on
n vertices and n−1 edges and without cycles (since adding an edge between two vertices
in two components of G will not create a cycle). Therefore, by Theorem 6.1.7, the graph
T − e+ e′ and hence is a tree. That is, T − e+ e′ is a spanning tree of G. �

Theorem 6.5.4 Let T and T ′ be two distinct spanning trees of a connected graph G and
e ∈ E(T)−E(T2). Then, there exists an edge e′ ∈ E(T ′)−E(T) such that T ′+ e− e′ is a
spanning tree of G.

Proof. Since T ′ is a spanning tree of G and e is not an edge of T ′, by Theorem 10.16b,
T ′+ e contains a unique cycle, say C which contains e′. Since T is a tree (hence acyclic), we
can find an edge e′ ∈ E(C)−E(T). Therefore, removal of e′ breaks the cycle C and hence
T ′+ e− e′ is acyclic and has n vertices and n−1 edges. Thus, by Theorem 6.1.7, T ′+ e− e′

is connected and hence is a spanning tree of G. �

Theorem 6.5.5 — Cayley’s Theorem. For n≥ 2, the number of distinct spanning trees
with n vertices is nn−2.

Proof. Let V = {v1,v2, . . . ,vn} be the vertex set of Kn and let N = {1,2,3, . . . ,n}. Note that
there exists a bijection f from V to N such that f (vi) = i and V can be replaced by N in this
discussion. We note that nn−2 is the number of sequences of length n−2 that can be formed
from N. Thus, in order to prove the theorem, we try to establish a one-to-one correspondence
between the set of spanning trees of Kn and the set of such sequences length n−2 from N.

With each spanning tree T of Kn, we associate a unique sequence (t1, t2, t3, . . . , tn−2) as
follows. Regarding V as an ordered set, let s1 be the first vertex of degree 1 in T ; the vertex
adjacent to s1 is taken as t1. Let s2 the first vertex of degree 1 in T − s1, and take the vertex
adjacent to s2 as t2. This operation is repeated until tn−2 has been defined and a tree with
just two vertices remains. Note that different spanning trees of Kn determine difference
sequences.

Lecture Notes on Graph Theory 63

Now, note that any vertex v of T occurs dT (v)−1 times in the (t1, t2, t3, . . . , tn−2). Thus,
the vertices of degree one in T are precisely those that do not appear in this sequence.
Therefore, to reconstruct T from the sequence (t1, t2, . . . , tn−2), we proceed as follows: Let s1

be the first vertex of N not in (t1, t2, . . . , tn−2); join s1 to t1. Next, let s2 be the first vertex of
N−{s1} not in (t2, t3 . . . , tn−2), and join s2 to t2. Proceed in this way until the n−2 edges
s1t1,s2t2,s3t3, . . . ,sn−2tn−2 have been determined. T is now obtained by adding the edge
joining the two remaining vertices of N−{s1,s2, . . . ,sn−2}. We can verify that different
sequences we get give rise to different spanning trees of Kn.

We have thus established the desired one-to-one correspondence between the distinct
number of spanning trees of Kn and the distinct sequences from N of length n−2. Therefore,
the number of distinct spanning trees of a graph G is nn−2. �

The above theorem can also be stated in terms of labelled trees as follows:

Theorem 6.5.6 — Cayley’s Theorem on Labelled Trees. For n ≥ 2, the number of
labelled trees with n vertices is nn−2.

Proof. Every labelled tree on n vertices can be treated as a spanning tree of Kn. Therefore,
the theorem follows immediately from Theorem 6.5.5. �

6.6 Fundamental Circuits
Theorem 6.6.1 A connected graph G is a tree if and only if adding an edge between any
two vertices in G creates exactly one cycle (circuit).

Proof. First assume that G is a tree and let u,v be any two vertices of G. Then, by Theorem
6.1.1, there exists a unique path, say P, between u and v. Add an edge between these two
vertices. Then, P+uv is clearly a cycle in the graph H = G+uv. If possible, let uv be an
edge in two cycles, say C and C′ in H. Then, C−uv and C′−uv are two disjoint uv-paths in
H−uv = G, contradicting the uniqueness of P. Hence, P+uv is the only cycle in G+uv.

Conversely, assume that P+uv is the only cycle in the graph H = G+uv. Then, G =

H−uv is a connected graph having no cycles. That is, G is a tree. �

Theorem 6.6.2 Adding a chord of a connected graph G to the corresponding spanning
tree T of G creates a unique cycle and in G.

Proof. The proof of the theorem is a consequence of Theorem 6.6.1. �

Definition 6.6.1 — Fundamental Cycles. A cycle formed in a graph G by adding a
chord of a spanning tree T f G is called a fundamental circuit or fundamental cycle in G.

Definition 6.6.2 — Cyclomatic Number. The cyclomatic number or circuit rank, or
cycle rank of an undirected graph is the minimum number of edges that must be removed
from the graph to break all its cycles, making it into a tree or forest.

64 Chapter 6. Trees

Clearly, the cyclomatic number of a graph G is equal to the nullity of G.

Theorem 6.6.3 Any connected graph G with n vertices and ε edges components has
ε−n+1 fundamental cycles.

Proof. The number of chords corresponding to any spanning tree T of G on n vertices is
ε−n+1 (see Theorem 6.5.2). By Theorem 6.6.1, we know that corresponding to each chord
in G, there exists a unique fundamental circuit in G. Therefore, the number of fundamental
circuits in G is ε−n+1. �

Theorem 6.6.4 Any connected graph G with n vertices, ε edges and k components has
ε−n+ k fundamental cycles.

Proof. Any spanning acyclic subgraph F of G with n vertices and k components (may be
called a spanning forest of G) can have exactly n− k edges (see the first part of Theorem
3.2.4). That is, the number of branches in F is n− k. Therefore, the number of chords is
ε−n− k. Hence, by Theorem 6.6.1, we know that corresponding to each chord in G, there
exists a unique fundamental circuit in G. Therefore, the number of fundamental circuits in G
is ε−n+ k. �

6.7 Rooted Tree
Definition 6.7.1 — Rooted Tree. A rooted tree is a tree T in which one vertex is distin-
guished from all other vertices. This particular vertex is called the root of T .

Figure 6.5 illustrates some rooted trees on five vertices. In all these graphs, the white
vertices represent the roots of the rooted trees concerned.

v1

v2
v3 v4

v5

v1

v2 v3

v4 v5

v1

v2 v3

v4 v5

v1

v3v2 v4 v5

v1 v2 v3 v4 v5

Figure 6.5: Some rooted trees on five vertices

Lecture Notes on Graph Theory 65

In certain practical or real-life problems, we may have to calculate the lengths or total lengths
of vertices of rooted trees from the roots. In some cases, we may also need to assign weights
to the vertices of a tree.

Consider the following binary tree whose pendant vertices are assigned some weights.

0.5

0.33

0.25

0.4

0.66

Figure 6.6: A rooted tree with and without weights to pendant vertices.

Definition 6.7.2 — Path Length of a Rooted Tree. The path length or (external path
length) of a rooted tree T is the sum of the levels of all pendant vertices.

The path lengths of rooted trees are widely applied in the analysis of algorithms.
The path length of the first rooted tree in Figure 6.6 is 2+3+4+5+5 = 19.

Definition 6.7.3 — Weighted Path Length of a Rooted Tree. If every pendant vertex vi

of a tree T is assigned some positive real number wi, then the weighted path length of T is
defined as ∑

i
wi`i, where `i is the level of the vertex vi from the root.

The weighted path length of the graph in Figure 6.6 is 2× 0.4+ 3× 0.5+ 4× 0.33+
5(0.66+0.25) = 8.17.

6.8 Binary Tree
Definition 6.8.1 — Binary Tree. A binary tree is a rooted tree in which there is only one
vertex of degree 2 and all other vertices have degree 3 or 1. The vertex having degree 2
serves as the root of a binary tree.

Theorem 6.8.1 The number of vertices in a binary tree is odd.

Proof. Let T be a binary tree. Note that the only vertex of T which has even degree is the
root. We also have the result that the number of odd degree vertices in any graph is even.
Hence, the number of vertices in T is odd. �

66 Chapter 6. Trees

Every non-pendant vertex of a binary (or rooted) tree is called its internal vertex. A vertex
v of a binary tree is said to be at level ` if its distance from the root is `.
A rooted tree with its levels is illustrated in Figure 6.7.

level 0

level 1

level 2

level 3

level 4

level 5

Figure 6.7: A 17-vertex binary tree with level 5.

Theorem 6.8.2 A binary tree on n vertices has n+1
2 pendant vertices.

Proof. Let p the number of pendant vertices in T . Then, the number of vertices of degree 3
is n− p−1. Then, we have

|E(T)| =
1
2 ∑

v∈V (T)
d(v)(First Theorem on Graph Theory)

=
1
2
[2+ p+3(n− p−1)]

= n−1.

Hence, we have p = n+1
2 . This complete the proof. �

The binary trees are widely used search procedures. In such procedures, each vertex of a
binary tree represents a test and with two possible outcomes. Usually, we have to construct a
binary tree on n vertices, for given values of n, with or without a fixed number of levels. This
makes the study on the bounds on the number of levels.

Theorem 6.8.3 Let T be a k-level binary tree on n vertices. Then, dlog2(n+1)−1e ≤ k≤
n−1

2 , where dxe represents the smallest integer greater than or equal to x (ceiling function).

Proof. Note that there is one vertex at level 0 (root), at most two vertices at level 1, at most
four vertices at level 2, at most eight vertices at level 3 and proceeding like this, there are at
most 2k vertices at level k.

Lecture Notes on Graph Theory 67

Figure6.7 is an example for a binary tree with fewer than 2k vertices at the k-th level for
some k, while Figure 6.8 is an example for a binary tree with exactly 2k vertices at the k-th
level for some k.

Figure 6.8: A rooted trees 2k vertices at k-th level, where k = 0,1,2,3

Therefore, we have

n ≤
k

∑
i=0

2i

=
2k+1−1

2−1
(Since the above series is a geometric series with r = 2.)

∴ n ≤ 2k+1−1

n+1 ≤ 2k+1

That is, log2(n+1) ≤ k+1

Therefore, log2(n+1)−1 ≤ k.

Since k is an integer, the above equation becomes dlog2(n+1)−1e ≤ k.
If we construct a binary tree T such that there are exactly two vertices at every level other

than the root level, then T attains the maximum possible number of levels (see Figure 6.9).

level 0

level 1
level 2

level 3

level 4

Figure 6.9: A 9-vertex binary tree with level 4.

From this figure, we can interpret that half of the n−1 edges of T are drawn towards the
left and the remaining half are drawn to the right. Therefore, we can see that the maximum
possible value of k is n−1

2 . �

An `-level binary tree is said to be a complete binary tree if it has 2k vertices at the k-th

68 Chapter 6. Trees

level for all 1≤ k ≤ `. Figure 6.8 is a complete binary tree of level 3.

6.9 Exercises
1. Draw all unlabeled rooted trees on n vertices, where n = 1,2,3,4,5,6.
2. Show that a path is its own spanning tree.
3. Show that a pendant edge of a graph will be contained in all of its spanning trees.
4. What is the nullity of a complete Kn?
5. Show that every Hamilton path of a graph G (if exists) is a spanning tree of G.
6. Show that every cycle (or circuit) in G has at least one common edge with a chord set.
7. Prove that a graph G is a tree if and only if it is a loopless and has exactly one spanning

tree.
8. Every graph with fewer edges than vertices has a component that is a tree.
9. Prove that a maximal acyclic subgraph of G consists of a spanning tree from each

component of G.
10. Prove that every graph of order n and size ε has at least ε−n+1 cycles.
11. Prove that a simple connected graph having exactly 2 vertices that are not cut-vertices

is a path.
12. Let G be connected and let e ∈ E. Then, show that

(a) e is in every spanning tree of G if and only if e is a cut edge of G;
(b) e is in no spanning tree of G if and only if e is a loop of G.

13. Show that if each degree in G is even, then G has no cut edge

IV
7 Connectivity in Graphs 71
7.1 Cut-Vertices and Vertex-Cuts of a Graph
7.2 Cut-Sets of a Graph
7.3 Fundamental Cut-Sets
7.4 Connectivity in Graphs
7.5 Exercises

8 Planar Graphs . 81
8.1 Three Utility Problem
8.2 Planarity of Graphs
8.3 Kuratowski Graphs and Their Nonplanarity
8.4 Detection of Planarity and Kuratowski’s Theorem
8.5 Euler Theorem and Consequences
8.6 Geometric Dual of a Graph
8.7 Exercises

CONNECTIVITY & PLANARITY

7. Connectivity in Graphs

7.1 Cut-Vertices and Vertex-Cuts of a Graph

First recall that a cut-vertex of a graph G is a vertex v in G such that G− v is disconnected. A
cut-vertex is also called a cut-node or an articulation point.

Definition 7.1.1 — Vertex-Cut. A subset W of the vertex set V of a graph G is said to be
a vertex-cut or a Separating Set of G if G−W is disconnected. In the above graph, the
vertex set W = {v3,v4} is a vertex-cut of G.

The following graph illustrates a vertex-cut of a graph.

v1

v2

v3

v4 v5

v6

v7

v8

(a) Connected graph G

v1

v3

v5

v6

v7

v8

(b) Disconnected graph G−{v2,v4}

Figure 7.1: disconnected graph G−{v4v5,v2v6,v3v7}.

72 Chapter 7. Connectivity in Graphs

R If v is a cut-vertex of G, then {v} is a vertex-cut of G. Any set of cut vertices in G is
also a vertex-cut of G.

Theorem 7.1.1 Every internal vertex of a tree is a cut-vertex.

Proof. An internal vertex of a graph G is a vertex v with degree greater than or equal to 2.
Therefore, the result follows from Theorem 6.1.10. �

Theorem 7.1.2 Every connected graph on three or more vertices has at least two vertices
which are not cut-vertices.

Proof. Let G be a connected graph of order n≥ 3 and let T be a spanning tree of G. Then,
by Theorem 6.1.8, there exist at least two pendant vertices in T . Note that no pendant vertex
can be a cut-vertex of a graph. Let v be one of the pendant vertices in T . Then, T − v is also
a connected (acyclic) graph. Hence, T − v is the spanning tree of the graph G− v. Therefore,
G−v is connected and hence v is not a cut-vertex of G also. That is, the pendant vertices in a
spanning tree of a graph G will not be the cut-vertices of G as well. Therefore, there exist at
least two pendant vertices in G. �

The following result is a necessary and sufficient condition for a vertex of a graph G to
be a cut-vertex of G.

Theorem 7.1.3 A vertex v of connected graph G is a cut-vertex of G if and only if there
exist two (or more) edges incident on v such that no cycles in G contain both (all) edges
simultaneously.

Proof. Let v be an arbitrary vertex of a graph G and let e1 = uv and e2 = vw be two edges
incident on v.

Assume v be cut-vertex of G. If possible, let e1 and e2 lie on the same cycle, say C. Then,
the path uvw and the path C− v are two distinct uw-paths in G. Hence, u and w lie in the
same component of G− v, which is a contradiction to the assumption that v is a cut-vertex of
G. Therefore, C contains any one of these two edges.

Conversely, assume that no cycle in G contains both edges e1 and e2 incident on v. Then,
uvw is the only uw-path in G and hence u and w lie on two distinct components in G− v.
Then, v is a cut-vertex of G, completing the proof. �

The following result is another necessary and sufficient condition for a vertex of a graph
G to be a cut-vertex of G.

Theorem 7.1.4 A vertex v of connected graph G is a cut-vertex of G if and only if there
exist two vertices, say x and y, in G such that every uw-path passes through v.

Proof. Let v,x,y be three vertices of a graph G such that every xy-paths in G pass through v.
Then, x and y are not connected in G− v. That is, G− v is disconnected and hence v is a cut
edge of G.

Lecture Notes on Graph Theory 73

Let v be a cut vertex of a graph G. Let x and y be two vertices such that they lie on two
components in G− v. If possible, let some xy-paths pass through v and some other do not.
Let P be an xy-path which does not pass through v.

Pick two adjacent vertices u and w of v such that they lie on different components of
G− v. Without loss of generality, let u and x are in the same component, say K1, of G− v,
while w and y are in the other component, say K2, of G− v. Since K1 is connected, there
exists a path, say P1, between u and x. Similarly, there exists a path P2 between w and y in
K2. Then, we note that P1∪P∪P2∪uvw is a cycle consisting of both edges uv and vw in G,
contradicting the statement of Theorem 7.1.3. Therefore, all xy-paths should pass through v.
This completes the proof. �

7.2 Cut-Sets of a Graph

Recall that an edge e of a graph G is a cut-edge of G if G− e is disconnected.

Definition 7.2.1 — Edge-Cut. A subset F of the edge set E of a graph G is said to be an
edge-cut of G if G−E is disconnected.

Definition 7.2.2 — Bond of a graph. A minimal nonempty edge-cut of a graph G is
called a bond of G.

The following graph illustrates a vertex-cut of a graph.

v1

v2

v3

v4 v5

v6

v7

v8

(a) Connected graph G

v1

v2

v3

v4 v5

v6

v7

v8

(b) G◦uv

Figure 7.2: Disconnected graph G−{v4v5,v2v6,v3v7}.

In the above graph G, the edge set F = {v4v5,v2v6,v3v7} is an edge-cut, since the removal
of F makes G disconnected.

Definition 7.2.3 — Cut-Set. A cut-set is a minimal edge-cut of G. That is, a cut-set of a
graph G is a set of edges F of G whose removal makes the graph disconnected, provided
the removal of no proper subset of F makes G disconnected.

A cut-set also called a minimal cut-set, a proper cut-set, a simple cut-set, or a cocycle.
Note that the edge-cut F in the above example is a cut-set of G.

74 Chapter 7. Connectivity in Graphs

If a cut-set puts two vertices v1 and v2 into two different components, then, it is called a
cut-set with regard to v1 and v2 .

R If e is a cut-edge of G, then {e} is an edge-cut of G. Any set of cut-edges in G is also
an edge-cut of G.

If {e} is a cut-set of G (That is, when e is a cut edge of G), then it is customary to say
that e is a cut-set of G. Hence, we have

Theorem 7.2.1 Every edge of a tree is a cut-set.

Proof. The proof is an immediate consequence of the fact that every edge of a tree is a
cut-edge of G (see Theorem 6.1.5). �

Theorem 7.2.2 Every cut-set in a graph G must contain at least one branch of every
spanning tree of G.

Proof. Let F be a cut-set in G and T be any spanning tree of G. If F does not contain any
edge of T , then, by Theorem 6.1.1, there will be a unique path between any pair of vertices in
T and hence in G−F , contradicting the hypothesis that F is a cut-set in G. Therefore, every
cut-set in a graph G must contain at least one branch of every spanning tree of G. �

Theorem 7.2.3 In any connected graph G, any minimal set of edges consisting of at least
one branch of every spanning tree of G is a cut-set.

Proof. Let F be a minimal set of edges consisting of at least one branch of every spanning
tree T of G. Then, G−F will remove at least one edge from every spanning tree of G.
Therefore, G−F is disconnected. Since F is minimal, we have (G−F)+ e contains a
spanning tree of G. Therefore, F is a cut-set of G, completing the proof. �

Theorem 7.2.4 Every cycle (circuit) in G has even number of edges in common with any
cut-set of G.

Proof. Let S be a cut-set in G. Then, G−S is disconnected. Let V1 and V2 be the two disjoint
subsets of V (G−S). Any cycle which lies entirely in V1 (or V2) does not have any common
edge with a cut-set of G. If a cycle C has vertices in both V1 and V2, we have to traverse back
and forth between V1 and V2 to traverse the cycle C. Since every edge in S has one end in V1

and the other end in V2, the number of edges common to C and S must be even. �

The above theorem can easily be verified from the graph G in Figure 7.2.

Theorem 7.2.5 The ringsum of any two cut-sets in a connected graph G is a cut-set or an
edge-disjoint union of cut-sets.

Lecture Notes on Graph Theory 75

Proof. Let S1 and S2 be two cut-sets in a connected graph G. Let (V1,V2) be a unique partition
of V (G) with respect to S1, whereas (U1,U2) be a unique partition of V (G) with respect to
S2. Then, we have

V1∪V2 =V ;V1∩V2 = /0;

V3∪V4 =V ;V3∩V4 = /0.

Now, we have

(V1∩V4)∪ (V2∩V3) =V1⊕V3 = V5;

(V1∩V3)∪ (V2∩V4) =V2⊕V4 = V6.

It is to be noted that the ringsum S1⊕S2 consists of the edges that join the vertices in V5

to those in V6. Thus, the set of edges S1⊕S2 partitions V (G) into two sets V5 and V6 such that

V1∪V2 =V ; V1∩V2 = /0.

Hence, S1⊕S2 is a cut-set if subgraphs containing V5 and V6 remain connected in G− (S1⊕
S2). Otherwise, S1⊕S2 is just an edge-disjoint union of two cut-sets. �

7.3 Fundamental Cut-Sets
Definition 7.3.1 — Fundamental Cut-Set. Let T be a spanning tree of a connected graph
G. A cut set S of G containing exactly one branch of T is called a fundamental cut-set or
a basic cut-set of G with regard to T .

Theorem 7.3.1 Every connected graph of order n has n−1 distinct fundamental cut-sets
corresponding to any spanning tree of G.

Proof. Let G be a connected graph and T be a spanning tree of G. Then, by Theorem 7.2.2,
any cut-set of G contains an edge of T . Consider an edge e of T . Clearly, {e} is a cut-set
in G and partitions V =V (T) into two disjoint sets. Consider the same partition of V in G
also and let S be a cut-set in G corresponding to this partition. Then, S consists of exactly
one edge of T and all other elements of S will be chords of T and hence is a fundamental
cut-set. Therefore, S can be considered as a unique fundamental cut-set of G with respect of
the branch e of T in G. That is, every edge of T corresponds to a unique fundamental cut-set
in G. Hence, the number of distinct fundamental cut-sets corresponding to T is n−1, the
order of T . This completes the proof. �

Theorem 7.3.2 With respect to a spanning tree, a chord c that determines a fundamental
circuit C occurs in every fundamental cut-set associated with the branches in T and in no
other.

76 Chapter 7. Connectivity in Graphs

Proof. Consider a spanning tree T of G. Let c be a chord with respect to T and let the
fundamental circuit made by c be called C, consisting of k branches b1,b2, . . . ,bk in addition
to c. That is, C = {c,b1,b2, . . . ,bk} be a fundamental circuit with respect to T . Every branch
of any spanning tree is associated with a unique fundamental cut-set (see Theorem 7.2.2).
Let S1 be the fundamental cut-set associated with b1, which consists of q chords other than
b1. That is, S1 = {b1,c1,c2, . . . ,cq} is a fundamental cut-set with respect to T . By Theorem
7.2.4, there must be an even number of edges common to C and S1. The edge b1 is common
in C and S1 and c is the only other edge that can possibly be in both C and S1. Therefore, c is
one of the chords c1,c2, . . . ,cq.

The same argument holds for the fundamental cut-sets corresponding to b2,b3, . . .bk and
hence c is contained in every fundamental cut-set associated with branches in C.

If c belongs to any other fundamental cut-set S′ other than those mentioned above, then
there would be only one edge c common to S′ and C, a contradiction to Theorem 7.2.4.
Therefore, c is not contained in any other fundamental cut-sets other than those corresponding
to b1,b2,b3, . . . ,bk. This completes the proof. �

Theorem 7.3.3 With respect to a spanning tree, a branch b that determines a fundamental
cut-set S is contained in every fundamental circuit associated with the chords in S and in
no other.

Proof. Let the fundamental cut-set S determined by b be S = {b,c1,c2, . . . ,cp} and C′ be
the fundamental circuit determined by chord c1. Then, C′ = {c1,b1,b2, . . . ,bq}. Since the
number of edges common to S and C′ must be even, b1 must be in C′. The same is true for
the fundamental circuits formed by c2,c3, . . . ,cp. As explained in previous theorem b will be
one among b1,b2, . . . ,bq.

If b1 belongs to a fundamental circuit C” made by a chord other than c1,c2,c3, . . . ,cp, then
since none of c1,c2,c3, . . . ,cp is in C”, b1 is the only edge common to C” and S, contradicting
the statement of Theorem 7.2.4. Hence, b does not belong to any fundamental circuit made
by a chord other than c1,c2,c3, . . . ,cp. This completes the proof. �

7.4 Connectivity in Graphs

Definition 7.4.1 — Separable Graph. A connected graph G (or a connected component
of a graph) is said to be a separable graph if it has a cut-vertex.

Definition 7.4.2 — Non-separable Graph. A connected graph or a connected compo-
nent of a graph, which is not separable, is called non-separable graph.

Figure 7.3(a) depicts a separable graph, while Figure 7.3(b) depicts a non-separable
graph.

Definition 7.4.3 — Block. A non-separable subgraph of a separable graph G is called a
block of G.

Lecture Notes on Graph Theory 77

v1

v2

v3

v5

v6

v7

(a) A separable graph

v1

v2

v3

v4

v5

v6

v7

(b) A non-separable graph

Figure 7.3: Illustration to separable and non-separable graphs

In Figure 7.3(a), v2 and v3 are cut-vertices. Hence, the three blocks of that graph are
given in Figure 7.4:

v1

v2

(a) Block 1

v2

v3

(b) Block 2

v3

v5

v6

v7

(c) Block 3

Figure 7.4: Illustration to blocks of a graph

Definition 7.4.4 — Edge Connectivity of a Graph. Let G be a graph (may be discon-
nected) having k components. The minimum number of edges whose deletion from G
increases the number of components of G is called the edge connectivity of G. The edge
connectivity of G is denoted by λ (G).

R Note that

1. The number of edges in the smallest cut-set of a graph is its edge connectivity.
2. Since every edge of a tree T is a cut-set, the edge connectivity of T is 1.

Theorem 7.4.1 The edge connectivity of a graph G is less than or equal to its minimum
degree. That is, λ (G)≤ δ (G).

Proof. Let vi be a vertex in G such that d(vi) = δ (G). Then, note that vi can be separated
from G only after the removal of d(vi) edges incident on vi. Therefore, λ (G)≤ δ (G). �

78 Chapter 7. Connectivity in Graphs

Definition 7.4.5 — Vertex Connectivity of a Graph. Let G be a graph (may be discon-
nected). The minimum number of vertices whose deletion from G increase the number of
components of G is called the vertex connectivity of G. The vertex connectivity of G is
denoted by κ(G).

Theorem 7.4.2 The vertex connectivity of any graph G is less than or equal to the edge
connectivity of G. That is, κ(G)≤ λ (G).

Proof. Let λ = λ (G) and κ = κ(G). Since λ is the edge connectivity of G, there exists a
cut-set S in G with λ edges. Note that the maximum number of vertices to be removed from
G to delete λ edges from G is λ . Therefore, κ ≤ λ , completing the proof. �

Theorem 7.4.3 Every cut-set in a non-separable graph with more than two vertices con-
tains at least two edges.

Proof. A graph is non-separable if its vertex connectivity is at least two. In view of Theorem
7.4.2, edge connectivity of a non-separable graph must be at least two which is possible if the
graph has at least two edges. �

Theorem 7.4.4 The maximum vertex connectivity of a connected graph G with n vertices
and ε edges is b 2ε

n c.

Proof. We know that 2ε

n is the average degree of G (see Theorem 1.2.2) and hence there
must be at least one vertex in G whose degree is less than or equal to the number b 2ε

n c. Also,
we have δ (G)≤ 2ε

n (see Theorem 1.2.2). By Theorem 7.4.2, we have κ(G)≤ λ (G)≤ b 2ε

n c.
Hence, κ(G)≤ b 2ε

n c. �

Theorem 7.4.5 — Whitney’s Inequality. For any graph G, we have κ(G)≤ λ (G)≤ δ (G).

Proof. The proof follows immediately from Theorem 7.4.1 and Theorem 7.4.2. �

Theorem 7.4.6 If G is a cubic graph (3-regular graph), then κ(G) = λ (G).

Proof. Let S be a minimum vertex-cut of a cubic graph G. Then, |S|= κ(G)≤ λ (G). Let
H1 and H2 be two components of G−S. Since S is a minimal vertex-cut of G, every vertex
in S must have a neighbour in H1 and a neighbour in H2. Since G is 3-regular, v cannot have
two neighbours in H1 and two neighbours in H2.

Now, delete the edge from v to a member of {H1,H2}, when v has only one neighbour. If
a path enters S via one vertex vi in S and leaves for H2 via another vertex v j in S, adjacent to
vi, then we delete the edges to H1 for both vi and v j. Clearly, the number of edges deleted
here (both cases together) is equal to the number of vertices in S and these κ(G) edges breaks
all paths from H1 to H2. Hence, κ(G) = λ (G). �

Lecture Notes on Graph Theory 79

Definition 7.4.6 A graph G is said to be k-connected if its vertex connectivity is k (That
is, if κ(G) = k). A graph G is k-edge connected if its edge connectivity is k (That is, if
λ (G) = k.)

Theorem 7.4.7 A graph G is k-connected if and only if there exist at least k disjoint paths
(paths without common vertices) between any pair of vertices in G.

Proof. Assume that G is k-connected. Then, k vertices are to be removed to make G
disconnected. If there are fewer than k disjoint paths between any two vertices u and v in G,
then u and v will be in different components on removing fewer than k vertices from G, a
contradiction to the fact that G is k-connected. Therefore, there must be at least k disjoint
paths between any pair of vertices in G.

Conversely, assume that there exist at least k disjoint paths between any pair of vertices u
and v in G. Then, we note that the removal of k vertices, one from each one of the k disjoint
paths, leaves u and v in two different components. Moreover, removing fewer than k vertices
will not leave u and v in two different components. Hence, G is k-connected. �

Theorem 7.4.8 A graph G is k-edge connected if and only if there exist at least k edge-
disjoint paths (paths that may have common vertices, but no common edges) between any
pair of vertices in G and at least one pair of vertices is joined by exactly k edge disjoint
paths.

Proof. The result is straight-forward from the fact that if two vertices u and v of a graph are
connected by k-edge disjoint paths, then u and v are disconnected if and only if k edges, one
from each of the k paths between them, are removed. �

Theorem 7.4.9 — Whitney’s Theorem. A graph with at least three vertices is a 2-
connected graph if and only if there exist internally disjoint paths between any pair
of vertices in G.

Proof. The proof is a specific case of Theorem 7.4.7, where k = 2. �

7.5 Exercises
1. Show that every edge-cut is a disjoint union of bonds.
2. if G has a cut-edge, then show that G has a vertex v such that ω(G−v)> ω(G). Is the

converse true? Justify your answer.
3. Show that a simple connected graph that has exactly two vertices which are not cut-

vertices is a path.
4. Show that if G is simple and δ > v−2, then κ(G) = 8.
5. Show that if G has no even cycles, then each block of G is either K1 or K2, or an odd

cycle.

80 Chapter 7. Connectivity in Graphs

6. Show that a connected graph which is not a block has at least two blocks that each
contains exactly one cut vertex.

7. Let G be a connected graph with at least three vertices. Prove that if G has bridge then
G has a cut vertex.

8. Let u and v be two vertices of a 2-connected graph. Then, show that there is a cycle in
G passing through both u and v.

9. For a tree T with at least three vertices, show that there is a cut-vertex v of T such that
every vertex adjacent to v, except for possibly one, has the degree 1.

10. Show that a cut-vertex of a graph is not a cut-vertex of its complement.
11. Show that κ(G)≤ 2ε

n .
12. The ring sum of two distinct proper edge-cut sets is an edge-cut set.
13. Prove that any two connected graphs with n vertices, all of degree 2, are isomorphic.

8. Planar Graphs

8.1 Three Utility Problem
Suppose there are three cottages (or houses)- H1,H2 and H3- on a plane and each needs to be
connected to three utilities, say gas (G), water (W) and electricity E. Without using a third
dimension or sending any of the connections through another house or cottage, is there a way
to make all nine connections without any of the lines crossing each other?
The problem can be modelled graphically as follows:

H1 H2 H3

G E W

Figure 8.1: Three Utilities Problem

The above graph is often referred to as the utility graph in reference to the problem.
In more formal graph-theoretic terms, the problem asks whether the complete bipartite

graph K3,3 can be redrawn in such a way that no two edges of K3,3 crosses each other.
The three utility problem was the motivation for the introduction of the concepts of

planarity of graphs.

82 Chapter 8. Planar Graphs

8.2 Planarity of Graphs

Definition 8.2.1 A face of a graph G is the region formed by a cycle or parallel edges or
loops in G. A face of a graph G is also called a window, a region or a mesh.

Definition 8.2.2 — Jordan Curves. A Jordan curve is a non-self-intersecting continuous
closed curve in the plane. Cycles in a graph can be considered to be Jordan Curves.

Definition 8.2.3 — Planar graphs. A graph G is called a planar graph if it can be re-
drawn on a plane without any crossovers (That is, in such a way that two edges intersect
only at their end vertices). Such a representation is sometimes called a topological planar
graph.
Such a drawing of G, if exists, is called a plane graph or planar embedding or an
embedding of G.

The portion of the plane lying inside the graph G embedded in a plane is called an interior
region of G. The portion of the plane lying outside a graph embedded in a plane is infinite
in its extent such a region is called an infinite region, or outer region, or exterior region or
unbounded region.

Every Jordan curve J divides the plane into an interior region, denoted by IntJ, bounded
by the curve and an exterior region, denoted by ExtJ containing all of the nearby and far
away exterior points.

Definition 8.2.4 — Embedding of a graph. An embedding of a graph G on a surface S
is a geometric representation of G drawn on the surface such that the curves representing
any two edges of G do not intersect except at a point representing a vertex of G.

In order that a graph G is planar, we have to show that there exists a graph isomorphic to
G that is embedded in a plane. Equivalently, a geometric graph G is nonplanar if none of the
possible geometric representations of G can be embedded in a plane.

The graphs depicted in Figure 8.2 are some examples of planar graphs (or plane graphs).

(a) (b) (c)

Figure 8.2: Illustration to planar (plane) graphs

Lecture Notes on Graph Theory 83

A graph which is not planar may be called a nonplanar graph.

Theorem 8.2.1 A graph can be embedded on the surface of a sphere if and only if it can
be embedded in a plane.

Proof. Consider the stereographic projection of a sphere on the plane. Put the sphere on
the plane and call the point of contact as SP (south-pole). At point SP, draw a straight line
perpendicular to the plane, and let the point where this line intersects the surface of the sphere
be called NP (north-pole).

Now, corresponding to any point p on the plane, there exists a unique point p0 on the
sphere, and vice versa, where p0 is the point where the straight line from point p to point
NP intersects the surface of the sphere. Thus, there is a one-one correspondence between
the points of the sphere and the finite points on the plane, and points at infinity in the plane
corresponding to the point NP on the sphere (see Figure 8.3).

N

P̂

S

Figure 8.3: Spherical embedding of a point in a plane.

Therefore, from this construction, it is clear that any graph that can be embedded in a
plane can also be embedded on the surface of the sphere, and vice versa.

The converse can be established as follows: Let P be a point on the sphere, which is
placed on the plane. The one-to-one correspondence of the points of the sphere and the points
of the plane can be established as the line segment drawn between the north pole N and the
point P can be extended till it meets the plane at a unique point P̂ on the plane. Therefore,
every graph embedded on a sphere can be embedded on a plane also. �

The above theorem can also be stated as given below:

Theorem 8.2.2 A graph G is planar if and only if it can be embedded on a sphere.

The embedding of a graph on a sphere is called a spherical embedding of a graph.

84 Chapter 8. Planar Graphs

Theorem 8.2.3 A planar embedding G′ of a graph G can be transformed into another
embedding such that any specified face becomes the exterior face.

Proof. Any face of G′ is defined by the path which forms its boundary. Any such path, T ,
identified in a particular planar representation P of G, may be made to define the exterior face
of a different planar representation P′ as follows. We form a spherical embedding P′′ of P. P′

is then formed by projecting P′′ onto the plane in such a way that the point of projection lies
in the face defined by the image of T on the sphere.

Figure 8.4: The different plane representations of the same graph.

�

Thinking in terms of the regions on the sphere, it can be noted that there is no real
difference between the infinite region and the finite regions on the plane. Therefore, we
include the infinite region in our discussions about the regions in a plane representation of
the graph.

Also, since there is no essential difference between an embedding of a planar graph on a
plane, or on a sphere (a plane can be regarded as the surface of the sphere of infinitely large
radius), the term plane representation of a graph is often used to include spherical as well as
plane embedding.

Theorem 8.2.4 — Fary’s Theorem. Every triangulated planar graph has a straight line
representation.

Proof. We prove the result by mathematical induction on n, the number of vertices. The
result is obvious for n = 4. So, let n≥ 5 and assume that the result is true for all planar graphs
with fewer than n vertices. Let G be a plane graph with n vertices.

First, we show that G has an edge e belonging to just two triangles. For this, let x be
any vertex in the interior of a triangle T and choose x and T such that the number of regions
inside T is minimal. Let y be a neighbour of x, and the edge xy lies inside T , and let xy
belong to three triangles xyz1, xyz2 and xyz3. Then one of these triangles lies completely
inside another. Assume that z3 lies inside xyz1. Then, z3 and xyz1 contradict the choice of x
and T (see Figure 8.5).

Hence, there is an edge e = xy lying in just two triangles xyz1 and xyz2. Contracting xy to
a vertex u, we get a new graph G′ with a pair of double edges between u and z1, and u and z2.

Lecture Notes on Graph Theory 85

Figure 8.5: Illustration to Fary’s Theorem

Remove one each of this pair of double edges to get a graph G′′ which is a triangulated graph
with n−1 vertices. By the induction hypothesis, it has a straight line representation H ′′. The
edges of G′′ correspond to uz1, uz2 in H ′′. Divide the angle around u into two parts - in one
of which the pre-images of the edges adjacent to x in G lie, and in the other, the pre-images
of the edges adjacent to y in G. Hence, u can be pulled apart to x and y, and the edge xy is
restored by a straight line to get a straight line representation of G. �

Note that every disconnected graph is planar if and only if each of its components is
planar. Similarly, a separable graph is planar if and only if each of its blocks is planar. Hence,
one needs to consider non-separable graphs only in questions on planarity.

Theorem 8.2.5 — Jordan Curve Theorem. The Jordan curve theorem asserts that any
path connecting a point of the interior region of a Jordan curve J to a point in the exterior
region of J intersects with the curve J somewhere.

8.3 Kuratowski Graphs and Their Nonplanarity

The complete graph K5 and the complete bipartite graph K3,3 are called Kuratowski’s graphs,
after the Polish mathematician Kasimir Kuratowski, who found that these two graphs are
nonplanar.

Theorem 8.3.1 The complete graph K5 with five vertices is nonplanar.

Proof. Let the five vertices in the complete graph be named v1,v2,v3,v4,v5. Since every
vertex in a complete graph is adjacent to all other vertices by means of an edge, there exists a
cycle C5 := v1− v2− v3− v4− v5− v−1 (that is, a pentagon) in K5. This pentagon divides

86 Chapter 8. Planar Graphs

the plane of the paper into two regions, one inside and the other outside (see Figure 8.6a).
Since vertex v1 is to be connected to v3 and v4 by means of edges, these edges may be
drawn inside or outside the pentagon (without intersecting the five edges drawn previously).
Suppose we choose to draw the lines from v1 to v3 and v4 inside the pentagon, (see Figure
8.6b). In case we choose outside, we end with the same argument. Now, we have to draw
an edge from v2 to v4 and another from v2 to v5 . Since neither of these edges can be drawn
inside the pentagon without crossing over the edge already drawn, we draw both these edges
outside the pentagon, as seen in Figure 8.6c. The edge connecting v3 and v5 cannot be drawn
outside the pentagon without crossing the edge between v2 and v4 . Therefore, v3 and v5

have to be connected with an edge. Now, we have to draw an edge between v3 and v5 and
this cannot be placed inside or outside the pentagon without a crossover, by Jordan Curve
Theorem.

Thus, the graph cannot be embedded in a plane. That is, K5 is non-planar. �

v1

v2

v3

v4

v5

(a) Step-1

v1

v2

v3

v4

v5

(b) Step-2

v1

v2

v3

v4

v5

(c) Step-3

v1

v2

v3

v4

v5

(d) Step-4

Figure 8.6: Step by step illustration for non-planarity of K5

In a similar way, we can prove the non-planarity of the complete bipartite graph K3,3 also.

Theorem 8.3.2 The complete bipartite graph K3,3 is nonplanar.

Proof. The complete bipartite graph K3,3 has 6 vertices and 9 edges. Let the vertices be
u1,u2,u−3,v1,v2,v3. We have edges from every ui to each vi, 1≤ i≤ 3. First, we take the

Lecture Notes on Graph Theory 87

edges from u1 to each v1,v2 and v3. Then, we take the edges between u2 to each v1,v2 and
v3, as seen in Figure 8.7(a). Thus we get three regions namely I, II and III. Finally, we have
to draw the edges between u3 to each v1,v2 and v3. We can draw the edge between u3 and v3

inside the region II without any crossover, (see Figure 8.7(b)). But, the edges between u3 and
v1, and u3 and v2 drawn in any region have a crossover with the previous edges. Thus, the
graph cannot be embedded in a plane. Hence, K3,3 is nonplanar. �

u3 u2 v2
u1

v1

v3

(a) Step-1

u3 u2 v2
u1

v1

v3

(b) Step-2

u3 u2 v2
u1

v1

v3

(c) Step-3

u3 u2 v2
u1

v1

v3

(d) Step-4

Figure 8.7: Step by step illustration for non-planarity of K3,3

We observe that the two graphs K5 and K3,3 have the following common properties:

(i) Both K5 and K3,3 are regular.
(ii) K5 and K3,3 are nonplanar.
(ii) Removal of one edge or a vertex makes each of K5 and K3,3 a planar graph.
(iv) K5 is a nonplanar graph with the smallest number of vertices, and K3,3 is the nonplanar

graph with the smallest number of edges.

In view of these facts, we note that K5 and K3,3 are the simplest nonplanar graphs.

88 Chapter 8. Planar Graphs

8.4 Detection of Planarity and Kuratowski’s Theorem

Determining whether a given graph is planar by drawing its plane graph (embedding it to
a plane) may not be a feasible method in all cases. So, a new procedure called elementary
topological reduction or simply, an elementary reduction on a given graph to determine
whether it is planar. This process has the following steps:

Elementary Reduction in a graph

Let G be a separable graph with blocks G1,G2,G3, . . . ,Gk. Then, we need to check the
planarity of each block separately.

S1: Note that addition and/or removal of self-loops do not affect planarity. So, if G has
self-loops, remove all of them.

S2: Similarly, parallel edges do not affect planarity. So, if G has parallel edges, remove all
of them, keeping one edge between every pair of vertices.

S3: We observe that removal of vertices having degree 2 by merging the two edges incident
on it, perform this action as far as possible.

Repeated performance of these steps will reduce the order and size of the graph without
affecting its planarity (see Figure 8.8).

v1 v2

v3v4

(a) G

v1 v2

v3v4

(b)

v1 v2

v3v4

(c)

v1 v2

v3

(d)

v1 v2

v3

(e)

v1

v3

(f)

v1

v3

(g)

Figure 8.8: Step by step illustration of elementary reduction of a graph.

After repeated application of elementary reduction, the given graph will be reduced to
any one of the following cases,

(i) A single edge K2; or
(ii) A complete graph K4; or

(iii) A non-separable simple graph with n≥ 5,ε ≥ 7.

Lecture Notes on Graph Theory 89

If H is a graph obtained from a graph G by a series of elementary reductions, then G and
H are said to be homeomorphic graphs. In this case, H is also called a topological minor of
G.

Lemma 8.4.1 A graph is planar if and only if its subdivisions are planar.

Theorem 8.4.2 — Kuratowski’s Theorem. A graph G planar if and only if it has no
subdivisions of K5 and K3,3. (In other words, a graph G planar if and only if no component
of G is homeomorphic to K5 and K3,3).

(a) (b) (c)

Figure 8.9: Non-planar graph with subgraphs homeomorphic to K3,3

8.5 Euler Theorem and Consequences

Theorem 8.5.1 — Euler Theorem on Plane Graphs. If G is a connected plane graph,
then |V (G)|+ |F(G)|− |E(G)|= 2, where V,E,F are respectively the vertex set, edge set
and set of faces of G.

Proof. Let V,E,F be the sets of vertices, edges and faces of a plane graph G. Let n = |V |, f =
|F |andε = |E|. We prove the result by mathematical induction on |E|. If ε = 0, then n = 1
and f = 1. Also, if ε = 1, then n = 2 and f = 1. In this case also, we have n+ f − ε = 2.

Now, assume that the theorem holds true for all connected graphs with fewer than ε ≥
edges, and let G be a connected plane graph with ε edges. If G is a tree, then n = ε +1 and
f = 1. Hence, we have n+ f − ε = ε +1+1− ε = 2, implying the result.

If G is not a tree, then it has an enclosed face. The edges of the face form a cycle. Take any
edge e on the cycle and consider graph H = G− e. Since |E(H)|= |E(G)|−1 = ε−1 < ε ,
by induction, |V (H)|+ |F(H)|− |E(H)| = 2. But we know that |E(H)| = ε−1, |V (H)| =
|V (G)|= n and |F(H)|= |F(G)|−1 = f −1.

Therefore,

|V (H)|+ |F(H)|− |E(H)| = 2

=⇒ n+ f −1− (ε−1) = 2

90 Chapter 8. Planar Graphs

=⇒ n+ f −1− ε +1 = 2

=⇒ n+ f − ε = 2.

Hence, the result follows by mathematical induction. �

In three-dimensional space, a platonic solid is a regular, convex polyhedron. Rectangular
prisms, cubes, octahedron, dodecahedron etc. are some examples. Note that every polyhedron
can be embedded into a plane (see Figure 8.10for example). That is, the graphs corresponding
to different polyhedra are planar. Therefore, the above theorem is also known as Euler’s
Theorem on Platonic Bodies.

v1 v2

v3v4

v5 v6

v7v8

(a) A cube

v1 v2

v3v4

v5 v6

v7v8

(b) Graph of a cube

Figure 8.10: A cube and its graphical representation

Theorem 8.5.2 If G is a planar graph without parallel edges on n vertices and ε edges,
where ε ≥ 3, then ε ≤ 3n−6. Moreover, if G is bipartite, then ε ≤ 2n−4.

Proof. Let f be the number of faces of G and let mi be the number of edges in the boundary
of the i-th face, where i = 1,2, . . . , f . Since every face contains at least three edges, we have
mi ≥ 3 for all i = 1,2,3, . . . , f . Then,

3 f ≤
f

∑
i=1

mi. (8.1)

On the other hand, since every edge can be on the boundary of at most two faces, we have

f

∑
i=1

mi ≤ 2ε. (8.2)

From equations (1) and (2), we have 3 f ≤ 2ε or f ≤ 2
3 ε . Now, by Euler’s theorem, we

have
n+ f − ε = 2

=⇒ n+
2
3

ε− ε ≤ 2

=⇒ n− ε

3
≥ 2

Lecture Notes on Graph Theory 91

=⇒ ε

3
≤ n−2

=⇒ ε ≤ 3n−6.

Part-(II) If G is bipartite, the shortest cycle is of length at least 4. Thus, we have

4 f ≤
f

∑
i=1

mi (8.3)

As mentioned in the previous case, we also have

f

∑
i=1

mi ≤ 2ε. (8.4)

From (3) and (4), we have 4 f ≤ 2ε or f ≤ 1
2 ε . By Euler Theorem, we have,

n+ f − ε = 2

=⇒ n+
1
2

ε− ε ≤ 2

=⇒ n− ε

2
≥ 2

=⇒ ε

2
≤ n−2

=⇒ ε ≤ 2n−4.

This completes the proof. �

Theorem 8.5.3 The complete graph K5 is non-planar.

Proof. If possible, let K5 be a planar graph. Then, by above theorem, ε ≤ 3n−6. In K5, we
have n = 5 and ε = 10. Hence 3n−6 = 9 < ε = 10, which contradicts the previous result.
Hence, K5 is non-planar. �

Theorem 8.5.4 The complete bipartite graph K3,3 is non-planar.

Proof. If possible, let K3,3 be a planar graph. Then, by above theorem, ε ≤ 2n−4. In K3,3,
we have n = 6 and ε = 9. Hence 2n−4 = 8 < ε = 9, which contradicts the previous result.
Hence, K3,3 is non-planar. �

The girth of a graph is the length of its smallest cycle. Then, the following theorem is a
generalisation of Theorem 8.5.2.

Theorem 8.5.5 Let G be a plane graph with n vertices and ε edges and let g be the girth
of the graph G. Then, ε ≤ g(n−2)

g−2 .

92 Chapter 8. Planar Graphs

Proof. Let f be the number of faces of G and let mi be the number of edges in the boundary
of the i-th face, where i = 1,2, . . . , f . Since g is the girth of G every face contains at least g
edges, we have mi ≥ g for all i = 1,2,3, . . . , f . Then,

g f ≤
f

∑
i=1

mi. (8.5)

Since every edge can be in the boundary of at most two faces, we have

f

∑
i=1

mi ≤ 2ε. (8.6)

From equations (8.5) and (8.6), we have g f ≤ 2ε or f ≤ 2
g ε . Now, by Euler’s theorem,

we have

n+ f − ε = 2

=⇒ n+
2
g

ε− ε ≤ 2

=⇒ n− (g−2)ε
g

≥ 2

=⇒ (g−2)ε
g

≤ n−2

=⇒ ε ≤ g(n−2)
g−2

.

This completes the proof. �

Let φ be a region of a planar graph G . We define the degree of φ , denoted by d(φ), as
the number of edges on the boundary of φ .

Theorem 8.5.6 Let G be a plane graph. Then, ∑
f∈F(G)

d(f) = 2|E(G)|.

A graph is d-degenerate if it has no subgraph of minimum degree at least d.
Problem 8.1 Using Euler Theorem on Planar Graphs, verify whether the Petersen’s graph is
planar.
Solution. Petersen graph does not have triangles or 4-cycles. The smallest cycle in Petersen
graph is C5. Therefore, its girth g = 5. Then, if Petersen graph were planar, then by Theorem
8.5.5, it should satisfy the inequality ε ≤ g(n−2)

g−2 .

For Petersen graph, we have n = 10,ε = 15 and g = 5. Then, ε ≤ g(n−2)
g−2 =⇒ 15≤ 5×8

3 ,
which is not true. Therefore, Petersen graph is not planar. �

Problem 8.2 Using Euler Theorem on Planar Graphs, verify whether the Dürer graph (see
Figure 8.11) is planar.
Solution: From Figure 8.11, we note that the Dürer graph G has triangles. Therefore, if G is
planar, then it should satisfy the inequality ε ≤ 3n−6.

Lecture Notes on Graph Theory 93

Figure 8.11: Dürer graph

For the Dürer graph, we have n = 12,ε = 18 and g = 3. Therefore, ε ≤ 3n−6 =⇒ 18≤
3× 12− 6, which is true. Therefore, the Dürer graph is planar. (Note that one of the two
triangles inside the outer-cycle of the Dürer graph can be redrawn to the outside of the cycle
so that no two edges of the new graph do not intersect.)

8.6 Geometric Dual of a Graph
Definition 8.6.1 — Geometric Dual of a Graph. Given a plane graph G, the dual graph
(usually called the geometric dual) of G, denoted by G∗, is the plane graph whose vertices
are the faces of G such that two vertices v∗i and v∗j in G∗ are adjacent in G∗ if and only if
the corresponding faces fi and f j are adjacent in G.

Note that two faces of a graph G are adjacent in G if they have a common edge at their
boundaries.

In other words, the correspondence between edges of G and those of the dual G∗ is as
follows:

If e ∈ E(G) lies on the boundaries of two faces fi and f j in G, then the endpts of the
corresponding dual edge e∗ ∈ E(G∗) are the vertices v∗i and v∗j that represent faces fi and f j

of G.
A graph and its dual are illustrated in Figure 8.12.
Note that there will be a one-to-one correspondence between the edges of a graph G and

its dual G∗-one edge of G∗ intersecting one edge of G (see Figure8.12). We note that

V (G∗)	=	F(G)
E(G∗)	=	E(G)
F(G∗)	=	V (G)

Also, if r and µ respectively denote the rank and nullity of G and r∗ and µ∗ denote the
rank and nullity of G∗, then we observe that r = µ∗ and µ = r∗.

94 Chapter 8. Planar Graphs

e2

e1

e5

e4

e6

e7

e3
e∗5

e∗2

e∗6

e∗3

e∗1

e∗7

e∗4

Figure 8.12: A graph and its dual graph

The following observations can be made on the relationships between a planar graph G
and its dual G∗:

(i) A self-loop in G corresponds to a pendant edge in G∗;
(ii) A pendant edge in G corresponds to a self-loop in G∗;

(iii) Edges that are in series in G produce parallel edges in G∗;
(iv) Parallel edges i G produce edges in series in G∗;
(v) The number of edges on the boundary of a face f (the degree of f) in G is equal to the

degree of the corresponding vertex v∗ in G∗.
(vi) Both G and G∗ are planar.

(vii) G∗∗ = G. That is, G is the dual of G∗.
It can be observed that duals of isomorphic graphs need not be isomorphic. The Figure

8.13 illustrates this fact.
From this fact, we notice that the two different geometric dual graphs of the same graph

(isomorphic) need not be isomorphic.

Theorem 8.6.1 Two planar graphs G1 and G2 are duals of each other if and only if there
exists a one-to-one correspondence between their edge sets such that the circuits (cycles)
in G1 corresponds to cut-sets in G2 and vice versa.

Proof. Let us consider a plane representation of a planar graph. Let us also draw a dual G∗

of G. Then consider an arbitrary circuit C in G.
Clearly, C will form some closed simple curve in the plane representation of G - dividing

Lecture Notes on Graph Theory 95

v1 v2

v3v4

v5

(a) G1

v1 v2

v3

v4

(b) G∗1

v1 v2

v3v4

v5

(c) G2

v1 v2

v3

v4

(d) G∗2

Figure 8.13: Two isomorphic graphs and their non-isomorphic duals

the plane into two areas.(Jordan curve theorem). Thus the vertices of G∗ are partitioned into
two nonempty, mutually exclusive subsets - one inside C and the other outside. In other
words, the set of edges C∗ in G∗ corresponding to the set C in G is a cut-set in G∗.(No proper
subset of C∗ will be a cut-set in G∗). Likewise, it is apparent that corresponding to a cut-set
S∗ in G∗ there is a unique circuit consisting of the corresponding edge-set S in G such that S
is a circuit. This proves the necessary part of the theorem.

To prove the sufficiency, let G a planar graph let G′ be a graph for which there is a
one-to-one correspondence between the cut-set of G and circuits of G′, and vice versa. Let
G∗ be a dual graph of G. There is a one-to-one correspondence between the circuits of G′

and cut-sets of G, and also between the cut-sets of G and circuits of G∗. Therefore there is a
one-to-one correspondence between the circuits of G′ and G∗, implying that G′ and G∗ are
2-isomorphic. Hence, G′ must be a dual of G. �

8.6.1 Dual of a Subgraph

Let G be a planar graph and G∗ be its dual. Let e be an edge in G, and the corresponding
edge in G∗ be e∗. Suppose that we delete edge e from G and then try to find the dual of G−e.
If edge e was on the boundary of two regions, removal of e would merge these two regions
into one. Thus, the dual (G− e)∗ can be obtained from G∗ by deleting the corresponding

96 Chapter 8. Planar Graphs

edge e∗ and then fusing the two end vertices of a∗ in G∗− e∗. On the other hand, if edge e is
not on the boundary, e∗ forms a self-loop. In that case, G∗−e∗ is the same as (G−e)∗. Thus,
if a graph G has a dual G∗, the dual of any subgraph of G can be obtained by successive
application of this procedure.

8.6.2 Dual of a Homeomorphic Graph

Let G be a planar and G∗ be its dual. Let a be an edge in G, and the corresponding edge in
G∗ be a∗. Suppose that we create an additional vertex in G by introducing a vertex of degree
two in edge a. It simply adds an edge parallel to a∗ in G∗. Likewise, the reverse process of
merging two edges in series will simply eliminate one of the corresponding parallel edges
in G∗. Thus if a graph G has a dual G∗, the dual of any graph homeomorphic to G can be
obtained from G∗ by the above procedure.

Theorem 8.6.2 A graph has a dual if and only if it is planar.

Proof. The necessary part is obvious. We can draw the dual of a graph G only when we can
identify each face of G, which is possible only when G is planar.

Conversely, assume that G has a dual. Now, we have to prove that G is planar. Let G
be a nonplanar graph. Then, according to Kuratowski’s theorem, G contains K5 or K3,3 or
a graph homeomorphic to either of these. We have already seen that a graph G can have a
dual if every subgraph H of G and every graph homeomorphic to H has a dual. Thus, if we
can show that neither K5 nor K3,3 has a dual, our result will be completed. Now, we have the
following cases.

1. Suppose that K3,3 has a dual D. Observe that the cut-sets in K3,3 correspond to circuits
(cycles) in D and vice versa. Since K3,3 has no cut-set consisting of two edges (as
at least three edges are to be removed form K3,3 to make it disconnected), D has no
circuit consisting of two edges. That is, D contains no pair of parallel edges. Since
every circuit in K3,3 is of length four or six, D has no cut-set with less than four edges.
Therefore, the degree of every vertex in D is at least four. As D has no parallel edges
and the degree of every vertex is a least four, D must have at least five vertices each of
degree four or more. That is, D must have at least (5×4)/2 = 10 edges (since, by the
first theorem on graph theory, we have ε = 1

2 ∑d(v)). This is a contradiction to the fact
that K3,3 and its dual has nine edges. Hence, K3,3 cannot have a dual.

2. Suppose that the graph K5 has a dual H. We know that K5 has
(a) 10 edges, none of which are parallel edges;
(b) no cut-set with two edges (as at least four edges must be removed to make K5

disconnected); and
(c) cut-sets with only four or six edges.

Consequently, graph H must have
(a) 10 edges,
(b) no vertex with degree less than three,
(c) no pair of parallel edges, and
(d) circuits of length four or six only.

Lecture Notes on Graph Theory 97

Now, graph H contains a hexagon, and no more than three edges can be added to a
hexagon without creating a circuit of length three or a pair of parallel edges. Since
both of these are forbidden in H and H has 10 edges, there must be at least 7 vertices
in H. The degree of each of these vertices is at least three. This leads to H having at
least 11 edges, which is a contradiction. Hence, K5 also does not have a dual.

This completes the proof. �

8.7 Exercises

1. Show that Petersen graph is 3-connected.
2. Show that λ (G) = κ(G) if G is a simple graph with ∆(G)≤ 3.
3. Show that deleting an edge-cut of size 3 from Petersen graph creates an isolated vertex.
4. Show that deletion of an edge reduces the connectivity by at most 1.
5. Show that a bipartite graph G with d(G)≥ 4 is non-planar.
6. Prove that plane graph G is bipartite if and only if every face of G has even length (or

degree). [Hint: Use induction on f]
7. Prove that the complement of a simple planar graph with at least 11 vertices is non-

planar.
8. Let G be a connected graph with 15 vertices and 40 edges. Can we say that G is planar?

Why?
9. Let G be a connected triangle-free non-bipartite graph with 10 vertices and 25 edges.

Can we say that G is planar? Why?
10. Draw a planar graph on 10 vertices and find if dual.
11. If e is an edge of the complete graph K5, then show that K5− e is planar.
12. If e is an edge of the complete bipartite graph K3,3, then show that K3,3− e is planar.
13. Prove that a subset of a planar graph is also planar.
14. Let G be a 4-regular graph with 10 faces. Determine its order. Give a drawing of such

a graph.
15. If G is a graph order 11, then show that either G or its complement Ḡ is non-planar.
16. Show that a simple planar graph G with fewer than 12 vertices, has a vertex v with

degree d(v)≤ 4.
17. Show that a simple planar graph G with fewer than 30 edges, has a vertex v with degree

d(v)≤ 4.
18. Let G be a plane graph with n vertices, ε edges, k components and f faces. Then, show

that n− ε + f = k+1.
19. Let G be a connected plane graph. Then, show that G is bipartite if and only if its dual

G∗ is an Eulerian graph.
20. Draw an example of a simple graph in which the degree of every vertex is at least 5.
21. Let G be a connected simple plane graph. Then show that

(a) if d(v)≥ 5, for all vertex v in V (G), then there are at least 12 vertices of degree
5 in G.

(b) if n≥ 4 and d(v)≥ 3, for all vertex v in V (G), then G has at least 4 vertices of

98 Chapter 8. Planar Graphs

degree 6.
22. Verify Euler’s theorem for the following graphs:

23. Determine whether the following graphs are planar. Justify your answer.

V
9 Matrix Representations of Graphs 101
9.1 Incidence Matrix of a Graph
9.2 Cycle Matrix
9.3 Cut-Set Matrix
9.4 Relation between A f ,B f and C f

9.5 Adjacency Matrix
9.6 Path Matrix
9.7 Exercises

GRAPHS AND MATRICES

9. Matrix Representations of Graphs

Matrices are an alternate way to represent and summarize network data. A matrix contains
exactly the same information as a graph, but is more useful for computation and computer
analysis. Indeed, with a given graph, adequately labelled, there are associated several
matrices.

9.1 Incidence Matrix of a Graph

Let G be a graph with n vertices, m edges and without self-loops. The incidence matrix A of
G is an n×m matrix defined by A(G) = [ai, j];1≤ i≤ n, 1≤ j ≤ ε , where

ai j =

{
1; if j-th edge incidents on i-th vertex

0; Otherwise.

where the n rows of A of G correspond to the n vertices and the m columns of A correspond
to ε edges.

The incidence matrix contains only two types of elements, 0 and 1. Hence, this is clearly
a binary matrix or a (0,1)-matrix.

The following table gives the incidence relation of the graph G:

102 Chapter 9. Matrix Representations of Graphs

v1 v2

v3 v4v5v6

e1

e2

e3

e4

e5

e6

e7 e8

Figure 9.1: A graph G

e1 e2 e3 e4 e5 e6 e7 e8
v1 1 0 0 0 0 0 1 0
v2 1 1 0 0 0 0 0 1
v3 0 1 1 1 1 0 0 0
v4 0 0 1 1 0 0 0 0
v5 0 0 0 0 1 1 1 1
v6 0 0 0 0 0 1 0 0

Table 9.1: The incidence relation of the graph G
.

Therefore, the incidence matrix of G is as given below:

A(G) =



1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1
0 1 1 1 1 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0


Now consider the following disconnected graph G with two components.

v1 v2

v3v4

v5

v6

v7

v8

e1

e2

e3

e4
e5

e6

e7

e8

e9

Figure 9.2: A disconnected graph G with two components G1 and G2.

Lecture Notes on Graph Theory 103

The incidence matrix of the graph in Figure 9.2 is given below:

A(G) =



1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1


From the above examples, we have the following observations about the incidence matrix

A of a graph G.
1. Since every edge is incident on exactly two vertices, each column of A has exactly two

ones.
2. The number of ones in each row equals the degree of the corresponding vertex.
3. A row with all zeros represents an isolated vertex.
4. Parallel edges in a graph produce identical columns in its incidence matrix.
5. If a graph G is disconnected and consists of two components G1 and G2, then its

incidence matrix A(G) can be written in a block diagonal form as

A(G) =

[
A(G1) 0

0 A(G2)

]

where A(G1) and A(G2) are the incidence matrices of the components G1 and G2 of G.
This observation results from the fact that no edge in G1 is incident on vertices of G2

and vice versa. Obviously, this is also true for a disconnected graph with any number
of components.

6. Permutation of any two rows or columns in an incidence matrix simply corresponds to
relabelling the vertices and edges of the same graph.

R The matrix A has been defined over a field, Galois field modulo 2 or GF(2) (that is, the
set 0,1 with operation addition modulo 2 written as + such that 0+0 = 0, 1+0 = 1,
1+1 = 0 and multiplication modulo 2 written as“.” such that 0 ·0 = 0, 1.0 = 0 = 0.1,
1.1 = 1.

Theorem 9.1.1 Two graphs G1 and G2 are isomorphic if and only if their incidence
matrices A(G1) and A(G2) differ only by permutation of rows and columns.

Proof. Let the graphs G1 and G2 be isomorphic. Then, there is a one-one correspondence
between the vertices and edges in G1 and G2 such that the incidence relation is preserved.
Hence, A(G1) and A(G2) are either same or differ only by permutation of rows and columns.

The converse follows, since permutation of any two rows or columns in an incidence
matrix simply corresponds to relabelling the vertices and edges of the same graph. This

104 Chapter 9. Matrix Representations of Graphs

complete the proof. �

9.1.1 Rank of the Incidence Matrix

Let G be a graph and let A(G) be its incidence matrix. Now, each row in A(G) is a vector
over GF(2) in the vector space of graph G. Let the row vectors be denoted by A1,A2, . . . ,An.
Then,

A(G) =


A1

A2
...

An.


Since there are exactly two 1’s in every column of A, the sum of all these vectors is 0

(this being a modulo 2 sum of the corresponding entries). Thus vectors A1,A2, . . . ,An are
linearly dependent. Therefore, rankA < n. Hence, rankA≤ n−1.

From the above observations, we have the following result.

Theorem 9.1.2 If A(G) is an incidence matrix of a connected graph G with n vertices,
then rank of A(G) is n−1.

Proof. Let G be a connected graph with n vertices and let the number of edges in G be ε . Let
A(G) be the incidence matrix and let A1,A2, . . . ,An be the row vector of A(G). Then, we have

A(G) =


A1

A2
...

An.

 (9.1)

Since A1 +A2 + . . .+An =
[
2 2 . . . 2

]
≡ 0(mod 2), we have A1,A2, . . .An are lin-

early dependent. Hence, rank(A(G))≤ n−1.
Consider the sum of any m of these row vectors, ε ≤ n−1. Since G is connected, A(G)

cannot be partitioned in the form

A(G) =

[
A(G1) 0

0 A(G2)

]
(9.2)

such that A(G1) has ε rows and A(G2) has n− ε rows.
Thus, there exists no m×m submatrix of A(G) for m ≤ n− 1, such that the modulo 2

sum of these m rows is equal to zero. As there are only two elements 0 and 1 in this field,
the additions of all vectors taken m at a time for m = 1,2, . . . ,n−1 gives all possible linear
combinations of n−1 row vectors. Hence, no linear combinations of m row vectors of A, for
m≤ n−1, is zero. Therefore, rank(A(G))≥ n−1.

Combining Equation (9.1) and Equation (9.2), it follows that rank(A(G)) = n−1. �

Lecture Notes on Graph Theory 105

Corollary 9.1.3 If G is a disconnected graph with k components, then rank(A(G)) =

n− k.

Let G be a connected graph with n vertices and m edges. Then, the order of the incidence
matrix A(G) is n× ε . Now, if we remove any one row from A(G), the remaining (n−
1)× ε submatrix is of rank (n−1). Hence, the remaining (n−1) row vectors are linearly
independent, which shows that only (n−1) rows of an incidence matrix are required to specify
the corresponding graph completely, because (n−1) rows contain the same information as
the entire matrix. This follows from the fact that given (n−1) rows, we can construct the
n-th row, as each column in the matrix has exactly two ones. Such an (n−1)× ε matrix of A
is called a reduced incidence matrix and is denoted by A f . The vertex corresponding to the
deleted row in A f is called the reference vertex. Obviously, any vertex of a connected graph
can be treated as the reference vertex.
The following result gives the nature of the incidence matrix of a tree:

Theorem 9.1.4 The reduced incidence matrix of a tree is non-singular.

Proof. A tree with n vertices has n− 1 edges and also a tree is connected. Therefore, the
reduced incidence matrix is a square matrix of order n−1, with rank n−1. Hence, the result
follows.

Now a graph G with n vertices and n− 1 edges which is not a tree is obviously dis-
connected. Therefore, the rank of the incidence matrix of G is less than n−1. Hence, the
(n−1)× (n−1) reduced incidence matrix of a graph is non-singular if and only if the graph
is a tree. �

Let H be a subgraph of a graph G, and let A(H) and A(G) be the incidence matrices of
H and G respectively. Clearly, A(H) is a submatrix of A(G), possibly with rows or columns
permuted. We observe that there is a one-one correspondence between each n× k submatrix
of A(G) and a subgraph of G with k edges, where k is a positive integer, k < m and n being
the number of vertices in G.
Then, submatrices of A(G) corresponding to special types of graphs will show special
properties. The following result is one among such properties:

Theorem 9.1.5 Let A(G) be the incidence matrix of a connected graph G with n vertices.
An (n− 1)× (n− 1) submatrix of A(G) is non-singular if and only if the n− 1 edges
corresponding to the n−1 columns of this matrix constitutes a spanning tree in G.

Proof. Let G be a connected graph with n vertices and m edges. Hence, m ≥ n− 1. Let
A(G) be the incidence matrix of G, so that A(G) has n rows and m columns (m≥ n−1). We
know that every square submatrix of order (n−1)× (n−1) in A(G) is the reduced incidence
matrix of some subgraph H in G with n− 1 edges, and vice versa. We also know that a
square submatrix of A(G) is non-singular if and only if the corresponding subgraph is a
tree. Obviously, the tree is a spanning tree because it contains n−1 edges of the n-vertex

106 Chapter 9. Matrix Representations of Graphs

graph. Hence, (n−1)× (n−1) submatrix of A(G) is non-singular if and only if n−1 edges
corresponding to n−1 columns of this matrix forms a spanning tree. �

9.2 Cycle Matrix

Definition 9.2.1 Let G be a graph with ε edges and q different cycles. The cycle matrix or
circuit matrix of G, denoted by B(G), is defined as a (0,1)-matrix B(G) = [bi j] of order
q× ε , such that

bi j =

{
1; if the i-th cycle includes j-th edge;

0; otherwise.
(9.3)

In Figure 9.1, we have the the following circuits:

C1 = {e1,e7,e8}
C2 = {e2,e5,e8}
C3 = {e3,e4}
C4 = {e1,e2,e5,e7}.

Therefore, the circuit matrix of the given graph in Figure 9.1 is a 4×9 matrix as given
below:

C(G) =


1 0 0 0 0 0 1 1
0 1 0 0 1 0 0 1
0 0 1 1 0 0 0 0
1 1 0 0 1 0 1 0


Now consider the following disconnected graph:

v1 v2

v3v4

v5

v6

v7

v8

e1

e2

e3

e4
e5

e6

e7

e8

e9

e10

Figure 9.3: A disconnected graph G with two components G1 and G2.

C1 = {e1,e4,e5}

Lecture Notes on Graph Theory 107

C2 = {e2,e3,e5}
C3 = {e1,e2,e3,e4}
C4 = {e6,e7,e8}
C5 = {e10}.

Therefore, the circuit matrix of the given graph in Figure 9.3 is a 5×10 matrix as given
below:

B(G) =


1 0 0 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1


In view of the above examples, we have the following observations regarding the cycle matrix
B(G) of a graph G:

1. A column of all zeros corresponds to a cut-edge. That is, an edge which does not
belong to any cycle corresponds to an all-zero column in B(G).

2. Each row of B(G) is a cycle vector.
3. A cycle matrix has the property of representing a self-loop and the corresponding row

has a single 1.
4. The number of 1’s in a row is equal to the number of edges in the corresponding cycle.
5. If the graph G is separable (or disconnected) and consists of two blocks (or compo-

nents) H1 and H2, then the cycle matrix B(G) can be written in a block-diagonal form
as

B(G) =

[
B(H1) 0

0 B(H2)

]
(9.4)

where B(H1) and B(H2) are the cycle matrices of H1 and H2. This is obvious from the
fact that cycles in H1 have no edges belonging to H1 and vice versa.

6. Permutation of any two rows or columns in a cycle matrix corresponds to relabeling
the cycles and the edges.

7. Two graphs G1 and G2 have the same cycle matrix if and only if G1 and G2 are 2-
isomorphic as two graphs G1 and G2 are 2-isomorphic if and only if they have cycle
correspondence. Hence, we observe that the cycle matrix does not specify a graph
completely, but only specifies the graph within 2-isomorphism.

The following two graphs which are non-isomorphic, but has the same cycle matrix.

The cycle matrix of both matrices will be as follows:

B(G) =


0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 0 0 1 1 1
1 1 1 1 0 1 0
1 1 1 0 1 1 0



108 Chapter 9. Matrix Representations of Graphs

(a) G (b) H

Figure 9.4: Examples non-isomorphic graphs which have same cycle matrix

This fact highlights the fact that the cycle matrix does not specify a graph in the full
sense.

The relation between the incidence matrix and the cycle matrix of a graph G is given
below.

Theorem 9.2.1 If G is a graph without self-loops, with incidence matrix A and cycle
matrix B whose columns are arranged using the same order of edges, then every row of B
is orthogonal to every row of A, that is ABT = BAT ≡ 0(mod2), where AT and BT are the
transposes of A and B respectively.

Proof. Let G be a graph without self-loops, and let A and B, respectively, be the incidence
and cycle matrix of G. Note that for any vertex vi and for any cycle C j in G, either vi ∈C j or
vi /∈C j. In the former case, there are exactly two edges of C j which are incident on vi and in
the latter case, there is no edge of C j which is incident on vi.

Now, consider the i-th row of A and the j-th row of B (which is the j-th column of BT).
Since the edges are arranged in the same order, the r-th entries in these two rows are both
non-zero if and only if the edge er is incident on the i-th vertex vi and is also in the j- th cycle
C j.

We have

[ABT]i j = ∑[A]ir[BT]r j

= ∑[A]ir[B] jr

= ∑airb jr.

For each er of G, we have one of the following cases:
(i) er is incident on vi and er /∈C j. Here air = 1,b jr = 0.

(ii) er is not incident on vi and er ∈C j. In this case, air = 0,b jr = 1.
(iii) er is not incident on vi and er /∈C j, so that air = 0,b jr = 0.

All these cases imply that the i-th vertex vi is not in the j-th cycle C j and we have
[ABT]i j = 0≡ 0 (mod2).

(iv) er is incident on vi and er ∈C j.
Here we have exactly two edges, say er and et incident on vi so that air = 1,ait = 1,b jr = 1
and b jt = 1. Therefore, [ABT]i j = ∑airb jr = 1+1≡ 0 (mod2). �

Lecture Notes on Graph Theory 109

For the graph G in Figure 9.1, we have

ABT =



1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1
0 1 1 1 1 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0


·



1 0 0 1
0 1 0 1
0 0 1 0
0 0 1 0
0 1 0 1
0 0 0 0
1 0 0 1
1 1 0 0



=



2 0 0 2
2 0 0 2
0 2 2 2
0 0 2 0
2 0 0 2
0 0 0 0


≡ 0(mod2).

9.2.1 Fundamental Cycle Matrix

We know that a set of fundamental cycles (or basic cycles) with respect to any spanning tree
in a connected graph are the only independent cycles in a graph. The remaining cycles can
be obtained as ring sums (i.e., linear combinations) of these cycles. Thus, in a cycle matrix,
if we take only those rows that correspond to a set of fundamental cycles and remove all
other rows, we do not lose any information. The removed rows can be formed from the rows
corresponding to the set of fundamental cycles.

A submatrix of a cycle matrix in which all rows correspond to a set of fundamental cycles
is called a fundamental cycle matrix, denoted by B f .

Note that the permutation of rows or columns or both do not affect the matrix B f . If the
order and size of a connected graph G are respectively n and ε , then B f is an (ε−n+1)× ε

matrix because the number of fundamental cycles is ε−n+1, each fundamental cycle being
produced by one chord.

Now, arranging the columns in B f such that all the ε−n+1 chords correspond to the
first ε−n+1 columns and rearranging the rows such that the first row corresponds to the
fundamental cycle made by the chord in the first column, the second row to the fundamental
cycle made by the second, and so on. A matrix B f thus arranged has the form B f = [Iµ : Bt],
where Iµ is an identity matrix of order µ = ε − n+ 1 and Bt is the remaining µ × (n− 1)
submatrix, corresponding to the branches of the spanning tree (see Figure ?? for example).

In Figure 9.5, the edges e1,e3 and e6, marked as dotted lines, are chords (with respect
to the spanning tree whose edges normal lines in the figure). Therefore, the corresponding
fundamental cycles are

Z1 = {e2,e3,e4,e7}

110 Chapter 9. Matrix Representations of Graphs

e1

e2

e6e7

e3

e4

e5

Figure 9.5: A graph with branches and chords specified.

Z2 = {e4,e6,e7}
Z3 = {e1,e5,e7}

Then, we can construct the following table after suitable rearrangements of columns
(which represent edges) as

e1 e2 e3 e4 e5 e6 e7
Z1 0 1 1 1 0 0 1
Z2 0 0 0 1 0 1 1
Z3 1 0 0 0 1 0 1

Table 9.2: Table for fundamental circuit matrix

which can be rewritten as

e3 e6 e1 e2 e4 e5 e7
Z1 1 0 0 1 1 0 1
Z2 0 1 0 0 1 0 1
Z3 0 0 1 0 0 1 1

Table 9.3: Table for fundamental circuit matrix
.

Here the fundamental circuit matrix B f can be written as B f = [Iµ : Bt], where

B f =

0 1 1 1 0 0 1
0 0 0 1 0 1 1
1 0 0 0 1 0 1

∼


1 0 0
... 1 1 0 1

0 1 0
... 0 1 0 1

0 0 1
... 0 0 1 1



where Iµ =

1 0 0
0 1 0
0 0 1

 and Bt =

1 1 0 1
0 1 0 1
0 0 1 1


From equation B f = [Iµ

...Bt], we have rank B f = µ = ε−n+1. Since B f is a submatrix

Lecture Notes on Graph Theory 111

of the cycle matrix B, then, rankB≥ rank(B f) and thus, rank(B)≥ ε−n+1.

9.2.2 Rank of a Cycle Matrix

Before proceeding to the next theorem, let us now recall the following theorem, called
Sylvester’s Theorem, on the nullity of matrices:

Theorem 9.2.2 — Sylvester’s Theorem. If A and B are matrices of order k×n and n× p
respectively, then nullity(AB)≤ nullity(A)+nullity(B).

Now, the following result gives the rank of the cycle matrix.

Theorem 9.2.3 The rank of the cycle matrix B a connected graph G with n vertices and ε

edges is ε−n+1.

Proof. Let A be the incidence matrix of the connected graph G. Then, by Theorem 9.2.1, we
have ABT ≡ 0(mod 2). Using Sylvester’s theorem, we have rank(A)+ rank(BT)≤ ε so that
rank(A)+ rank(B)≤ ε . Therefore, rank(B)≤ ε− rank(A).
As rank(A) = n−1, we get rank(B)≤ ε− (n−1) = ε−n+1. But, rank(B)≥ ε−n+1.
Combining the above two equations, we get rank(B) = ε−n+1. �

Theorem 9.2.4 The rank of the cycle matrix B a connected graph G with n vertices,ε
edges and k components is ε−n+ k.

Proof. Let B be the cycle matrix of the disconnected graph G with n vertices, ε edges
and k components. Let the k components G1,G2,G3, . . . ,Gk have the number of vertices
n1,n2, . . . ,nk vertices respectively and the number of edges ε1,ε2,ε3, . . . ,εk respectively.

Then, we have
k
∑

i=1
ni = n and

k
∑

i=1
εi = ε .

Since each component Gi is connected, from Theorem 9.2.3, we have rank(B(Gi)) =

εi−ni +1. Therefore,

rank(B(G)) =
k

∑
i=1

rank(B(Gi)) (9.5)

=
k

∑
i=1

(εi−ni +1) (9.6)

= ε−n+ k. (9.7)

�

9.3 Cut-Set Matrix

Let G be a graph with ε edges and q cut-sets. The cut-set matrix of G is a matrix, denoted by
C(G) and is defined to be C = [ci j]q×ε of G is a (0,1)-matrix such that

112 Chapter 9. Matrix Representations of Graphs

ci j =

{
1; if i-th cutset contains j-th edge;

0; otherwise.

The cut-sets of the graph in Figure 9.1 are c1 = {e1,e7},c2 = {e1,e2,e7},c3 = {e3,e4},c4 =

{e2,e5},c5 = {e5,e7,e8},c6 = {e6},c7 = {e2,e7,e8} and c8 = {e1,e5,e8}.
The following table gives the corresponding relation between the cutsets and edges of the

graph.

e1 e2 e3 e4 e5 e6 e7 e8
c1 1 0 0 0 0 0 1 0
c2 1 1 0 0 0 0 0 1
c3 0 0 1 1 0 0 0 0
c4 0 1 0 0 1 0 0 0
c5 0 0 0 0 1 0 1 1
c6 0 0 0 0 0 1 0 0
c7 0 1 0 0 0 0 1 1
c8 1 0 0 0 1 0 0 1

Table 9.4: Table for cut-set matrix of a graph

Hence the cut-set matrix of G is

C(G) =



1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 1
1 0 0 0 1 0 0 1


The following are some important observations about the cut-set matrix C(G) of a graph

G.

1. The permutation of rows or columns in a cut-set matrix corresponds simply to the
renaming of the cut-sets and edges respectively.

2. Each row in C(G) is a cut-set vector.
3. A column with all zeros corresponds to an edge forming a self-loop.
4. Parallel edges form identical columns in the cut-set matrix.
5. In a non-separable graph, since every set of edges incident on a vertex is a cut-set,

every row of incidence matrix A(G) is included as a row in the cut-set matrix C(G).
That is, for a non-separable graph G, C(G) contains A(G). For a separable graph, the
incidence matrix of each block is contained in the cut-set matrix.
For example, the incidence matrix of the block {e1,e2,e5,e7,e8} of the graph G in

Lecture Notes on Graph Theory 113

Figure 9.1is the 4×5 submatrix of C,
1 0 0 1 0
1 1 0 0 1
0 1 1 0 0
0 0 1 1 1


which is obtained after after removing the rows c3,c6,c7,c8 and columns e3,e4,e6.

6. It follows from observation 5 , that rank(C(G))≥ rank(A(G)). Hence, for a connected
graph with n vertices, rank(C(G))≥ n−1.

The following result for connected graphs shows that cut-set matrix, incidence matrix
and the corresponding graph matrix have the same rank.

Theorem 9.3.1 The rank of a cut-set matrix C(G) of a connected graph G is equal to the
rank of incidence matrix A(G), which equals the rank of graph G.

Proof. Let A(G), B(G) and C(G) be the incidence, cycle and cut-set matrix of the connected
graph G. Then we have

rank(C(G))≥ n−1 (9.8)

Since the number of edges common to a cut-set and a cycle is always even (see Theorem
7.2.4), every row in C is orthogonal to every row in B, provided the edges in both B and C are
arranged in the same order. Hence, we have

BCT =CBT ≡ 0(mod 2). (9.9)

Now, by Sylvester’s Theorem to equation (9.8), we have rank(B)+ rank(C) ≤ ε . For
a connected graph, we have rank(B) = m− n+ 1. Therefore, rank(C) ≤ ε − rank(B) =
ε− (ε−n+1) = n−1. Hence, we have

rank(C)≤ n−1 (9.10)

Then, from Equation (9.8), (9.9) and 9.10, we have rank(C) = n−1. �

9.3.1 Fundamental Cut-set Matrix

The fundamental cut-set matrix C f of a connected graph G of order n and size ε is an
(n−1)× ε submatrix of C such that the rows correspond to the set of fundamental cut-sets
with respect to some spanning tree.

For example, consider the graph in Figure 9.6, whose branches are represented by normal
lines and chords are represented by dotted lines.

The fundamental cut-sets of the graph are c1 = {e1,e7},c3 = {e3,e4},c4 = {e2,e5},c7 =

{e2,e7,e8} and c8 = {e1,e5,e8}. Hence, the fundamental cut-set matrix of the graph G is

114 Chapter 9. Matrix Representations of Graphs

v1 v2

v3 v4v5v6

e1

e2

e3

e4

e5

e6

e7 e8

Figure 9.6: A graph G with branches and chords are specified

C f =


1 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 0 0 1 1
1 0 0 0 1 0 0 1


Clearly, a fundamental cut-set matrix C f can be partitioned into two submatrices, one of

which is an identity matrix In−1 of order n−1. That is, C f = [Cc : In−1], where the last n−1
columns forming the identity matrix correspond to the n−1 branches of the spanning tree
and the first ε−n+1 columns forming Cc correspond to the chords.

9.4 Relation between A f ,B f and C f

Let G be a connected graph and A f ,B f and C f be respectively the reduced incidence matrix,
the fundamental cycle matrix, and the fundamental cut-set matrix of G. We have shown that

B f = [Iµ

... Bt] (9.11)

and

C f = [Cc
... In−1] (9.12)

where Bt denotes the submatrix corresponding to the branches of a spanning tree and Cc

denotes the submatrix corresponding to the chords.
Let the spanning tree T in Equation 9.11 and Equation 9.12 be the same and let the order

of the edges in both equations be same. Also, in the reduced incidence matrix A f of size
(n−1)× epsilon, let the edges (i.e., the columns) be arranged in the same order as in B f and
C f .

Partition A f into two submatrices given by

C f = [Ac
... At] (9.13)

Lecture Notes on Graph Theory 115

where At consists of n−1 columns corresponding to the branches of the spanning tree T and
Ac is the spanning submatrix corresponding to the ε−n+1 chords.

Since the columns in A f and B f are arranged in the same order, the equation ABT =

BAT = 0(mod 2) gives
A f BT

f ≡ 0(mod 2)

Or [
Ac

... At

]
[Iµ

... Bt]
T ≡ 0(mod 2)

Or
Ac +AtBT

t ≡ 0(mod 2) (9.14)

Since At is non-singular, A−1
t exists. Now, premultiplying both sides of Equation 9.14, by

A−1
t , we have

A−1
t Ac +A−1

t AtBT
t ≡ 0(mod 2)

or
A−1

t Ac +BT
t ≡ 0(mod 2).

Therefore, A−1
t Ac =−BT

t . Since in mod 2 arithmetic −1 = 1, we have

BT
t = A−1

t Ac. (9.15)

Now as the columns in B f and C f are arranged in the same order, therefore (in mod 2
arithmetic) C f ·BT

f ≡ 0 (mod 2) in mod 2 arithmetic gives C f ·BT
f = 0.

Therefore, [Cc
...In−1][Iµ

...Bt]
T = 0, so that Cc +BT

t = 0. That is, Cc =−BT
t . Thus, Cc = BT

t

(as −1 = 1 in mod2 arithmetic). Hence, from 9.15, we have Cc = At−1Ac.

R We make the following observations from the above relations.
1. If A or A f is given, we can construct B f and C f starting from an arbitrary

spanning tree and its submatrix At in A f .
2. If either B f or C f is given, we can construct the other. Therefore, since B f

determines a graph within 2-isomorphism, so does C f .
3. If either B f and C f is given, then A f , in general, cannot be determined com-

pletely.

9.5 Adjacency Matrix
As an alternative to the incidence matrix, it is sometimes more convenient to represent a
graph by its adjacency matrix or connection matrix. The adjacency matrix of a graph G with
n vertices and no parallel edges is an n by n symmetric binary matrix X = [xi j] defined over
the ring of integers such that

xi j =

{
1; if there is an edge between i-th and j-th vertices, and

0; if there is no edge between them.

116 Chapter 9. Matrix Representations of Graphs

Consider the following graph G without parallel edges and self-loops.

v1 v1

v3 v4

v5

v6

Figure 9.7: A graph G

The adjacency matrix of the graph G in Figure 9.7 is given by

X(G) =



0 1 0 0 1 1
1 0 0 1 1 0
0 0 0 1 0 0
0 1 1 0 1 1
1 1 0 1 0 0
1 0 0 1 0 0


The adjacency matrix of the disconnected graph given in Figure 9.2 is as follows:

X(G) =



0 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0


By the definition of the adjacency matrix of a graph G, we can notice that the adjacency

matrices can be defined for the graphs having self-loops also. For example, consider the
following graph and its adjacency matrix.

X(G) =


0 1 0 1
1 1 1 0
0 1 0 1
1 0 1 1


Observations that can be made immediately about the adjacency matrix X of a graph G

are:

Lecture Notes on Graph Theory 117

v1 v2

v3v4

e1

e2

e3

e4

e5

e6

Figure 9.8: A graph G with self-loops

1. The entries along the principal diagonal of X are all 0′s if and only if the graph has no
self-loops. A self-loop at the ith vertex corresponds to xii = 1.

2. The definition of adjacency matrix makes no provision for parallel edges. This is why
the adjacency matrix X was defined for graphs without parallel edges.

3. If the graph has no self-loops (and no parallel edges), the degree of a vertex equals the
number of 1′s in the corresponding row or column of X .

4. Permutations of rows and of the corresponding columns imply reordering the vertices.
It must be noted, however, that the rows and columns must be arranged in the same
order. Thus, if two rows are interchanged. Hence two graphs G1 and G2 with no
parallel edges are isomorphic if and only if their adjacency matrices X(G1) and X(G2)

are related:
X(G2) = R−1 ·X(G1) ·R,

where R is a permutation matrix.
5. A graph G is disconnected and is in two components G1 and G2 if and only if its

adjacency matrix X(G) can be partitioned as

X(G) =

[
X(G1) O

0 X(G2)

]
,

where X(G1) is the adjacency matrix of the component G1 and X(G2) is that of the
component G2. This partitioning clearly implies that there exists no edge joining any
vertex in subgraph G1 to any vertex in subgraph G2.

6. Given any square, symmetric, binary matrix Q of order n, one can always construct a
graph G of n vertices (and no parallel) such that Q is the adjacency matrix of G.

118 Chapter 9. Matrix Representations of Graphs

9.5.1 Powers of X

Let us multiply by itself the 6×6 adjacency matrix of the simple graph in Figure 9.7.The
result, another 6×6 symmetric matrix X2, is shown below

X2 =



3 1 0 3 1 0
1 3 1 1 2 2
0 1 1 0 1 1
3 1 0 4 1 0
1 2 1 1 3 2
0 2 1 0 2 2


It can be noted that i j-th entry (i 6= j) in X2 is equal to the following:

(i) the number of 1’s in the dot product (inner product) of i-th row and j-th column (or
j-th row) of X .

(ii) the number of positions in which both i-th and j-th rows of X have 1’s.
(iii) the number of vertices that are adjacent to both i-th and j-th vertices.
(iv) the number of different paths of length 2 between i-th and j-th vertices.

Similarly, the i-th diagonal entry in X2 is the number of 1’s in jth row (or column) of
matrix X . Thus the value of each diagonal entry in X2 equals the degree of the corresponding
vertex, if the graph has no self-loops. Since a matrix commutes with matrices that are its
own power, X .X2 = X2.X = X3. Since the product of two square symmetric matrices that
commute is also a symmetric matrix, X3 is a symmetric matrix. The matrix X3 the graph of
Figure 9.7 is given below:

X3 =



2 7 3 2 7 6
7 4 1 8 5 2
3 1 0 4 1 0
2 8 4 2 8 7
7 5 1 8 4 2
6 2 0 7 2 0


Let us now observe that the i j-th entry of X3 is equal to the following:

(i) the dot product (inner product) of i-th row of X2 and j-th column (or j-th row) of X .

(ii)
n
∑

k=1
(ik-th entry of X2.k j-th entry of X).

(iii)
n
∑

k=1
(the number of all different edge sequences of three edges from i-th vertex to j-th

vertex via k-th vertex).
(iv) the number of different edge sequences of three edges between i-th and j-th vertices.

For example, consider how the (1,5)-th entry on X3 for the graph of Figure 9.7 is
formed. It is given by the dot product of the first row of X2 and fifth row of X . That
is, (3,1,0,3,1,0) · (1,1,0,1,0,0) = 3+ 1+ 0+ 3+ 0+ 0 = 7. The seven different edge
sequences of three edges between v1 and v5 are {e1,e1,e2},{e2,e2,e2},{e6,e6,e2},{e2,e3,

e3},{e6,e7,e5},{e2,e5,e5},{e1,e4,e5}. Clearly, this list includes all the paths of length three

Lecture Notes on Graph Theory 119

between v1 and v5, that is, {e6,e7,e5} and {e1,e4,e5}.

Theorem 9.5.1 Let X be the adjacency matrix of a simple graph G. Then the i j-th entry
in X r is the number of different edge sequences of r edges between vertices vi and v j.

Proof. The theorem holds for r = 1, and it has been proved for r = 2 and 3 also. It can be
proved for for any positive integer r, by induction. In other words, assume that it holds for
r−1, and then evaluate the i j-th entry in X , with the help of the relation X r = X r−1 ·X , as
was done for X3. �

Corollary 9.5.2 In a connected graph, the distance between two vertices vi and v j (for
i 6= j) is k, if and only if k is the smallest integer for which the i, jth entry in xk is non-zero.

This is a useful result in determining the distances between different pairs of vertices.

Corollary 9.5.3 If X is the adjacency matrix of a graph G with n vertices, and Y =

X +X2 +X3 + ...+Xn−1, (in the ring of integers), then G is disconnected if and only if
there exists at least one entry in matrix Y that is zero.

9.6 Path Matrix

Let G be a graph with ε edges, and u and v be any two vertices in G. Also, let q be the
number of different paths between u and v in G. The path matrix for vertices u and v, denoted
by P(u,v) = [pi j], is the matrix defined as P(u,v) = [pi j];1≤ i≤ q,1≤ j ≤ ε such that

pi j =

{
1; if i-th path contains the j-th edge of G;

0; otherwise.

In Figure 9.1, the edge sequences corresponding to distinct paths between the vertices v1

and v3 are:

p1 = {e1,e2}
p2 = {e5,e7}
p3 = {e2,e7,e8}
p4 = {e1,e5,e8}

Then, the corresponding path matrix is given by
0 0 0 0 1 0 1 0
1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 1
1 0 0 0 1 0 0 1



120 Chapter 9. Matrix Representations of Graphs

We have the following observations about the path matrix.
1. A column of all zeros corresponds to an edge that does not lie in any path between u

and v.
2. A column of all ones corresponds to an edge that lies in every path between u and v.
3. There is no row with all zeros.
4. The ring sum of any two rows in P(u,v) corresponds to a cycle or an edge-disjoint

union of cycles.
The next result gives a relation between incidence and path matrix of a graph.

Theorem 9.6.1 If the columns of the incidence matrix A and the path matrix P(u,v)
of a connected graph are arranged in the same order, then under the product (mod 2)
APT (u,v) = M, where M is a matrix having ones in two rows u and v, and the zeros in the
remaining n−2 rows.

Proof. Let G be a connected graph and let vk = u and vt = v be any two vertices of G. Let A
be the incidence matrix and P(u,v) be the path matrix of (u,v) in G. Now for any vertex vi in
G and for any uv-path p j in G , either vi ∈ p j or vi /∈ p j. If vi /∈ p j, then there is no edge of
p j which is incident on vi. If vi ∈ p j, then either vi is an intermediate vertex of p j, or vi = vk

or vi = vt . In case vi is an intermediate vertex of p j, then there are exactly two edges of p j

which are incident on vi. In case vi = vk or vi = vt , there is exactly one edge of p j which is
incident on vi.

Now consider the i-th row of A and the j-th row of P(u,v) (thet is, the j-th column of
PT (u,v)). As the edges are arranged in the same order, the r-th entries in these two rows are
both non zero if and only if the edge er is incident on the i-th vertex vi and is also on the j-th
path p j.

Let APT (u,v) = M = [mi j]. We have,

[APT]i j =
ε

∑
r=1

[A]ir[PT]r j.

Therefore,

mi j =
ε

∑
r=1

air p jr.

For each edge er of G, we have to consider one of the following cases:
(i) er is incident on vi and er /∈ p j. Here, air = 1,b jr = 0;

(ii) er is not incident on vi and er ∈ p j. Here, air = 0,b jr = 1.
(iii) er is not incident on vi and er /∈ p j. In this case, we have air = 0,b jr = 0.

All these cases imply that the i-th vertex vi is not in j-th path p j and we have Mi j =

0≡ 0(mod 2).
(iv) er is incident on vi and er ∈ p j.

If vi is an intermediate vertex of p j , then there are exactly two edges, say er and et incident
on vi so that air = 1,ait = 1, p jr = 1, p jt = 1. Therefore, mi j = 1+1 = 0(mod 2).

If vi = vk or vi = vt , then the edge er is incident on either vk or vt . Hence, akr = 1, p jr = 1,

Lecture Notes on Graph Theory 121

or atr = 1, p jr = 1. Thus,

mk j = ∑air p jr = 1 ·1≡ 1(mod2) :

and
mt j = ∑air p jr = 1 ·1≡ 1(mod 2).

Hence, M = [mi j] is a matrix, such that under modulo 2, such that

mi j =

{
1; if i = k or i = t;

0; otherwise.

�

For example, consider the graph in Figure 9.1. Then, we have

A ·P(v1,v3)
T =



1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 1
0 1 1 1 1 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0


·



0 1 0 1
0 1 1 0
0 0 0 0
0 0 0 0
1 0 0 1
0 0 0 0
1 0 1 0
0 0 1 1



=



1 1 1 0
0 2 2 2
1 1 0 1
0 0 0 0
2 0 2 1
0 0 0 0



=



1 1 1 0
0 0 0 0
1 1 0 1
0 0 0 0
0 0 0 1
0 0 0 0


(mod 2).

This illustrates the above theorem.

9.7 Exercises
1. Find the incidence matrix, cycle matrix, cut-set matrix and adjacency matrix for the

following graphs:

122 Chapter 9. Matrix Representations of Graphs

VI
10 Graph Algorithms . 125
10.1 Computer Representation of a Graph
10.2 Algorithm for Connectedness and Components
10.3 Spanning Tree Algorithm
10.4 Minimal Spanning Tree Algorithms
10.5 Shortest Path Problems
10.6 Exercises

GRAPH THEORETIC
ALGORITHMS

10. Graph Algorithms

An algorithm may be considered as a set of instructions for solving certain mathematical
problems when followed step by step will lead to the solutions of that problem. Usually, an
algorithm is first written in ordinary language and then converted in to flowcharts and finally,
written in a detailed and precise language so that the machine can execute it.

An algorithm must not only do what it is supposed to do, but also must do it efficiently, in
terms of the requirements of both memory and computation time requirements as the function
of the size of the input. In our case, the input will be graphs with order n and size ε .

10.1 Computer Representation of a Graph
A graph is generally presented to and is stored in a digital computer in one of the following
forms:

1. Adjacency Matrix: Adjacency matrices are the mostly used form to represent a graph
in computers. Assigning distinct numbers to the distinct vertices of G, the n×n-binary
matrix X(G)is used for representing G during the input, storage and output. Since
each of the n2 entries are either a 0 or a 1, the adjacency matrix requires n2 bits of
computational memory.
As bits can be packed into words, each row of the adjacency matrix of G of order n
may be written as a sequence of n2-bits in d n

we machine words, where wis the word
length (number of bits in a computer word). Therefore, the number of words required
to store the adjacency matrix is nd n

we.
Since the adjacency matrix is symmetric, it will be sufficient if we have only the upper

126 Chapter 10. Graph Algorithms

diagonal elements of the matrix and only n(n−1)
2 bits of storage. But note that this

increases the complexity and computation time, even though the storage space is saved.
Another point is that adjacency matrix is defined for the graphs without parallel edges,
this method cannot be used for representing graphs with parallel edges.

2. Incidence Matrix: Incidence matrices are also used to represent graphs. It requires n ·ε
bits of storage which might be more than the storage space required for the adjacency
matrix (it is because the number of edges may be greater than the number of vertices
in a vast majority of graphs). In certain practical cases such as electrical networks and
switching networks incidence matrices are preferred than the adjacency matrices.

3. Edge Listing: Another way to represent a graph is just a list, or array, of |E| edges,
which is called an edge list. Clearly, parallel edges and self-loops can be included in
this representation of a graph. Note that if we require b bits of storage for a vertex, then
2b−1 ≤ n≤ 2b and storing an edge requires 2b bits (Since an edge can be considered
to be the pair of its end vertices). Therefore, the total storage required will be 2b · ε .
The following example illustrates the edge-listing of the graph in Figure 10.1.

1

2

3

4 5

6

7

8

9

10

Figure 10.1: A graph G for computer input

The edge list of the graph in Figure 10.1, is written as: LE = {1−2,1−3,2−4,3−
4,4−5,5−6,5−7,5−8,6−8,7−8,8−9,8−10}.
Edge listing is more economical (when compared to adjacency matrices), and hence
we have 2bε ≤ n2. Edge listing is comparatively a convenient method for inputting a
graph into the computer, but the retrieval and manipulation may be more difficult.

4. Two Linear Arrays: In this method, a graph is represented in two linear arrays, say
F and H of vertices of the graph G, not necessarily disjoint, such that each edge has
one end vertex in F and other in H. This method is found useful to represent weighted
graphs and has the same storage requirements as that for edge listing.
The two-linear array of the graph in Figure 10.1 is written in the table given below:

F 1 1 2 3 4 5 5 5 6 7 8 8
H 2 3 4 4 5 6 7 8 8 8 9 10

Table 10.1: Two Linear Array representation of a graph.

Lecture Notes on Graph Theory 127

5. Successor Listing: This method can efficiently be used for representing those graphs
with ε

n ratio is small. Here, n linear arrays are used to represent the vertices and their
successors in G. For example, by writing the list “i : j,k, l", it is meant that the vertices
with labels j,k and l are successors of the vertex with label i.

F 1 2 3 4 5 6 7 8 9 10
H 2,3 2,4 1,4 2,3,5 4,6,7,8 5,8 5,8 5,6,7,9,10 8 8

Table 10.2: Neighbour (successor) listing of a graph.

For undirected graphs, neighbours are listed and hence each edge will appear twice in
the list. This is an obvious redundancy. But the successor listing is more efficient than
adjacent matrices if dav < d n

we−1, where dav is the average degree of G.

10.2 Algorithm for Connectedness and Components

Given the adjacency matrix of a graph G, is it possible to determine whether the graph G
is connected? If not connected, what is the number of components in G? The following
algorithm checks the connectedness of graphs.

10.2.1 Connectedness and Components Algorithm

S-1 : Set H = G and component count c = 1.
S-2 : Choose an arbitrary vertex v of G.
S-3 : Fuse all vertices in the neighbourhood N(v) with v and call this vertex v.
S-4 : If the number of vertices which are non-adjacent to v is the same as that before the

fusion, then go to Step-5. Otherwise, go to Step-2.
S-5 : Delete the vertex v (with all fused vertex) from H call this new graph H.
S-6 : If H has any vertex left in it, then let c← c+1 and go to Step-2. Otherwise, go to

Step-7.
S-7 : Print each c with its vertices. Stop.

For illustration, consider the graph given in Figure 10.2:
In the initial step, set component count c = 1 and choose v = v1. Fuse the vertices

v2,v3,v5 and v6 to v and call the new vertex v (and represent this by a white vertex). Then we
have the following graph.

Here, we notice that the number of vertices that non-adjacent to v is different before and
after fusion. So, we need the same action again. In the next iteration, we fuse the vertex v8

and v10 to v = v1. Then, we have the reduced graph as shown in Figure 10.4
Here also, the number of vertices that non-adjacent to v is different before and after fusion.

So, in the next iteration,fuse the vertex v12 to v = v1. Then, we have the reduced graph as
shown in Figure 10.5

Here, we notice that the number of vertices that non-adjacent to v is the same before and
after fusion. So, we can delete the vertex v1 from H and set c← c+1, (that is, c = 2). Now,

128 Chapter 10. Graph Algorithms

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

Figure 10.2: A graph G for computer input

v v4

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

Figure 10.3: Components Algorithms Step-1

v v4

v7

v9

v11

v12

v13

v14

v15

v16

v17

v18

Figure 10.4: Components Algorithms Step-2

take v = v4 in the reduced graph H and fuse the adjacent vertices v7 and v11 to v. Then, we
have the reduced graph as shown in Figure 10.6

At this stage, it can be noted that the number of vertices that non-adjacent to v is different

Lecture Notes on Graph Theory 129

v v4

v7

v9

v11

v13

v14

v15

v16

v17

v18

Figure 10.5: Components Algorithms Step-3

c1 v4 v9

v13

v14

v15

v16

v17

v18

Figure 10.6: Components Algorithms Step-4

before and after fusion and hence we perform the same action again. That is, we fuse the
vertex v14 to v. Then we get the reduced graph as shown in Figure 10.7.

c1 v4 v9

v13

v14

v16

v17

v18

Figure 10.7: Components Algorithms Step-5

Here also, the number of vertices that non-adjacent to v is different before and after fusion
and hence we fuse the vertex v16 and v18 to v. Then, v becomes an isolated vertex and hence
we can delete v from H. In the new reduced graph H, take v = v9 and set c = 3. Fuse the
vertices v13 and v15 to v. Then, we have the reduced graph as given in Figure 10.8.

Finally fusing the vertex v16 to v, we have

In the above graph in Figure 10.9, each ci corresponds to a component. Then, it can be
understood that the given graph is disconnected and has three components which are as given
in Figure 10.10.

130 Chapter 10. Graph Algorithms

c1 c2 v9 v17

Figure 10.8: Components Algorithms Step-6

c1 c2 c3

Figure 10.9: Components Algorithms Step-7

v1

v2

v3

v5

v6

v8

v10

v12

(a) Component-1

v4

v7

v11

v14

v16

v18

(b) Component-2

v9

v13

v15

v17

(c) Component-3

Figure 10.10: Components in a graph G.

10.3 Spanning Tree Algorithm

A spanning tree algorithm is the one which yields a spanning tree from a given connected
graph and spanning forest from a given disconnected graph. Let G be a graph (connected or
disconnected) with n vertices and ε edges. Then, this algorithm has the following steps.

S-1 : If it has loops, then, the loops may be discarded from G and the vertices be labeled
1,2,3, . . . ,n and the graph be arranged in two linear arrays F and H (as in linear array
listing explained earlier) such that the i-th edge has end vertices fi ∈ F and hi ∈ H.

S-2 : Choose an arbitrary edge e1 = f1h1 and set the component number c = 1.
S-3 : At the k-th stage, where 1≤ k ≤ ε , one of the following situations may arise:

(a) If for the edge ek, neither fk nor hk is included in any of the trees constructed so
far in G, that edge may be named as a new tree and its end vertices are given the
component number c after incrementing the value of c by 1.

(b) If vertex fk is in some tree Ti; i= 1,2,3, . . . ,c and hk in tree Tj; j = 1,2,3, . . . ,c; i 6=
j, the k-th edge is used to join these two vertices and hence every vertex in Tj is
now given the component number of Ti. The value of c is decremented by 1.

(c) If both vertices are in the same tree, the edge fkhk forms a fundamental circuit
and is not considered further.

Lecture Notes on Graph Theory 131

(d) If the vertex fk is in a tree Ti and the vertex hk is not in any tree, then add the
edge fkhk is added to Ti by assigning the component number of Ti to hk also. If
the vertex fk is not in any tree and the vertex hk is in a tree Tj, then add the edge
fkhk is added to Tj by assigning the component number of Tj to fk also.

S-4 : Stop if some component number is assigned to all vertices of G.
For example, consider the graph given in Figure 10.2. Consider the edge e1 = v1v2 (where

v1 ∈ F and v2 ∈ H). Both vertices are not currently in any tree of G and hence by Step S-3(a)
add 1v2 to the tree T1 and assign the component number 1 to v1 and v2.

Now, consider the vertex pairs (v1,v3),(v1,v4),(v1,v5) and (v1,v6). For all these vertex
pairs, exactly one vertex (v1) is in the tree T1 and as per Step-S-3(d), all these vertices can be
added to the tree T1 and assign the component number 1.

Next, for the vertex pair (v2,v8), only v2 currently belongs to the tree T1. So, by Step-S-
3(d), we can add v2v8 to the tree T1 and give the component number 1.

For the vertex pair (v3,v8), both v3 and v8 belong to the tree T1 and hence by Step S-3(c),
we can never consider v3v8 to any tree of G further.

Similarly, if we consider v6v10 to the tree T1 we cannot consider v5v10 and if the edge
v8v12 is included in T1, then the edge v10v12 can never be considered to any tree further.

For the vertex pairs (v4,v7) and (v4,v11), none of the vertices is in any tree so far and
hence by Step S-3(a), they can be included to a new tree T2 and assign the component number
2.

Now, if we consider the edge v7v14 to the tree T2, then, by Step-S3(c), the edge v11v14

cannot be taken to any tree further.
For the vertex pairs (v14,v16) and (v14,v18), only v14 belongs to a tree in G, and hence

both edges can be added to T2 with component number 2.
Similarly, for the vertex pairs (v9,v13) and (v9,v15), none of the vertices is in any tree so

far and hence by Step S-3(a), they can be included to a new tree T3 and assign the component
number 3.

Now, if we consider the edge v13v17 to the tree T3, then, by Step-S3(c), the edge v15v17

cannot be considered for inclusion in any tree further.
Then, the spanning forest (as G is disconnected) of the graph G is as given in Figure

10.11.

10.4 Minimal Spanning Tree Algorithms

Many optimisation problems amount to finding, in a suitable weighted graph, a certain type of
subgraph with the minimum (or maximum) weight. In the following problems, we are looking
for a spanning tree of G of the minimum weight. Such a tree is called a minimal spanning
tree or an optimal spanning tree for G. Minimum spanning trees have many interesting
applications such as the design of a network. There are several algorithms for computing
the minimum spanning trees. They all, however, are based on the same underlying property
about cuts in a graph, which we will refer to as the light-edge property. One of the most
important algorithms among these is Kruskal’s algorithm.

132 Chapter 10. Graph Algorithms

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

Figure 10.11: A spanning forest of a disconnected G

10.4.1 Kruskal’s Algorithm

The procedure is explained in the following three steps.
(i) Choose an edge e1, an edge of G, such that w(e1) is as small as possible and e1 is not a

loop.
(ii) If edges e1,e2, . . . ,ei have been chosen, then choose an edge ei+1, not already, chosen,

such that
(a) the induced subgraph G[{e1, . . . ,ei+1}] is acyclic; and
(b) w(ei+1) is as small as possible subject to Step-1.

(iii) If G has n vertices, stop after n−1 edges have been chosen. Otherwise, repeat Step 2.
A step by step illustration of Kruskal’s Algorithm to find a minimal spanning tree of the

graph given Figure 10.12 is given below.

v1 v2

v3

v4v5

v6

1

2

2

4

3

3

4

1
3

4

5

Figure 10.12: A weighted graph G

Figure 10.13 illustrates how to determine a minimal spanning tree of the weighted graph
G given above using Kruskal’s algorithm.

Lecture Notes on Graph Theory 133

v1 v21

(a) Step-1

v1 v2

v4

1

1

(b) Step-2

v1 v2

v3

v4

1

2

1

(c) Step-3

v1 v2

v3

v4v5

1

2

1
3

(d) Step-4

v1 v2

v3

v4v5

v6

1

2
3

1
3

(e) Step-5

Figure 10.13: Illustration to Kruskal’s Algorithm

Theorem 10.4.1 Kruskal’s algorithm yields the shortest spanning tree of the graph G
under consideration.

Proof. In this algorithm, we first choose an edge of G which has smallest weight among the
edges of G which are not loops. Next, again avoiding loops, we choose from the remaining
edges one of smallest weight possible which does not form a cycle with the edge already
chosen. We repeat this process taking edges of smallest weight among those not already
chosen, provided no cycle is formed with those that have been chosen. This condition ensures
that we get acyclic subgraphs of G with weights as the minimum as possible. If the graph
has n vertices we stop after having chosen n−1 edges. This is because by Theorem 6.1.7,
any acyclic graph with n vertices and n−1 edges is connected and hence is a tree. Therefore,
these n−1 edges form a minimal spanning tree of G. �

10.4.2 Prim’s Algorithm

This algorithm involves the following steps.
(i) Choose any vertex v1 of G.

(ii) Choose an edge e1 = v1v2 of G such that v2 6= v1 and e1 has the smallest weight among
the edges of G incident with v1.

(iii) If edges e1,e2, . . . ,ei have been chosen involving end points v1,v2, . . . ,vi+1, choose an
edge ei+1 = v jvk with v j ∈ {v1, . . . ,vi+1} and vk /∈ {v1, . . . ,vi+1} such that ei+1 has the
smallest weight among the edges of G with precisely one end in {v1, . . . ,vi+1}.

(iv) Stop after n−1 edges have been chosen. Otherwise, repeat Step-3.

134 Chapter 10. Graph Algorithms

A step by step illustration of Prim’s Algorithm to find a minimal spanning tree of the
graph given Figure 10.12 is given below.

v1

(a)
Step-
1

v1 v21

(b) Step-2

v1 v2

v4

1

1

(c) Step-3

v1 v2

v3

v4

1

2

1

(d) Step-4

v1 v2

v3

v4v5

1

2

1
3

(e) Step-5

v1 v2

v3

v4v5

v6

1

2

3 1
3

(f) Step-6

Figure 10.14: Illustration to Prim’s Algorithm

Theorem 10.4.2 Prim’s algorithm yields the shortest spanning tree of the graph G under
consideration.

Proof. In this algorithm for finding a minimal spanning tree, we first choose a (any) vertex
v1 of the connected graph G. We next choose one of the edges incident with v1 having the
smallest weight in G which is not a loop, say e1 = v1v2. Next, we choose an edge of smallest
weight in G which is incident with either v1 or v2, but with the other end vertex neither of
these. That is, we choose e2 = viv3, where i = 1 or i = 2. We repeat this process of taking
edges of smallest weight one of whose ends is a vertex previously chosen and the other
end becoming involved for the first time, until we have chosen n−1 edges (assuming the
graph has n vertices). Clearly, this condition ensures that at each stage the subgraph develops
satisfying the connectedness acyclic conditions and has the weight as minimum as possible.
At the final stage, we have involved each of the n vertices of G and by the construction the
resulting subgraph is connected, acyclic and has the weight as minimum as possible. Hence,
the subgraph of G thus obtained is a minimal spanning tree. �

1. Both algorithms have the same output. But, Kruskal’s algorithm begins with forest and
merge into a tree, while Prim’s algorithm always stays as a tree.

2. Both algorithms have the same complexity O(N logN), as both involve sorting edges
for lowest weight.

Lecture Notes on Graph Theory 135

3. Kruskal’s Algorithm usually has to check for the weights of the whole edges of the
graph at each iteration and hence works best, if the number of edges is kept to a
minimum. But, Prim’s algorithm doesn’t need to see the weights of all edges of the
graph at once. It can deal with it one piece at a time. It also doesn’t need to worry if
adding an edge will create a cycle since this algorithm deals primarily with the nodes,
and not the edges.

4. The running time of Kruskal’s algorithm is O(ε logn), while the running time of Prim’s
algorithm is O(ε + logn).

10.5 Shortest Path Problems
Let G be a graph and let s, t be two specified vertices of G. In shortest spanning tree problems,
we have to a path from s to t, if there is any, which uses the least number of edges. Such a
path, if it exists, is called a shortest path from s to t.

The Breadth First Search (BFS) Technique

The Breadth First Search (BFS for short) technique can be explained as in the following
algorithm.
(S-1) Label vertex s with 0. Set i = 0.
(S-2) Find all unlabeled vertices in G which are adjacent to vertices labelled i. If there are

no such vertices, then t is not connected to s by a path. If there are such vertices, label
them i+1.

(S-3) If t is labeled, go to Step 4. If not, increase i to i+1 and go to Step 2.
(S-4) The length of a shortest path from s to t is i+1. Stop.

For example, for the graph of in Figure 10.15, first s is labelled 0. Then, the vertices a
and f , that are adjacent to s, are labelled 1. After that, the vertices b,d and e are labelled 2.
Then c and t are labelled 3. Since t is labelled 3, the length of a shortest path from s to t is 3.

s

a

f

d

b c

e
t

(a) A Graph G

s
0

a
1

f1

d2

b
2

c
3

e
2

t 3

(b) G shortest paths from s.

Figure 10.15: Illustration - BFS Algorithm

For the graph given in Figure ??, first, s is labelled 0. Then a, b and c are labelled 1.
Then, d is labelled 2. But now there are no unlabelled vertices adjacent to d, the only vertex
labelled 2. Hence, by Step 2, it can be concluded that there is no path from s to t.

136 Chapter 10. Graph Algorithms

s

a

b

c d

e

f

t

(a) A Graph G

s
0

a
1

b1

c
1

d
2

e

f

t

(b) G shortest paths from s.

Figure 10.16: Illustrtaion - BFS Algorithm

10.5.1 The Back-tracking Algorithm for a Shortest Path

1. Set i = λ (t) and assign vi = t.
2. Find a vertex u adjacent to vi and with λ (u) = i−1. Assign vi−1 = u.
3. If i = 1, stop. If not, decrease i to i−1 and go to Step 2.
Example: In Figure 10.15 we have λ (t) = 3 and hence we start with i = 3 and v3 = t

(Step-1). We can then choose e adjacent to v3 = t with λ (e) = 2 and assign v2 = e. Next, we
can choose f adjacent to v2 = e with λ (f) = 1 and assign v1 = 1. Finally we take s adjacent
to f with λ (s) = 0 and assign v0 = s. This gives the shortest path v0v1v2v3 = s− f − e− t
from s to t.

10.5.2 Dijkstra’s Algorithm

The Dijkstra’s algorithm is an algorithm for finding the shortest paths between nodes in a
graph, which may represent (for example, road networks). It was conceived by computer
scientist Edsger W. Dijkstra in 1956. Dijkstra’s original variant found the shortest path
between two nodes, but a more common variant fixes a single node as the “source" vertex and
finds shortest paths from the source to all other vertices in the graph, producing a shortest-path
tree. Given a path P from vertex s to vertex t in a weighted graph G, we define the length of
P to be the sum of the weights of its edges.

The steps involved in Dijkstra’s Algorithm are as follows:
1. Set λ (s) = 0 and for all vertices v 6= s, λ (v) = ∞. Set T =V , the vertex set of G. (We

will think of T as the set of vertices uncoloured.)
2. Let u be a vertex in T for which λ (u) is the minimum.
3. If u = t, stop.
4. For every edge e = uv incident with u, if v ∈ T and λ (v)> λ (u)+w(uv), change the

value of λ (v) to λ (u)+w(uv) (That is, given an edge e = uv from an uncoloured vertex
v to u, change λ (v) to min{λ (v),λ (u)+w(uv)}.

5. Change T to T −{u} and go to Step-2, (That is, colour u and then go back to Step-2 to
find an uncoloured vertex with the minimum label).

Consider the weighted graph in Figure 10.17.

Lecture Notes on Graph Theory 137

a b

t

dc

s

9

28

36

7

15

18

6
14

10

Figure 10.17: A weighted graph G

A step by step illustration of Dijkstra’s Algorithm for the graph given in Figure ?? is
explained as follows:

Step 1. The initial labelling is given by:

vertex v s a b c d t

λ (v) 0 ∞ ∞ ∞ ∞ ∞

T {s, a, b, c, d, t}

Step 2. u = s has λ (u) a minimum (with value 0).
Step 4. There are two edges incident with u, namely sa and sc. Both a and c are in T , i.e.,

they are not yet coloured. λ (a) = ∞ > 18 = 0+18 = λ (s)+w(sa). Hence, λ (a) becomes
18. Similarly, λ (c) becomes 15.

Step 5. T becomes T −{s}, i.e., we colour s. Thus we have

vertex v s a b c d t
λ (v) 0 18 ∞ 15 ∞ ∞

T { a, b, c, d, t}

Step 2. u = c has λ (u) a minimum and u in T (with λ (u) = 15).
Step 4. There are 3 edges cv incident with u = c having v in T , namely ca,cb,cd.

Considering the edge ca, we have λ (a) = 18 < 21 = 15+6 = λ (c)+w(ca) and hence λ (a)
remains as 18. Considering the edge cb, we have λ (b) = ∞ > 29 = 15+14 = λ (c)+w(cb).
So, λ (b) becomes 29. Similarly, considering the edge cd, we have λ (d) becomes 15+7 = 22.

Step 5. T becomes T −{c}, i.e., we colour c. Thus, we have

vertex v s a b c d t
λ (v) 0 18 29 15 22 ∞

T { a, b, d, t}

138 Chapter 10. Graph Algorithms

Step 2. u = a has λ (u) a minimum and for u in T (with λ (u) = 18).
Step 4. There is only one edge av incident with u = a having v in T , namely ab. Then,

λ (b) = 29 > 27 = 18+9 = λ (a)+w(ab). So, λ (b) becomes 27.
Step 5. T becomes T −{a}, i.e., we colour a. Thus, we have

vertex v s a b c d t
λ (v) 0 18 27 15 22 ∞

T { b, d, t}

Step 2. u = d has λ (u) minimum for u in T (with λ (u) = 22).
Step 4. There are two edges dv incident with u = d having v in T , namely db and dt.

Considering the edge db, we have λ (b) = 27 < 32 = 22+ 10 = λ (d)+w(db) and hence
λ (b) remains as 27. For the edge dt, we have λ (t) = ∞ > 58 = 22+ 36 = λ (d)+w(dt).
Hence, λ (t) becomes 58.

Step 5. T becomes T −{d}, i.e., we colour d. Thus, we have

vertex v s a b c d t
λ (v) 0 18 27 15 22 58

T { b, t}

Step 2. u = b has λ (u) minimum for u in T (with λ (u) = 27).
Step 4. There is only one edge bv for v in T , namely bt. λ (t) = 58 > 55 = 27+28 =

λ (b)+w(bt) so λ (t) becomes 55.
Step 5. T becomes T −ab, i.e., we colour b. Thus, we have

vertex v s a b c d t
λ (v) 0 18 27 15 22 55

T { t}

Step 2. u = t, the only choice. Step 3. Stop.
All steps, we did above can be written in a single table as follows:

Steps s a b c d t T
1 0 ∞ ∞ ∞ ∞ ∞ s a b c d t
2 0 18 ∞ 15 ∞ ∞ a b c d t
3 0 18 29 15 22 ∞ a b d t
4 0 18 27 15 22 ∞ b d t
5 0 18 27 15 22 58 b t
6 0 18 27 15 22 55 t

Note that Dijkstra’s algorithm does not work with negative edges. The problem is that
when we consider the closest vertex v not in the visited set, its shortest path may be through
only the visited set and then extended by one edge out of the visited set to v.

Lecture Notes on Graph Theory 139

Theorem 10.5.1 For any graph G, Dijkstra’s algorithm computes the distance (weight) of
shortest paths from a fixed vertex s to all other vertices in G.

10.5.3 Floyd-Warshall Algorithm

Notations in the algorithm:
1. Assume that the graph under consideration is represented by an n× n matrix [wi j]

defined by

wi j =


0, if vi = v j;

w(viv j), if vi 6= v j;

∞, if viv j /∈ E; .

2. D is the matrix defined by D = [di j], where di j is the distance between the vertices vi

and v j.
3. Let d(k)

i j be the length of the shortest path from vi to v j such that all intermediate

vertices on the path (if any) are in set {v1,v2, . . . ,vk}. Then, d(0)
i j = wi j, that is, no

intermediate vertex between vi and v j. Also, let D(k) = [d(k)
i j], where 1≤ k ≤ n.

Floyd-Warshall Algorithm:
S-1 : Initailly set D← D(0). Set i = 1, j = 1 and set k = 1.
S-2 : Let D(k) = [d(k)

i j] such that

(a) if vk is not on a (the) shortest vi− v j path, then it has length d(k−1)
i j .

(b) if vk is on a path, then it consists of a subpath from vi to vk and a subpath from
vk to v j and must be as short as possible, namely they have lengths d(k−1)

ik and

d(k−1)
k j . Then, the shortest vi− v j path has length d(k−1)

ik +d(k−1)
k j .

Combining the two cases we get, d(k)
i j = min{d(k−1)

i j ,d(k−1)
ik +d(k−1)

k j }.
S-3 : If D = D(n), then print D. Stop.

10.6 Exercises

1. Carry out the BFS algorithm for the following graph to find the length of a shortest
path from vertex a to vertex z, an example of such a shortest path, and the number of
shortest paths from a to z.

140 Chapter 10. Graph Algorithms

2. Use Dijkstra’s algorithm on the connected weighted graphs of the following figure to
find the length of the shortest paths from the vertex a to each of the other vertices and
to give examples of such paths.

3. Use Kruskal’s algorithm and Prim’s algorithm to find minimal spanning trees of the
following graphs:

REFERENCES

Bibliography

[1] G. Agnarsson and R. Greenlaw, (2007). Graph theory: Modeling, applications &
algorithms, Pearson Education, New Delhi.

[2] S. Arumugam and S. Ramachandran, (2015), Invitation to graph theory, Scitech Publ.,
Kolkata, India.

[3] R. Balakrishnan and K. Ranganathan, (2012). A textbook of graph theory, Springer,
New York.

[4] V.K. Balakrishnan, (1997). Graph theory, McGrawhill, New York.

[5] A. Benjamin, G. Chartrant and P. Zhang, (2015). The fascinating world of graph theory,
Princeton Uty. Press, New Jersey.

[6] C. Berge, (1979). Graphs and hypergraphs, North Holland, Amsterdam.

[7] C. Berge, (2001). The theory of graphs, Dover Pub.

[8] B. Bollabás, (1998). Modern graph theory, Springer Int. Edn., New York.

[9] J.A. Bondy and U.S.R Murty, (2008). Graph theory, Springer.

[10] J.A. Bondy and U.S.R Murty, (1976). Graph theory with applications, North-Holland,
New York.

[11] A. Brandstädt, V. B. Le and J. P. Spinrad, (1999). Graph classes: A survey, SIAM,
Philadelphia.

144 BIBLIOGRAPHY

[12] F.Buckley and F.Harary, (1990). Distances in graphs, Addison-Wesley Publishing
Company.

[13] G. Chartrand and P. Zhang, (2005). Introduction to graph theory, McGraw-Hill Inc.

[14] G. Chartrand and L. Lesniak, (1996). Graphs and digraphs, CRC Press.

[15] J. Clark and D.A. Holton, (1995). A first look at graph theory, Allied Publishers Ltd.,
Mumbai, India.

[16] N. Deo, (2016). Graph Theory with application to engineering and computer science,
Prentice Hall of India Pvt. Ltd., India.

[17] R. Diestel, (2010). Graph theory, Springer-Verlag, New York.

[18] J.C. Fournier, (2009). Graph theory with applications, John Wiley & Sons, Inc., New
York.

[19] M.C. Golumbic and I.B.A. Hartman, (2005). Graph theory, combinatorics and algo-
rithms, Springer.

[20] R.P. Grimaldi, (2014). Discrete and combinatorial mathematics, Pearson Education.,
New Delhi.

[21] J. Gross and J. Yellen, (1999). Graph theory and its applications, CRC Press.

[22] J. Gross and J. Yellen, (2004). Handbook of graph theory, CRC Press.

[23] F. Harary, (2001). Graph theory, Narosa Publ. House, New Delhi.

[24] F. Harary and E. M. Palmer, (1973). Graphical enumeration, Academic Press Inc.,

[25] J. B. Jensen and G. Gutin, (2007). Digraphs: Theory, algorithms and applications,
Springer- Verlag.

[26] K. D. Joshi, (2003). Applied discrete structures, New Age International, New Delhi.

[27] T.A. McKee and F.R. McMorris, (1999). Topics in intersection graph theory, SIAM
Monographs on Discrete Mathematics and Application, SIAM, Philadelphia.

[28] O. Ore, Theory of Graphs, (1962). American Math. Soc. Colloquium Pub., XXXV III.

[29] M.S. Rahman, (2017). Basic graph theoy, Springer, Switzerland.

[30] F.S. Roberts, (1978). Graph theory and its practical applications to problems of society,
SIAM, Philadelphia.

[31] K. Rosen, (2011). Discrete mathematics and its applications, Tata McGraw Hill.

[32] R.J. Trudeau, (1993), Introduction to graph theory, Dover Publ., New York.

Lecture Notes on Graph Theory 145

[33] S.S. Sarkar (2003). A text book of discrete mathematics, S. Chand & Co., New Delhi.

[34] G. Sethuraman, R. Balakrishnan, and R.J. Wilson, (2004). Graph theory and its appli-
cations, Narosa Pub. House, New Delhi.

[35] G. S. Singh, (2013). Graph theory, Prentice Hall of India, New Delhi.

[36] R. R. Stoll, (1979). Set theory and Logic, Dover pub., New York

[37] D.B. West, (2001). Introduction to graph theory, Pearson Education Inc., Delhi.

LIST OF FIGURES & TABLES

List of Figures

1.1 An example of a graph . 4
1.2 Null graph of order 5. 4
1.3 Some examples of simple graphs . 5
1.4 Graphical realisation of the degree sequence S. 7
1.5 Examples of Subgraphs . 8
1.6 Induced and edge-induced subgraphs of a graph G. 9
1.7 First few complete graphs . 9
1.8 Examples of bipartite graphs . 10
1.9 Examples of complete bipartite graphs . 10
1.10 Examples of regular graphs . 11
1.11 Examples of isomorphic graphs . 12

2.1 Illustrations to graph operations . 16
2.2 A graph and its complement . 17
2.3 Example of self-complementary graphs . 17
2.4 Example of self-complementary graphs . 18
2.5 The join of the paths P4 and P3. 18
2.6 The join of the cycle C5 and the path P2. 19
2.7 Illustrations to edge deletion and vertex deletion . 19
2.8 Illustrations to fusion of two vertices . 20
2.9 Illustrations to edge contraction of a graph. 20

150 LIST OF FIGURES

2.10 Subdivision of an edge . 20
2.11 Illustrations to Subdivision of graphs . 21
2.12 Smoothing of the vertex w . 21

3.1 A graph with eight centers. 25
3.2 A graph and its edge deleted subgraph. 29
3.3 A graph and its edge deleted subgraph. 29
3.4 Disconnected graph G− v4v5 . 30
3.5 disconnected graph G− v4 . 30

4.1 Königsberg’s seven bridge problem. 35
4.2 Graphical representation of seven bridge problem . 36
4.3 Examples of Eulerian and non-Eulerian graphs . 37
4.4 An example for Chinese Postman Problem . 39
4.5 Dodecahedron and a Hamilton cycle in it. 40
4.6 A Hamilton cycle G of Kn. 42
4.7 Another Hamilton cycle G2 of Kn. 42
4.8 Isomorphic Hamilton cycles G1 and G n−1

2 +1 of Kn. 43

4.9 Traversability in graphs . 43
4.10 An example of a weighted graph . 44

5.1 An undirected graph and one of its orientations. 48
5.2 A tournament and a complete digraph . 49

6.1 Examples of trees . 55
6.2 Trees with n = 1,2,3. 56
6.3 Distinct labelled trees on 4 vertices . 61
6.4 Distinct unlabelled trees on 4 vertices . 61
6.5 Some rooted trees on five vertices . 64
6.6 A rooted tree with and without weights to pendant vertices. 65
6.7 A 17-vertex binary tree with level 5. 66
6.8 A rooted trees 2k vertices at k-th level, where k = 0,1,2,3 67
6.9 A 9-vertex binary tree with level 4. 67

7.1 disconnected graph G−{v4v5,v2v6,v3v7}. 71
7.2 Disconnected graph G−{v4v5,v2v6,v3v7}. 73
7.3 Illustration to separable and non-separable graphs . 77
7.4 Illustration to blocks of a graph . 77

8.1 Three Utilities Problem . 81
8.2 Illustration to planar (plane) graphs . 82
8.3 Spherical embedding of a point in a plane. 83
8.4 The different plane representations of the same graph. 84

Lecture Notes on Graph Theory 151

8.5 Illustration to Fary’s Theorem . 85
8.6 Step by step illustration for non-planarity of K5 . 86
8.7 Step by step illustration for non-planarity of K3,3 . 87
8.8 Step by step illustration of elementary reduction of a graph. 88
8.9 Non-planar graph with subgraphs homeomorphic to K3,3 89
8.10 A cube and its graphical representation . 90
8.11 Dürer graph . 93
8.12 A graph and its dual graph . 94
8.13 Two isomorphic graphs and their non-isomorphic duals 95

9.1 A graph G . 102
9.2 A disconnected graph G with two components G1 and G2. 102
9.3 A disconnected graph G with two components G1 and G2. 106
9.4 Examples non-isomorphic graphs which have same cycle matrix 108
9.5 A graph with branches and chords specified. 110
9.6 A graph G with branches and chords are specified . 114
9.7 A graph G . 116
9.8 A graph G with self-loops . 117

10.1 A graph G for computer input . 126
10.2 A graph G for computer input . 128
10.3 Components Algorithms Step-1 . 128
10.4 Components Algorithms Step-2 . 128
10.5 Components Algorithms Step-3 . 129
10.6 Components Algorithms Step-4 . 129
10.7 Components Algorithms Step-5 . 129
10.8 Components Algorithms Step-6 . 130
10.9 Components Algorithms Step-7 . 130
10.10 Components in a graph G. 130
10.11 A spanning forest of a disconnected G . 132
10.12 A weighted graph G . 132
10.13 Illustration to Kruskal’s Algorithm . 133
10.14 Illustration to Prim’s Algorithm . 134
10.15 Illustration - BFS Algorithm . 135
10.16 Illustrtaion - BFS Algorithm . 136
10.17 A weighted graph G . 137

List of Tables

3.1 Eccentricities of vertices of the graph in Figure 3.1. 25

9.1 The incidence relation of the graph G . 102
9.2 Table for fundamental circuit matrix . 110
9.3 Table for fundamental circuit matrix . 110
9.4 Table for cut-set matrix of a graph . 112

10.1 Two Linear Array representation of a graph. 126
10.2 Neighbour (successor) listing of a graph. 127

INDEX

Index

d-generate graph, 92
k-connected graph, 79
k-edge connected graph, 79
k-regular graph, 11

acyclic digraph, 49
adjacency matrix, 117
adjacency relation, 3
adjacent edges, 4
adjacent vertices, 4
arc, 3
arc of a digraph, 47
articulation point, 71
ath matrix, 121
augment, 51
augmenting path, 51

back-tracking algorithm, 138
BFS algorithm, 137
binary matrix, 103
binary tree, 65
bipartite graph, 9
biregular graphs, 11

block, 76
bond, 73
branch of a graph, 61
bridge, 29

capacity, 50
capacity function, 50
center of a graph, 24, 59
Chinese postman problem, 38
chord of a graph, 61
circuit, 23
circuit matrix, 108
circuit rank, 63
closed directed walk, 49
closed neighbourhood, 7
closed walk, 23
cocycle, 73
complete binary tree, 67
complete bipartite graph, 10
complete digraph, 48
complete graph, 8
component of a graph, 26
components algorithm, 129

158 INDEX

connected graph, 25
cubic graph, 78
cut of a network, 51
cut-edge, 29
cut-node, 71
cut-set, 73
cut-set matrix, 113
cut-vertex, 30, 71
cycle, 23
cycle matrix, 108
cycle rank, 63
cyclomatic number, 63

Dürer graph, 92
degree sequence, 6
diameter of a graph, 24
digraph, 47
digraph topologies, 50
Dijkstra’s algorithm, 138
directed acyclic graph, 50
directed cycle, 49
directed graph, 47
directed path, 49
directed walk, 48
distance, 24
dodecahedron, 40

eccentricity of a vertex, 24
edge, 3
edge connectivity, 77
edge contraction, 19
edge deleted subgraph, 28
edge deletion, 18
edge list, 128
edge listing, 128
edge set, 3
edge-cut, 73
edge-induced subgraph, 8
elementary reduction, 88
elementary topological reduction, 88
embedding, 82
empty graph, 4
Euler tour, 36

Euler walk, 36
Eulerian circuit, 36
Eulerian cycle, 36
Eulerian digraph, 49
Eulerian directed walk, 49
Eulerian graph, 36
even cycle, 24
expansion, 20
exterior region, 82
external path length, 65

face of a graph, 82
finite graph, 4
flow function, 50
Floyd-Warshall algorithm, 141
forest, 55
fundamental circuit, 63
fundamental cut-set matrix, 115
fundamental cut-sets, 75
fundamental cycle, 63
fundamental cycle matrix, 111
fusion of vertices, 19

geodesic distance, 24
geodetic graph, 24
geometric dual, 93
graph, 3
graph complement, 17
graph cycle, 39
graph geodesic, 24
graphical realisation of a sequence, 6
graphical sequence, 6

Hamilton path, 39
Hamiltonian circuit, 39
Hamiltonian graph, 39
head of an arc, 47
homeomorphic graphs, 20

identification of vertices, 19
in-degree, 47
incidence, 4
Incidence Matrix, 103

Lecture Notes on Graph Theory 159

induced subgraph, 8
infinite graph, 4
infinite region, 82
inflow, 50
interior region, 82
intermediate, 51
intermediate vertex, 5, 51
internal vertex, 5, 66
intersection of graphs, 15
isolated vertex, 5
isomorphic graphs, 11
isomorphism of graphs, 11

join of graphs, 18
Jordan curve, 82

Königsberg seven bridege problem, 35
Kruskal’s algorithm, 134
Kuratowski’s graphs, 85

length, 23
level of rooted tree, 66
light-edge property, 133
line, 3
link of a graph, 61
loop, 4

maximum degree of a graph, 5
merging of vertices, 19
mesh, 82
metric, 58
minimal cut-set, 73
minimal spanning tree, 133
minimally connected graph, 57
minimum degree of a graph, 5
multigraph, 5
multiple edges, 5

neighbourhood, 7
network, 50
node, 3
non-planar Graphs, 83
non-separable graph, 76
null graph, 4

nullity of a graph, 62

odd cycle, 24
open neighbourhood, 7
optimal spanning tree, 133
order, 4
order of a graph, 4
orientation, 47
out-degree, 47
outer region, 82
outflow, 50

parallel edges, 5
path length, 65
pendent vertex, 5
peripheral vertex, 24
Petersen graph, 11
planar embedding, 82
planar graph, 82
platonic solids, 90
point, 3
Prim’s algorithm, 135
proper cut-set, 73

radius of a graph, 24
rank of a graph, 62
reduced incidence matrix, 107
reference vertex, 107
region, 82
regular graph, 11
ringsum of graphs, 15
rooted tree, 64

scaffold graph, 60
self-complementary graphs, 17
self-loop, 4
semi-Eulerian graph, 36
separable graph, 76
separating set, 71
shortest path, 24
simple cut-set, 73
simple graph, 5
sink, 48, 51

160 INDEX

size of a graph, 4
skeleton graph, 60
smoothing a vertex, 21
source, 48, 50
source vertex, 50
spanning subgraph, 8
spanning tree, 60
spanning tree algorithm, 132
spherical embedding, 83
strongly connected digraph, 49
subdivision, 20
subgraph, 8
successor listing, 129
symmetric digraphs, 50

tail of an arc, 47
tie of a graph, 61
topological minor, 89
topological planar graph, 82
tour, 23
tournament, 48
traceable graph, 39
traceable path, 39
trail, 23
transitive digraph, 50
travelling salesman problem, 44
traversable graph, 36
tree, 55
trivial graph, 4
two linear arrays, 128

unbounded region, 82
underlying graph, 48
unicursal graph, 36
union of graphs, 15
utility problem, 81

vertex, 3
vertex connectivity, 78
vertex degree, 5
vertex deletion, 19
vertex set, 3
vertex tour, 39

vertex-cut, 71
vertex-deleted subgraph, 28

walk, 23
weakly connected digraph, 49
weight of an edge, 44
weighted graph, 44
wighted path length, 65
window, 82

View publication statsView publication stats

https://www.researchgate.net/publication/321239267

	Preface
	Contents
	SYLLABUS
	Syllabus

	Part I — INTRODUCING GRAPHS
	1 Introduction to Graphs
	1.1 Basic Definitions
	1.2 Degrees and Degree Sequences in Graphs
	1.3 Subgraphs and Spanning Subgraphs
	1.4 Fundamental Graph Classes
	1.5 Isomorphic Graphs
	1.6 Exercises

	2 Graphs and Their Operations
	2.1 Union, Intersection and Ringsum of Graphs
	2.2 Complement of Graphs
	2.3 Join of Graphs
	2.4 Deletion and Fusion
	2.5 Subdivision and Smoothing
	2.6 Exercises

	3 Connectedness of Graphs
	3.1 Paths, Cycles and Distances in Graphs
	3.2 Connected Graphs
	3.3 Edge Deleted and Vertex Deleted Subgraphs
	3.4 Exercises

	Part II — TRAVERSABILITY IN GRAPHS & DIGRAPHS
	4 Traversability in Graphs
	4.1 Königsberg Seven Bridge Problem
	4.2 Eulerian Graphs
	4.3 Chinese Postman Problem
	4.4 Hamiltonian Graphs
	4.5 Some Illustrations
	4.6 Weighted Graphs
	4.7 Travelling Salesman's Problem
	4.8 Exercises

	5 Directed Graphs
	5.1 Directed Graphs
	5.2 Types of Directed graphs
	5.3 Networks

	Part III — TREES
	6 Trees
	6.1 Properties of Trees
	6.2 Distances in Trees
	6.3 Degree Sequences in Trees
	6.4 On Counting Trees
	6.5 Spanning Trees
	6.6 Fundamental Circuits
	6.7 Rooted Tree
	6.8 Binary Tree
	6.9 Exercises

	Part IV — CONNECTIVITY & PLANARITY
	7 Connectivity in Graphs
	7.1 Cut-Vertices and Vertex-Cuts of a Graph
	7.2 Cut-Sets of a Graph
	7.3 Fundamental Cut-Sets
	7.4 Connectivity in Graphs
	7.5 Exercises

	8 Planar Graphs
	8.1 Three Utility Problem
	8.2 Planarity of Graphs
	8.3 Kuratowski Graphs and Their Nonplanarity
	8.4 Detection of Planarity and Kuratowski's Theorem
	8.5 Euler Theorem and Consequences
	8.6 Geometric Dual of a Graph
	8.7 Exercises

	Part V — GRAPHS AND MATRICES
	9 Matrix Representations of Graphs
	9.1 Incidence Matrix of a Graph
	9.2 Cycle Matrix
	9.3 Cut-Set Matrix
	9.4 Relation between Af, Bf and Cf
	9.5 Adjacency Matrix
	9.6 Path Matrix
	9.7 Exercises

	Part VI — GRAPH THEORETIC ALGORITHMS
	10 Graph Algorithms
	10.1 Computer Representation of a Graph
	10.2 Algorithm for Connectedness and Components
	10.3 Spanning Tree Algorithm
	10.4 Minimal Spanning Tree Algorithms
	10.5 Shortest Path Problems
	10.6 Exercises

	REFERENCES
	LIST OF FIGURES & TABLES
	List of Figures
	List of Tables

	INDEX
	Index

