
P.B. Siddhartha College of Arts & Science Microcontrollers Study Material

MICRO CONTROLLERS AND INTERFACES

1. Difference between Micro controller and Micro processor:

Microprocessor:

 Microprocessor is a general purpose processor such as intelX86 family such as

8086,80286,80386,80486 and pendium and motrolo family are 680X0 such as

68000,68010,68020 etc.

 Mp is the heart of computer system and mainly used in computer system.

 Microprocessor doesn’t contain no RAM, noROM,and no I/P-O/P PORTS on chip

itself.

 A system designer using this general purpose processor by adding RAM, ROM ,

I/P&O/P PORTS and timers to make them functional and size become bulky and cost

becomes expensive.

 Since memory and I/O connected externally the circuit becomes large.

 It has less number of registers hence more operations on memory based.

 Mp doesn’t having power saving features.

 It’s clock speed is low i.e(30-50MHZ)

 It used in Real time applications.

Microcontroller:

 Micro Controller has CPU (Micro Processor) in addition to a fixed amount of RAM,

ROM, I/P-O/P PORTS and timers on a single chip.

Eg:TV Remote control, Telephone, Music instruments, printer etc.

 Microcontroller is the heart of Embedded system and mainly used in MP3 player.

 These applications require I/P-O/P operations to read signals and turn on &off certain

bits for this reason. They use processor IBP are known as ITTY-BITTY processor.

 It is a 40 pin dip and quard flat package (qft) and is require +5V power.

 In a embedded system the microprocessor and micro controller are widely used in

embedded system products to do one task.

Eg:Printer.

 It has unique instruction set and register and they are not compactable to each other

and their also has 16 bit and 32 bit processor.

 In 1981 IntelCorporation introduce 8 bit micro controller. It’s having

128 bytes RAM

4K bytes ROM

1-serial port

4- I/P and O/P ports

6- Interrupt sources, 2- timers.

 It has 2 versions 8052 and 8031.

 In 8052 its having 256 bytes RAM

8K bytes ROM

3 timers

32 I/P-O/P ports

One serial port

6 interrupt sources

 The program written in 8051 can run in 8052 but the vice-versa is not possible.

 In 8031 microcontroller its having 128 bytes RAM

 0K byte ROM

 32 I/P-O/P ports

 One serial port

 6 interrupt sources

 2 timers

 In 8751 micro controller the flash memory can be erased in 20 min are more whereas

8051 requires few seconds.

Eg:Atmel 89C51-12PC

At89C51-16PC

At89C51-32PC

 There are 4 major companies for 8 bit micro controller are free scale 6811, Intel

8051,Zilog 8051,PIC 16X.

 The 8051 Phillips company feature are A/D,D/A extended for I/P-O/P port on time

programmable(OTP) and flash.

 Since memory and I/O connected internally the circuit becomes small.

 It has more number of registers hence programme is easier to write.

 Microcontroller having power saving modes like idle & power saving mode.

 It’s clock speed is high i.e(1GHZ)

 It used in Real time applications.

2.8051 Architecture:

 It was developed by using NMOS technology but these require more power to

operate then Intel re-design micro controller using CMOS technology.

 It is an 8-bit B register to perform arithmetic and logic operations.

 DPTR (Data pointer) is used for control the program instruction and can specified by

its 16-bits.The 8051 have a built in RAM for internal processing. This memory is

primary memory and is used for storage of temporary data (volatile memory) i.e., it

contains gets vanish when power is turned off.

CPU:

CPU is the brain of processing device. It monitors and controls all operations that all

perform in micro controller.

INTERRUPTS:

 It is a sub routine device call that interrupts micro controller main operation or

work causes it to execute some other program which is more important at that

time. The feature of interrupt is very useful as it help in cases of emergency.

 There are 5 interrupt sources, 2 of them are external and 3 of them are internal

interrupts.

MEMORY:

 Memory is a storage device to store data.

 It is used to store the

program of micro

controller is known as

code memory or

program memory (ROM).

 It is used to store data or

operands temporarily

then it is known as data

memory(RAM).

BUS:

 It is a collection of wires

which work as a

communicate channel or

medium to transfer the data.

 The bus consists of 8 or 16 wires.

Address Bus:

 It is a uni-directional (16 bit).It transfer data from CPU to memory(A0-A7).

Data Bus:

 It is a bi-directional (8 bit).It carry data from cpu to memory vice-verssa(D0-D7).

Control bus: It controls the clock frequency between AB&DB.

OSCILLATOR:

 It is used to generate clock pulse to synchronize all internal operations.

 It generates frequency range from minimum to maximum (1MHz-12MHz).

 Generally quartz crystals are used for stability(11.0592MHZ) whereas ceramic

oscillators are unstable.

PROGRAM STATUS WORD (PS):

 It is a 8-bit register referred as flag register.

psw.7 psw.6 psw.5 psw.4 psw.3 psw.2 psw.1 psw.0

 In this 6 bits used in

8051 and 2 bits are user definable flags and 4 flags are conditional flags.

Carry Flag:

 This flag is set whenever there is a carry out from D7 bit.It can directly set to 1 or 0 by

using SET C-1, CLR c-0(addition, subtraction).

Auxiliary Carry Flag:

 If there is a carry from D3 to D4 during addition or subtraction operation, This bit is

set or clear (BCD operation).

Parity Carry Flag:

 1. It reflects no. of 1’s in accumulator register only.

 2.If A register contains odd no. of 1’s then p=1.

Cy AC FO RS1 RS0 OV - P

 3.If A register contains even no. of 1’s then p=0.

Overflow Flag:

 1.This flag is set whenever the result of signed number operations is too large.

 2.The overflow flag detect errors in signed numbers whereas carry flag detect errors

in unsigned numbers.

FO Flag:

 It is used for general purpose.

Rs1 Rs0 Register Bit Address
 0 0 0 00H-07H

 0 1 1 08H-0FH
 1 0 2 10H-17H
 1 1 3 18H-1FH

Eg: Adding 38 and 2FH

 0011 1000

 0010 1111

 0110 0111

 Carry=0(since there is no carry beyond D7 bit.

Auxiliary carry=1(since there is carry from D3 to D4 bit.

Parity flag=1(A has five 1’s).

Timer-Counters:

 It has two 16 timers and counters .The timers are used for measurement of

intervals to determine pulse width etc.

I/P-O/P ports:

 It has 4 ports port 0,1,2,3.Each port is 8 bit wide. It is used in embedded systems to

control the operation of systems.

3.Types of Micro-Controller:

 Micro controller is classified into 4 types depending on memory,

architecture and instruction set. They are

 4 bit:

It is small in size, minimum pin count,low cost and it is used in low end applications

like LED, LCD, display drivers and portable battery charges etc. It is a 20 pin dip with

4K ROM,256 bytes RAM, 14 I/O pins,2 counters. Its Intel family is RENASA 34501.

 8 bit:

It is most popular micro controller. Above 55% CPU’s sold in world are 8 bit micro

controllers. It has 8 bit internal bus 256 bytes RAM,4K ROM, 32 bit I/O ports, 2

timers/counters and its Intel family is 8051. Intel family designs a micro controller in

the year 1981.

 16 bit:

It has 16 bit ALU at an instruction. It is suitable for high languages like C++ and its

Intel family is 8096.

 32 bit:

It has 32 bit internal bus and is used in high end applications like robotics,

communication networks, cell phones etc.

Eg: PIC 32,ARM 7,and ARM 9.

4.Micro controller development tools:

The various development tools are required for microcontroller programming.

 Editor:

An editor is a program which allows to create a file containing the assemble language

statements for the program.

Eg: As he writes the program the editor stores the ASCII codes for the letters and

numbers in successive RAM location. After typing the entire program we have to save

the program this we call it as source file.

The next step is to process the source file with an assembler. Eg: sample.asm.

 Assembler:

An assembler is used to translate to assemble language mnemonics into machine

language(binary code) when we run the assembler it reads the source file of your

program where we have saved it. The assembler generates a file with an extension

“.hex”(hex decimal codes).

 Compiler:

 P.B. Siddhartha College of Arts & Science Microcontrollers Study Material

It converts a high level program like C into binary or machine codes.

Eg: Kiel, Ride, IAR work bench or popular.

 Debugger:

1)A debugger is a program which allows stopping the program for each instruction

then it is known as single step debug(static).

2)A debugger allows to set a break point in the program the debugger will run the

program up to the instruction where the break point is given then it stop the

execution. Hence it known as break point debug(dynamic).

Eg: 10 instructions, 20 instructions…………..

5.Special Function Register:

 There are 21 SFR used in micro controller 8051. This includes register A,

register B, PSW, PCON etc. There are 21unique locations each of these register is one byte

size.

 Sum of this SFR are bit addressable(which means wecan access

individual bits inside a single bit) while some other are byte addressable.

 Accumulator:

The accumulator holds the result of both for arithmetic and logic operations. It is an 8

bit byte. Accumulator is usually accessed by direct addressing and it physical address

is E0H. Accumulator is both bit and byte addressable.

 B-Register:

The major product of register executing its MUL and DIV. In 8051 the multiplication is

done by repeat subtraction. It is used for general purpose operation for both bit and

byte address and physical address is F0H.

B7 ------------------------ B1 B0

 Port Register:

It having 4 I/O ports named as P0,P1,P2,P3. Data must written in port registers must be

first to send it out any other external devices through ports. All 4 ports are bit and

byte address. Po-80,P1-90,P2-A0,P3-B0

Acc.7 ------------------------------- Acc.1 Acc.0

 Stack Pointer:

It is an 8 bit register the direct address of stack pointer is 81H. It is only byte

addressable. Stack pointer having two instructions PUSH&POP(LIFO).

 In PUSH the stack pointer is used to increment by 2(SP+2).

 In Pop the stack pointer is used to decrement by 2(Sp-2).

 PCON(Power Management Register):

We can see every day it is used in mobile phones. It is commonly referred as Power

management alone. It has 2 modes-ideal mode, power down mode.

SMOD -------------------------- GP1 GP2 PDL IDL

 Setting bit ‘0’ we will move the micro controller into ideal mode.

 Setting bit ‘1’ we will move the micro controller into power down mode.

6. Pin Diagram of 8051:

 8051 family members are 8751,89C51,89C52,DS89CX40(all belongs to Intel). Its

available packages are DIP, QFP, LLC(lead less carries). They are all having 40 pins.

 It must be noted that some companies made a 20 pin version of 8051 by reducing no.

of I/O pins for less applications. Majority of developers use 40 pin dip. The pins are

designated as VCC, GND, XTAL2, XTAL1, EA, PSEN, ALE are used by all members of

8051 and 8031 families.

 It is a 40 pin dip provides a supply voltage to the chip is +5V.

 8051 is a chip oscillator but requires an external clock to run it. Most often we use

Quartz crystal rather than TTL Oscillator.

 It also needs 2 capacitors “30pf” values.

One side of each capacitor value is

connected ground.

RST(Reset pin):

 It is a input pin , active high (normally

low). It is often referred as power on reset by

activating this pin it will set the program

counter to all 0’s.

EA(External Access):

 In 8051 family members all come with

one chip ROM to store program. In such case

EA connected to ground or VCC. It cannot be left unconnected.

PSEN(Program stored Enable):

 In 8031 or 8051 micro controller systems in which external ROM holds the

program code.

ALE(Address latch enable pin):

 It is an output pin and active high. It can MUX both address and data through port

0 to save pins. It is used for de-muxing the address and data by connecting to the chip

4LS373 chip.

Ports:

 It having 32 bit I/O ports and each port is 8 bit wide.

Port 0:

 If ALE=0 it provides data D0 to D7 when ALE=1 it has address A0 to A7. Port 0

provides both address and data. It also designated as AD0 to AD7.

 In 8051 there is no external memory connection the pins of port 0 are connected

to pull-up resistor(10KΩ).

Port 1&2:

 Port 1 & 2 acts as simple I/O. In 8051 or 8031 basic system port 2 must be used

along with port 0 to provide 16 bit address. P2 designated as A8 to A15&p0 designated

as-A0-A7.For p1,p2and p3 does not required external pull-up resistors because they

connected internally.

Port 3:

 Its pins are 10 to 17. It can be used as input (or) output. It has addition function

providing some external important systems such as interrupts.

Ports Pins Description
P3.0 10 RXD serial communication signals

P3.1 11 TXD serial communication signals
P3.2 12 INT0 external interrupts

P3.3 13 INT1 external interrupts
P3.4 14 T0 Timer 0

P3.5 15 T1 Timer 1
P3.6 16 WR write signal

P3.7 17 RD read signal

Machine cycle and crystal frequencies:

 A no. of machine cycles is to take execution an instruction is not same for AT89651

and DS89C4X0. In this X1 and X2 dedicates the speed of clock in machine cycle.

 Machine Cycle = No. of clocks = 1 = 90.42 ns

 Frequency 11.0592 MHz

Chip Clock per machine cycle
AT89C51 12

DS89C4X0 1
DS5000 4

7. 8051 Memory Organization:

 It is divided into 2 types and there are 1.Program Memory 2.Data Memory.

 Program memory is used for permanent saving the program being executed.

 Data Memory is used for temporarily storing data(register).

 In program memory is read only memory (ROM). Depending on setting made in

compiler and also store a constant variable.

 8051 allows external program memory to be added.

 Microcontroller handle external memory depends on EA logic state. If EA=0,the

external ROM memory is 64K.

 If EA=1 the additional ROM memory 64K+4K embedded memory.

Internal Memory:

 Up to 256 bytes of internal data memory are available in 8051.

 The first 128 bytes of internal memory are both direct and indirect addressable.

 The upper 128 bytes of data memory is 0X80 to 0XFF can be addressed only indirectly.

 The memory block is in the range of 20H to 2FH is bit addressable which means each

bit mean where has its own address from 0 to 7FH.

 Since there are 16 registers the block contains total of 128 bits with separate address.

In this 3 memory type specifies is used to refer the internal data memory data, idata, bdata.

External data memory:

 It is slower than internal data memory and made up

of 64K bytes of external data memory setting of the

registers must be manually done in code, before any

access to external memory (or) X-RAM space is made. It

has two specifiers i.e X-data, P-data.

SFR memory:

 8051 provide 128 bytes of memory of

SFR memory are bit, byte or word sized

registers that are used to control timers,

counters, serial I/O, Port I/O and

peripherals.

8. Addressing Modes:

 Addressing mode is a way we address and operand means a data we are

operating a source (Register,address of memory,any numeric data). It is divided into five

types. 1.Immediate addressing mode.

 2.Direct addressing mode.

 3.Register addressing mode.

 4.Register index addressing mode.

 5.Index addressing mode.

Immediate Addressing mode:

 It can transfer data immediately to

accumulator. The opcode for MOVA,#data is 74. The opcode

saved in program memory at 0021. The instruction required 2

bytes to execute in 1 cycle. So, after the execution of

instruction the program counter will add two to and move to

0024.

Instruction Opcode Bytes Cycles

MOVA,#6A 74 2 1

Note: The # symbol before 6A indicates the operand is an 8 bit data, when # is not present

it taken as hexadecimal.

Direct Addressing Mode:

 It is another way of addressing the data. Here an address of

data(resource) is given as operand.

Eg: MOV A,04.

 Here 04 is address of register 4 (bank 0) when it is executed.

Note: If # is gives the data value of 04H transfer to accumulator instead of 1FH.

Register Direct Addressing Mode:

 It is used to move the data from the

register to accumulator.

 Eg: MOV A,R4.

 At a time register can take value from R0 to R7 In

8051 we are having 32 such registers & 4 register

banks(0,1,2,3) . Each bank has 8 registers name R0 to R7

selection of register bank is made to PSW

(SFR)(PSW.4,PSW.3)

Register Indirect Addressing Mode:

 In this address of data is to transfer

to an accumulator. Here the value inside R0 is

considered as an address which holds the data to

transfer in to accumulator.

Eg: MOV A,@R0.

 In this R0 holds the value 20H we have data 2FH store at address 20H then the value of

2FH is get transferred to accumulator after executing the instruction.

Instruction Opcode Bytes Cycles

MOV A,04 E5 2 1

Instruction Opcode Bytes Cycles

MOV A,R4 EC 1 1

Instruction Opcode Bytes Cycles
MOVA,@R0 F6 1 1

Index Addressing Mode:

The source operand @A+DPTR and

we get the data from this location it is nothing

but adding contents of DPTR with current content

of accumulator . DPTR holds the value 01FE

where 01 is located in DPH(high order 8 bits) and

FE is located in DFC(low order 8 bits), Now accumulator has the value 02H the addition is

16 bit and now 01FE+02 results in 0200H will get transfer to accumulator. It is a one-byte

instruction and 2 cycles need for execution.

9. Port Organization:

 8051 has four parallel input /output ports. It provides the user 32 input output lines

for connecting the microcontrollers to peripherals.In order to make them input all ports

must be SET i.e., high bit must be send to all port

pins. It is normally done by using “SETB”.

Port 0:

 It is an 8 bit input /output port with

dual purpose if external memory is used these

pins are used for low address byte (AD0 to AD7).

Unlike other ports, port ‘0’ is not provided by internal pull up resistors . So, that 10k are

connected externally. Port-0 can be used as a both bidirectional I/O port (or) address/data

interfacing for accessing external memory. (i)When control is '1', the port is used for

address/data interfacing.

(ii) When the control is '0', the port can be used as a bidirectional I/O port.

Eg: MOV A,#0FFh

 MOV P0, A

Instruction Opcode Bytes Cycles
MOVA,@A+DPTR 93H 1 2

Port 1:

 It acts as input or output. If we reset, port 1

configured as output port. If it is set, port 1 act as

input port. The pin is pulled up or down through

internal pull-up when we want to initialize as an

output port. To use port-1 as input port, '1' has to

be written to the latch. In this input mode when '1'

is written to the pin by the external device then it read fine. But when '0' is written to the pin

by the external device then the external source must sink current due to internal pull-up. If

the external device is not able to sink the current the pin voltage may rise, leading to a

possible wrong reading

 Ex: Mov A,#0FFh

 Mov P1, A

Port 2:

 It is an 8 bit parallel port. It does not require external resistors. It is used as input or

output port. If we reset, port 2 acts as output port. If we set port 2 acts as input port. Port-2

we use for higher external address byte (or) a normal input/output port. The I/O operation is

similar to Port-1. Port-2 latch remains stable when Port-2 pin are used for external memory

access. Here, again due to internal pull-up there is

limited current driving capability.

 Ex: MOV A, #0FFh

 MOV P2, A

Dual Port:

 It is associated with high order address lines.

In systems like 89C51, DS5000, port is used as

simple input output port. Where as in 8031 basic

system, ports 2 is used along with port 0 and provides 16 bit address. The external memory

is P0- (A0 A7), P2=(A8 A15).In 8031 , it is connected to external memory and it is use upper 8

bits of 16 bit address and cannot be used for input output ports.

Port 3:

 It is an 8 bit parallel port with dual function. It is

used for input output operation as well as for control

operations.If we Reset, port 3 acts as output port.If we

Set, port 3 acts as input port.

 Eg: MOV A,#0FFh

 MOV P3, A

Alternative function:

10. Interrupt structure:

 An interrupt is an external or internal event that disturbs the micro controller to inform it

that a device needs its service. The program which is associated with the interrupt called

ISR (Interrupt service routine).Upon receiving the interrupt signal, the micro controller

finish the current instruction and save pc on stack.Fixed location to memory depending on

interrupt until RET, the micro controller returns to place where it was interrupt get pop

from the stack.

 It has five interrupt sources timer0, timer1. External interrupts are INT0, INT1, Serial

port events.Each interrupt has a specific place in code memory where program execution

ISR begins.

 INT0-0003H, INT1- 0013H, T0-000BH, T1-001BH

 Upon Reset all interrupts are disable and do not respond to micro controller. This

interrupts must be enable by software in order to respond and this is done by IER (Interrupt

Enable Register).

Upon Rest the interrupts have been following priority from top to bottom. The interrupt

which are having high priority can be serviced first INT0, IT0, INT1, IT1, Serial communication

R1- T1.

11. Timers in 8051:

 It has 2 timers (T0 and T1) which are 16 bit timers. These timers are accessed as 2 8-

bit registers. TLO , THO and TL1 , TH1.

It is used to generate accurate time delays or event counters.

Timer ‘0’: It is a 16 bit register and can be treated as two 8-bit register (TLO , THO) and this

registers’ can accessed similarly registers like A, B (or)R0, R1 etc.

 P.B. Siddhartha College of Arts & Science Microcontrollers Study Material

Ex:

MOV TLO,#07 move the value 07 to low order byte timer T0 .

 MOV R5, THO saves the contents of THO to R5 register.

Timer 1:

 It is a 16 bit register and can be treated as two 8-bit registers(TL1 , TH1) and this

register can accessed usually to any other register like A, B(or) R0, R1 etc.

Ex:

MOV TL1,#07 move the value 07 to low order byte timer T1.

 MOV R5, TH1 saves the contents of TH1 to R5 register.

TMOD Register:

 The various operating modes of both the timers T1 and T0 are set by 8 bit register

called TMOD Register.

In this lower 4 bits are meant for T0 and higher 4 bits are meant for T1.

Gate:

 This bit is used to start or stop the timers by hardware.

 When gate=0, the timer can start or stop by software instructions like SETB TR0 ,

SETB TR1

 When gate=1, the timer can start or stop by external sources.

C/T:(CLOCK/TIMER)

 This bit decides whether the timer is used as delay generator or event counter.

 C/T=0 then the timer is used as delay generator.

 C/T=1 then the timer is used as event counter.

M1 and M0: The two bits are timer mode bits .The timers of 8051 can be configured in 3

modes.mode0,1,2.

M0 M1 MODE DESCRIPTION

0 0 0 13-BIT timer mode/8-bit timer/counter

0 1 1 16-bit timer mode, 16-bit timer/counter

1 0 2 8-bit Auto re-load.

1 1 3 Split timer mode

TCON Register:

 8051 has two 16-bit timers/counters

 In this the timer registers is incremented once every machine cycle.

 In this count is about (1/12) oscillator frequency.

 In case of counter register is incremented in response to a 1-0 transition to its

corresponding external input pin. In this function, the external input is sampled

during s5-p2 of every machine cycle.

 Address is 88H(bit addressable)

k.s.s.rao

SCON Register:

 Address is 98H (Bit addressable)

SMOD Register:

Serial bit mode is used to determine the Baud rate of Timer1.

Baud rate= Oscillator frequency in Hz / N [256-(TH1)]

If SMOD=0 then N=384

If SMOD=1 then N=192,

TH1 is high byte of timer 1 when it is 8in 8-bit auto re-load mode.

T2CON:

Timer 2 control register.

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

TF2----Timer 2 over flow flag

EXF2----Timer 2 external flag

RCLK----Receive clock. When set causes the serial port to use timer2 for reception.

TCLK—Transmit clock, when set causes the serial port to use timer 2 for transmission.

C/T2----counter/timer , if 0 use internal timer, if 1 use external pin.

CP/RL2------capture/reload flag.

 INTERFACING WITH 8051

Q1.8255A:

 It is a programmable peripheral interface (Parallel communication)

 It is a 40 pin dip terminal having a supply voltage of +5V.

 It has 24 input and output pins i.e., port A, B, C.

 Each port can be enabling by writing a control word in

control register.

 It has two I/O modes and one BSR mode.

 I/O mode divided into three modes

i. simple input output

ii. Handshake (Control signals)

iii. Data transfer.

It transfers data from simple I/O to interrupt I/O.

8255 is a SPI. Interface 8255 with AT89S51, AT89S52, AT89C51, AT89C52, AT89C2051, AT89C4051,

and AT89C1051. Basically 8255 is a port expansion used to expand the port and its data with external

circuitry. Every 8255 chip has 3 off 8 bit TTL

logics input output port which can control 24

output signals or logic levels or reading 24

individual inputs or outputs.

 Functions of PPI 8255 Features:

8255 is a 40 pin DIP chip that is used to

expand the ports of microcontrollers. It has

three 8 bit ports that can be accessed

separately having the name Port A, Port B

and Port C in short PA, PB and PC of 8255.

Ports can be programmed separately and for

sending or receiving data these 8255 ports

can be changed dynamically using

programming in assembly or KEIL C

language. This chip also includes

handshaking features and functions to detect the conditions and signals. It can be interfaced with

another devices having handshaking capability 8255.

 Interfacing PA0 - PA7 Ports 8255A with 89C51 Microcontroller:

D7 D6 D5 D4 D3 D2 D1 D0

 x x x S/R

The 8 bit port of 8255 A can be used for dual purpose for input and output for 8051 microcontrollers.

PA 8255 is bidirectional port can be programmed easily to send or receive data from external devices

like memories, chips and electronic devices.

Interfacing PB0 - PB7 Port 8255 with 89C52 Microcontroller:

Port B of 8255 is also a dual role in getting and receiving data from external devices and is

programmed as a bidirectional port using assembly language or C language. Port PB of 8255 is a 8 bit

port and 8 bits can be handled individually with 8255 and 89S51 or 89S52 Microcontrollers.

 Interfacing PC0 - PC7 Port 8255A with 89S51 Microcontroller:

Port C of 8255 chip is also a bidirectional 8 bit port. Another function of 8255 Port C, that it can be

split into two parts to be programmed. One of them is CU 8255, upper bits PC4 - PC7 and CL 8255

lower bits PC0 - PC3. Each can be used as a input or output port to connect with 89C51, 89C52

Microcontrollers.

 Interfacing D0 -D7 Data Pins 8255 Chip with 89S52 Microcontroller:

This is the data pins 8255 can be connected with 89S51, 89S52, 89C51, 89C52, 89C2051, 89C4051,

89C1051, any of the microcontroller to send or receive data over this line. Data port of 8255 can be

used to send data or receive between AT89S51, AT89S52, AT89C51, AT89C52, AT89C2051,

AT89C4051, AT89C1051 microcontroller.

 RD, WR And RESET 8255 Chip with 89C1051, 89c2051 and 89c4051 Microcontroller:

RD and WR signals refers to reading and writing to 8255A IC with active low signal functionality. RD

and WR lines of 8255 are connected with RD and WR signals of 8051 microcontroller or its other

variants. RESET is an active high signal used to reset and clear the internal registers of 8255 chip.

When we set RESET set to active high all ports of 8255 are set as input

ports. This pin can be set grounded with the circuitry; It can be be left

unconnected.

 A0, A1 and CS or Chip Select 8255:

CS is used to select the chip and makes it works, A0 and A1 select a

particular port of 8255 to send or receive data over lines. These three

lines are used to access a particular port from 3 ports A, B and C of the

chip.

8255 Hardware Connection with 8051 Microcontrollers:

8255 chip can be interfaced very easily with 8051 microcontroller using its data lines and all other

important lines with the external circuit. Following is the hardware diagram can be used to create a

circuit used to interconnect with 8255 using Atmel microcontrollers.

CS A1 A0 SELECTION

0 0 0 Port A

0 0 1 Port B

0 1 0 Port C

0 1 1 Control

register

1 x x 8255A not

selected

Q2:ADC0804:

 A/D conversion: low power, high performance, C MOS. The easiest A/D converters to

use one flash types which make conversions based on array of internal comparators. The conversion

is very fast typically in less than 1 micro second. Thus the converter can be told to start and digital

equivalent of input analogue value will be read one (or) more instructions later. Modern successive

approximation register (SAR) converters do not lag far behind however with conversion times in the

2-4 micro second range for 8-bits. Flash converters are more expensive(by a factor of two)than the

traditional SAR types.

ADC 0804 is an 8-bit successive approximation analogue to digital converter from national

semiconductor.

Its voltage inputs 0-5v input voltage range, no zero adjustment, built in clock generator, reference

voltage can be externally adjusted to smaller analogue voltage span to 8-bit resolution etc.,

ADC (Analog to digital converter) forms

a very essential part in many embedded

projects and this article is about

interfacing an ADC to 8051 embedded

controller. ADC 0804 is the ADC used

here and before going through the

interfacing procedure, we must neatly

understand how the ADC 0804 works.

ADC0804 is an 8 bit successive

approximation analogue to digital

converter from National semiconductors.

The features of ADC0804 are differential

analogue voltage inputs, 0-5V input voltage range, no zero adjustment, built in clock generator,

reference voltage can be externally adjusted to convert smaller analogue voltage span to 8 bit

resolution etc. The pin out diagram of ADC0804 is shown in the figure below.

 Output pin:-

The voltage at Vref/2 (pin9) of ADC0804 can be

externally adjusted to convert smaller input voltage spans

to full 8 bit resolution. Vref/2 (pin9) left open means input

voltage span is 0-5V and step size is 5/255=19.6V. Have a

look at the table below for different Vref/2 voltages and

corresponding analogue input voltage spans.

Steps for converting the analogue input and reading the

output from ADC0804:

Make CS=0 and send a low to high pulse to WR pin to

start the conversion.

Now keep checking the INTR pin. INTR will be 1 if conversion is not finished and INTR will be 0 if

conversion is finished.

If conversion is not finished (INTR=1) , poll until it is finished.

If conversion is finished (INTR=0), go to the next step.

Make CS=0 and send a high to low pulse to RD pin to read the data from the ADC.

CS : Chip Select: It is an active low input used to activate the ADC804 IC. To activate ADC804, this

pin must be low

RD : Read: It is an active low input used to get the converted data out of the ADC chip. The ADC

converts the analog input to its binary equivalent and holds in an internal register. When a CS = 0

and high-to-low pulse is applied to the RD pin, then 8-bit digital output is available at the D0-D7 data

pins.

WR : Write: This is an active low input used to

inform the ADC to start the conversion process.

ADC starts converting analog input to digital,

when CS = 0 and a low-to-high pulse is applied

to WR pin. The amount it takes to convert varies

depending on the CLK IN and CLK R values.

When the data conversion is complete, the INTR

pin is forced low by the ADC804.

 Interfacing Circuit ADC 804 Analog To Digital

Converter with 8051 Microcontroller: Here

ADC 0804 is connected to port1 of 8051. WR and

INTR of ADC is connected to P3.4 and P3.5

respectively. Analog input is applied to pin 6 of

http://www.circuitstoday.com/wp-content/uploads/2012/09/adc0804-pinout.png
http://www.circuitstoday.com/wp-content/uploads/2012/09/INTERFACING-ADC-TO-8051.png

ADC. Here WR is the start of conversion and INTR is the end of conversion.

Interfacing ADC to 8051:

The figure above shows the schematic for interfacing ADC0804 to 8051. The circuit initiates the ADC

to convert a given analogue input , then accepts the corresponding digital data and displays it on the

LED array connected at P0. For example, if the analogue input voltage Vin is 5V then all LEDs will

glow indicating 11111111 in binary which is the equivalent of 255 in decimal. AT89s51 is the

microcontroller used here. Data out pins (D0 to D7) of the ADC0804 are connected to the port pins

P1.0 to P1.7 respectively. LEDs D1 to D8 are connected to the port pins P0.0 to P0.7 respectively.

Resistors R1 to R8 are current limiting resistors. In simple words P1 of the microcontroller is the input

port and P0 is the output port. Control signals for the ADC (INTR, WR, RD and CS) are available at

port pins P3.4 to P3.7 respectively. Resistor R9 and capacitor C1 are associated with the internal clock

circuitry of the ADC. Preset resistor R10 forms a voltage divider which can be used to apply a

particular input analogue voltage to the ADC. Push button S1, resistor R11 and capacitor C4 forms a

debouncing reset mechanism. Crystal X1 and capacitors C2,C3 are associated with the clock circuitry

of the microcontroller.

Program:

ORG 00H

MOV P1,#11111111B // initiates P1 as the input port

MAIN: CLR P3.7 // makes CS=0

 SETB P3.6 // makes RD high

 CLR P3.5 // makes WR low

 SETB P3.5 // low to high pulse to WR for starting conversion

WAIT: JB P3.4, WAIT // polls until INTR=0

 CLR P3.7 // ensures CS=0

 CLR P3.6 // high to low pulse to RD for reading the data from ADC

 MOV A,P1 // moves the digital data to accumulator

 CPL A // complements the digital data (*see the notes)

 MOV P0,A // outputs the data to P0 for the LEDs

 SJMP MAIN // jumps back to the MAIN program

 END

Note:

 The entire circuit can be powered from 5V DC.

 ADC 0804 has active low outputs and the instruction CPL A complements it t0 have a straight

forward display. For example, if input is 5V then the output will be 11111111 and if CPL A was

not used it would have been 00000000 which is rather awkward to see.

Q3: Interfacing LM35 Temperature Sensor 8051 Microcontrollers:

Interfacing Temperature Sensors with 8051 Microcontroller Family Models:--

 Atmel, NXP, Philips, 8051, 8052, 89C51, 89C52, 89S51, 89s52, 89C1051,

89C1051, 89C2051, AT89C4051, AT89S8252,l AT89C1051, AT89C2051, AT89C4051,P89C51RB+,

P89C51RC+, P89C51RD+, P89C51RB2Hxx, P89C51RC2Hxx, P89C51RD2Hxx, P89C660, P89C662,

P89C664, P89C668, P89C669, P89C51RA2xx, P89C51RB2xx, P89C51RC2xx, P89C51RD2xx, P89C60X2,

P89C61X2,P89LV51RB2, P89LV51RC2, P89LV51RD2, P89V51RB2, P89V51RC2, P89V51RD2, P89V660,

P89V662, P89V664.

 LM35 Temperature Sensor Introduction and Fundamentals:-

 The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is

linearly proportional to the Celsius (Centigrade) temperature.

 The LM35 thus has an advantage over linear temperature sensors calibrated in ° Kelvin, as the

user is not required to subtract a large constant voltage from its output to obtain convenient

Centigrade scaling.

 The LM35 does not require any external calibration or trimming to provide typical accuracies

of ±¼°C at room temperature and ±¾°C over a full -55 to +150°C temperature range.

 Low cost is assured by trimming and calibration at the wafer level. The LM35's low output

impedance, linear output, and precise inherent calibration make interfacing to readout or

control circuitry especially easy.

 It can be used with single power supplies, or with plus and minus supplies.

 As it draws only 60 µA from its supply, it has very low self-heating, less than 0.1°C in still air.

 The LM35 is rated to operate over a -55° to +150°C temperature range.

 A digital thermometer can be easily created by using LM35 temperature sensor and can be

interfaced any microcontrollers.

The LM 35 IC generates a 10mV variation to its output voltage for every degree Celsius change in

temperature. The Output of the temperature sensor is analog in nature so we need an analog to

digital converter for converting the analog input to its equivalent binary output. The ADC 0804 is the

analog to digital converter IC used in the project. 0804 is a single channel converter which converts

the analog input up to a range of 5V to an equivalent 8-bit binary output.

Features of LM35 Temperature Sensors - 8051 Microcontrollers:

 Calibrated directly in ° Celsius (Centigrade)

 Linear + 10.0 mV/°C scale factor

 0.5°C accuracy guarantee able (at +25°C)

 Rated for full -55° to +150°C range

 Suitable for remote applications

 Low cost due to wafer-level trimming

 Operates from 4 to 30 volts

 Less than 60 µA current drain

 Low self-heating, 0.08°C in still air

 Nonlinearity only ±¼°C typical

 Low impedance output, 0.1 Ohm for 1 mA load

Interfacing LM25 Temperature Sensor with 8051 Microcontroller:

 This Digital Thermometer Design can be integrated by using the 8051 microcontroller and

analog to digital converter IC ADC 804 and interfaced with any microcontroller AT8051, AT8052,

AT89C51, AT89C52, AT89S51, AT89s52 and the output can be displayed on any output device may

be computer monitor or any LCD display. The sensor used for this design is the LM35 which output

an analogue voltage per centigrade Celsius. A circuit amplification is done between the LM35 and the

microcontroller.

 Q4: LCD:-

LCD display is an inevitable part in almost all embedded projects and this article is about interfacing

16×2 LCD with 8051 microcontroller. Many guys find it hard to interface LCD module with the 8051

but the fact is that if you learn it properly, it’s a very easy job and by knowing it you can easily design

embedded projects like digital voltmeter / ammeter, digital clock, home automation displays, status

indicator display, digital code locks, digital speedometer/ odometer, display for music players etc.

Thoroughly going through this article will make you able to display any text (including the extended

characters) on any part of the 16×2 display screen. In order to understand the interfacing first you

have to know about the 16×2 LCD module.

16×2 LCD module:

16×2 LCD module is a very common type of

LCD module that is used in 8051 based

embedded projects. It consists of 16 rows and

2 columns of 5×7 or 5×8 LCD dot matrices. The

module were are talking about here is type

number JHD162A which is a very popular one.

It is available in a 16 pin package with back

light, contrast adjustment function and each dot

matrix has 5×8 dot resolution. The pin numbers,

their name and corresponding functions are

shown in the table below.

Pin No: Name Function

1 VSS This pin must be connected to the ground

2 VCC Positive supply voltage pin (5V DC)

3 VEE Contrast adjustment

4 RS Register selection

6 E Enable

7-14 DB0-DB7 Data

15 LED+ Back light LED+

16 LED- Back light LED-

 VEE pin is meant for adjusting the contrast of the LCD display and the contrast can be adjusted by

varying the voltage at this pin. This is done by connecting one end of a POT to the Vcc (5V), other end

to the Ground and connecting the centre terminal (wiper) of the POT to the VEE pin. See the circuit

diagram for better understanding.

The JHD162A has two built in registers namely data register and command register. Data register is

for placing the data to be displayed, and the command register is to place the commands. The 16×2

LCD module has a set of commands each meant for doing a particular job with the display. We will

discuss in detail about the commands later.

Register select: High logic at the RS pin will select the data register and Low logic at the RS pin will

select the command register. If we make the RS pin high and the put a data in the 8 bit data line (DB0

to DB7) , the LCD module will recognize it as a data to be displayed . If we make RS pin low and put

a data on the data line, the module will recognize it as a command.

R/W logic: R/W pin is meant for selecting between read and write modes. High level at this pin

enables read mode and low level at this pin enables write mode.

Enable pin: E pin is for enabling the module. A high to low transition at this pin will enable the

module.

Data bus: DB0 to DB7 are the data pins. The data to be displayed and the command instructions are

placed on these pins.

Led +&Led:- LED+ is the anode of the back light LED and this pin must be connected to Vcc through

a suitable series current limiting resistor. LED- is the cathode of the back light LED and this pin must

be connected to ground.

16×2 LCD module commands:

16×2 LCD module has a set of preset command instructions. Each command will make the module to

do a particular task. The commonly used commands and their function are given in the table below.

Command Function

0F LCD ON, Cursor ON, Cursor blinking ON

01 Clear screen

02 Return home

04 Decrement cursor

06 Increment cursor

0E Display ON ,Cursor blinking OFF

80 Force cursor to the beginning of 1st line

C0 Force cursor to the beginning of 2nd line

38 Use 2 lines and 5×7 matrix

83 Cursor line 1 position 3

3C Activate second line

08 Display OFF, Cursor OFF

C1 Jump to second line, position1

OC Display ON, Cursor OFF

C1 Jump to second line, position1

C2 Jump to second line, position2

LCD initialization: The steps that have to be done for initializing the LCD display is given below and

these steps are common for almost all applications.

 Send 38H to the 8 bit data line for initialization

 Send 0FH for making LCD ON, cursor ON and cursor blinking ON.

 Send 06H for incrementing cursor position.

 Send 01H for clearing the display and return the cursor.

Sending data to the LCD:

The steps for sending data to the LCD module are given below. I have already said that the LCD

module has pins namely RS, R/W and E. It is the logic state of these pins that make the module to

determine whether a given data input is a command or data to be displayed.

 Make R/W low.

 Make RS=0 if data byte is a command and make RS=1 if the data byte is a data to be displayed.

 Place data byte on the data register.

 Pulse E from high to low.

 Repeat above steps for sending another data.

Circuit diagram.

Interfacing 16×2 LCD module to 8051

http://www.circuitstoday.com/wp-content/uploads/2012/06/interfacing-16x2-LCD-to-8051.png

The circuit diagram given above shows how to interface a 16×2 LCD module with AT89S1

microcontroller. Capacitor C3, resistor R3 and push button switch S1 forms the reset circuitry.

Ceramic capacitors C1,C2 and crystal X1 is related to the clock circuitry which produces the system

clock frequency. P1.0 to P1.7 pins of the microcontroller is connected to the DB0 to DB7 pins of the

module respectively and through this route the data goes to the LCD module. P3.3, P3.4 and P3.5 are

connected to the E, R/W, RS pins of the microcontroller and through this route the control signals are

transferred to the LCD module. Resistor R1 limits the current through the back light LED and so do

the back light intensity. POT R2 is used for adjusting the contrast of the display. Program for

interfacing LCD to 8051 microcontroller is shown below.

Q5:Stepper motor:

A stepper motor is a brushless and synchronous motor which divides the complete rotation

into number of steps. Each stepper motor will have some fixed step angle and motor rotates at this

angle. Here in this article, interfacing of stepper to 8051 and ULN 2003 is explained

PRINCIPLE: The main principle of this circuit is to rotate the stepper motor step wise at a particular

step angle. The ULN2003 IC is used to drive the stepper motor as the controller cannot provide

current required by the motor.

Stepper Motor Control using 8051 Microcontroller Circuit Diagram:

Circuit Diagram of Stepper Motor Control using AT89C51 Microcontroller

Stepper Motor Control using 8051 Microcontroller Circuit Design: The circuit consists of AT89C51

microcontroller, ULN2003A, Motor. AT89c51 is low power, high-performance, CMOS 8bit, 8051 family

microcontroller. It has 32 programmable I/O lines. It has 4K bytes of Flash programmable and erasable

memory. An external crystal oscillator is connected at the 18 and 19 pins of the microcontroller. Motor is

http://www.electronicshub.org/wp-content/uploads/2014/07/Circuit-Diagram-of-Stepper-Motor-Control-using-AT89C51.jpg

connected to the port2 of the microcontroller through a driver IC.The ULN2003A is a current driver IC. It is

used to drive the current of the stepper motor as it requires more than 60mA of current. It is an array of

Darlington pairs. It consists of seven pairs of Darlington arrays with common emitter. The IC consists of 16

pins in which 7 are input pins, 7 are output pins and remaining are VCC and Ground. The first four input pins

are connected to the microcontroller. In the same way, four output pins are connected to the stepper motor.

Stepper motor:- Stepper motor has 6 pins. In these six pins, 2 pins are connected to the supply of 12V

and the remaining is connected to the output of the stepper motor. Stepper rotates at a given step

angle. Each step in rotation is a fraction of full cycle. This depends on the mechanical parts and the

driving method. Similar to all the motors, stepper motors will have stator and rotor. Rotor has

permanent magnet and stator has coil. The basic stepper motor has 4 coils with 90 degrees rotation

step. These four coils are activated in the cyclic order. The below figure shows you the direction of

rotation of the shaft. There are different methods to drive a stepper motor. Some of these are

explained below.

Full Step Drive: In this method two coils are energized at a time. Thus, here two opposite coils are

excited at a time.

Half Step Drive: In this method coils are energized alternatively. Thus it rotates with half step angle.

In this method, two coils can be energized at a time or single coil can be energized. Thus it increases

the number of rotations per cycle. It is shown in the below figure.

How to Operate this Stepper Motor Driver Circuit?

 Initially, switch on the circuit.

 Microcontroller starts driving the stepper motor.

 One can observe the rotation of the stepper motor

 The stepper motor has four wires. They are yellow, blue, red and white. These are energized

alternatively as given below.

 In full step driving, use the following sequence

To drive the motor in half step angle, use the following sequence

http://www.electronicshub.org/wp-content/uploads/2014/07/Full-Step-Driving.jpg
http://www.electronicshub.org/wp-content/uploads/2014/07/Half-Step-Angle.jpg

Stepper Motor Controller Circuit Advantages:

 It consumes less power.

 It requires low operating voltage

Stepper Motor Control Applications:

 This circuit can be used in the robotic applications.

 This can also be used in mechantronics applications.

 The stepper motors can be used in disk drives, matrix printers, etc.

Q6:Seven segment display:

 This article is about how to interface a seven segment LED display to an 8051 microcontroller. 7

segment LED display is very popular and it can display digits from 0 to 9 and quite a few characters

like A, b, C, ., H, E, e, F, n, o,t,u,y, etc. Knowledge about how to interface a seven segment display to a

micro controller is very essential in designing embedded systems. A seven segment display consists

of seven LEDs arranged in the form of a squarish ‘8’ slightly inclined to the right and a single LED as

the dot character. Different characters can be displayed by selectively glowing the required LED

segments. Seven segment displays are of two types, common cathode and common anode. In

common cathode type , the cathode of all LEDs are tied together to a single terminal which is usually

labelled as ‘com‘ and the anode of all LEDs are left alone as individual pins labelled as a, b, c, d, e, f,

g & h (or dot) . In common anode type, the anode of all LEDs is tied together as a single terminal and

cathodes are left alone as individual pins. The pin out scheme and picture of a typical 7 segment LED

display is shown in the image below.

Digit drive pattern: Digit drive pattern of a seven segment LED display is simply the different logic

combinations of its terminals ‘a’ to ‘h‘ in order to display different digits and characters. The

common digit drive patterns (0 to 9) of a seven segment display are shown in the table below.

Digit A b c d E f g

0 1 1 1 1 1 1 0

1 0 1 1 0 0 0 0

2 1 1 0 1 1 0 1

3 1 1 1 1 0 0 1

4 0 1 1 0 0 1 1

5 1 0 1 1 0 1 1

6 1 0 1 1 1 1 1

7 1 1 1 0 0 0 0

8 1 1 1 1 1 1 1

9 1 1 1 1 0 1 1

Interfacing seven segment displays to 8051.

Interfacing 7 segment display to 8051:

 The circuit diagram shown above is of an AT89S51 microcontroller based 0 to 9 counter which

has a 7 segment LED display interfaced to it in order to display the count. This simple circuit

illustrates two things. How to setup simple 0 to 9 up counter using 8051 and more importantly how

to interface a seven segment LED display to 8051 in order to display a particular result. The common

cathode seven segment display D1 is connected to the Port 1 of the microcontroller (AT89S51) as

shown in the circuit diagram. R3 to R10 are current limiting resistors. S3 is the reset switch and R2,C3

http://www.circuitstoday.com/wp-content/uploads/2012/06/interfacing-7-segement-display-to-8051.png

forms a debouncing circuitry. C1, C2 and X1 are related to the clock circuit. The software part of the

project has to do the following tasks.

 Form a 0 to 9 counter with a predetermined delay (around 1/2 second here).

 Convert the current count into digit drive pattern.

 Put the current digit drive pattern into a port for displaying.

All the above said tasks are accomplished by the program given below.

Program:

ORG 000H //initial starting address

START: MOV A,#00001001B // initial value of accumulator

MOV B,A

MOV R0,#0AH //Register R0 initialized as counter which counts from 10 to 0

LABEL: MOV A,B

INC A

MOV B,A

MOVC A,@A+PC // adds the byte in A to the program counters address

MOV P1,A

ACALL DELAY // calls the delay of the timer

DEC R0//Counter R0 decremented by 1

MOV A,R0 // R0 moved to accumulator to check if it is zero in next instruction.

JZ START // Checks accumulator for zero and jumps to START.

Done to check if counting has been finished.

SJMP LABEL

DB 3FH // digit drive pattern for 0

DB 06H // digit drive pattern for 1

DB 5BH // digit drive pattern for 2

DB 4FH // digit drive pattern for 3

DB 66H // digit drive pattern for 4

DB 6DH // digit drive pattern for 5

DB 7DH // digit drive pattern for 6

DB 07H // digit drive pattern for 7

DB 7FH // digit drive pattern for 8

DB 6FH // digit drive pattern for 9

DELAY: MOV R4,#05H // subroutine for delay

WAIT1: MOV R3,#00H

WAIT2: MOV R2,#00H

WAIT3: DJNZ R2,WAIT3

DJNZ R3,WAIT2

DJNZ R4,WAIT1

RET

END

7 SEGMENT DISPLAY:

The 7 segment display is used as a numerical indicator on many types of test equipment. It is an assembly of light emitting

diodes which can be powered individually. They most commonly emit red light. They are arranged and labelled as shown in
the below diagram.

Powering all the segments will display the number 8. Powering a,b,c d and g will display the number 3. Numbers 0 to 9 can
be displayed. The d.p represents a decimal point.

The one shown is a common anode display since all anodes are joined together and go to the positive supply. The cathodes

are connected individually to zero volts. Resistors must be placed in series with each diode to limit the current through eac h
diode to a safe value.

Early wrist watches used this type of display but they used so much current that the display was normally switched off. To

see the time you had to push a button.

Common cathode displays where all the cathodes are joined are also available.

Liquid crystal displays do a similar job and consume much less power.

Alphanumeric displays are available which can show letters as well as numbers.

KEYBOARD:

Basically, the 4x3 keypad contains push buttons that are arranged in four rows and

three columns produce twelve characters as shown in the figure1.Sometimes this called as “4x3

switch matrix” due to the arrangement of switches in a matrix form. The internal construction of

these keypads includes metal dome contacts and conductive rubber. Ok! Construction of keypad is

out of scope the tutorial. In this tutorial I am only concentrating on interfacing of keypad with 8051

microcontroller.

1. CONNECTIONS:

The three column lines of the keypad as shown in the figure 1 are connected to the PORT 1

upper pins (P1.0 – COL1, P1.1 – COL2, P1.2 – COL3) and the four row lines are connected to PORT1

lower pins (P1.4 – ROW1, P1.5 – ROW2, P1.6 – ROW3, P1.7 – ROW4). Three resistors of 10k are

connected between the column lines and power supply, to make the column lines are always high.

Here one thing should be clear, that the column lines connected to the microcontroller should act as

input lines and the row lines acts as output lines.

2. WORKING:

2.1 INITIALIZATION:

Remember that, the column lines of keypad are connected to port1 pins and these pins should

be configured as input by placing logic high (‘LOGIC 1’) during port initialization. Similarly, the row

lines of keypad are connected to port1 pins and configured them as output by placing logic zero

(‘LOGIC 0’) during port initialization.

ROW1 = 0; //MAKE ALL ROW LINES OF KEY TO ZERO

ROW2 = 0; // TO MAKE THEM AS OUTPUT LINES

ROW3 = 0;

ROW4 = 0;

COL1 = 1; // MAKE ALL COL'S AS HIGH

COL2 = 1; // TO MAKE THEM AS INPUT LINES

COL3 = 1;

2.2 SCANNING MECHANISM:

The scanning mechanism starts by making the first row (ROW1) of keypad to LOW (LOGIC

‘0’) and all column lines should be high (LOGIC ‘1’). Now check any one of the column lines goes

low. If any column line goes low means that particular button is pressed, otherwise nothing is

pressed.

Now the question in our mind is “which button is pressed”. This can be identified by checking which

column is goes low.

If ROW1 = 0, COL1 = 0, remaining all lines are high means BUTTON1 is pressed.

If ROW1 = 0, COL2 = 0, remaining all lines are high means BUTTON2 is pressed.

If ROW1 = 0, COL3 = 0, remaining all lines are high means BUTTON3 is pressed.

If ROW2 = 0, COL1 = 0, remaining all lines are high means BUTTON4 is pressed.

Likewise we can identify the remaining buttons also and the logic is shown in the figure1. This can be

done by repeatedly, that why use a infinite loop in the routine “key()” – check out the c program.

Figure1 shows the keypad connection and its logic to interface with MCU.

3. PROGRAM DESCRIPTION:

Firstly create a 2-D array (look up table) of numbers like below. This array holds the numbers

represented by the keypad. Off course you can change the data as you need, means you define

characters, special symbols, numbers, etc..,

char keypad[4][3]= {

'1','2','3',

 '4','5','6',

 '7','8','9',

 '*','0','#'

 }; //look up table

Now in the subroutine “key()”, first make first row lines to zero one and scan for the column status.

And next make the next row and scan for the column and so on.

ROW1 = 0; //MAKE FIRST ROW IN KEYPAD TO ZERO

ROW2 = 1;

ROW3 = 1;

ROW4 = 1;

COL1 = 1; // MAKE ALL COL'S AS HIGH

COL2 = 1;

COL3 = 1;

If any one of the column line is low then wait until it back to logic high by continuously checking the

col line (while(COL1 == 0)). If col line goes high then place column and row values to get the correct

http://3.bp.blogspot.com/-k8IFBM94b2E/UYZ13BG_ucI/AAAAAAAABZ0/pC_2tXMr41c/s1600/KEYPAD1.gif

value from the keypad array. Finally place a break statement to get out of the loop, otherwise it stay

in infinite loop.

if (COL1 == 0){while(COL1 == 0);row=1;col=1;break;}.

For LCD interface I encourage you to read the tutorial to interface 16x2 LCD with 8051.

Circuit Diagram of 4x3 keypad interface with 8051 along with 16x2 LCD:

 circuit diagram for 4x3 keypad interface with 8051 along with LCD

DAC (DIGITAL TO ANALOG CONVERTER) :----

 In digital the signals either of two levels representing the binary value 1(or) Zero.

In ADC obtains a digital value representing an analog input voltage, while DAC change a digital

value back to analog.

Digital-to-analog (DAC) converter

The digital-to-analog converter (DAC) is a device widely used to convert digital pulses to analog

signals. In this section we discuss the basics of interfacing a DAC to the 8051.
 A binary weighted and R/2R ladder. The vast majority of integrated circuit DACs, including the

MC1408 (DAC0808) used in this section use the R/2R method since it can achieve a much higher
degree of precision. It accepts inputs of binary values typically 0v (or) Vref and provides an output
voltage proportional to binary input value .The first criterion for judging a DAC is its resolution, which

is a function of the number of binary inputs. In four input values representing 4-bits of digital data and
DC voltage output .The output voltage is proportional to digital input value.

 v=

X(16v)

=6V

http://4.bp.blogspot.com/-F_zJK1A3uEU/UYZ15ioMeEI/AAAAAAAABaA/gyiK63rRwS0/s1600/keypad+interface+with+8051+MCU1.gif

(a) 4-stage ladder network

In above example the output voltage resulting a binary value (0110)2 digital converts in to 6v analog.

The function of ladder network is to convert 16 possible values (0000-1111) into 1 of 16 voltage level
in steps Vref/16 .

 DAC INTERFACING:

This section will show how to interface a DAC (digital-to-analog converter) to the 8051. Then we

demonstrate how to generate a sine wave on the scope using the DAC.

The common ones are 8, 10, and 12 bits. The number of data bit inputs decides the resolution of the

DAC since the number of analog output levels is equal to 2″, where n is the number of data bit inputs.
Therefore, an 8-input DAC such as the DAC0808 provides 256 discrete voltage (or current) levels of

output.
Similarly, the 12-bit DAC provides 4096 discrete voltage levels. There are also
16-bit DACs, but they are more expensive.

MC1408 DAC (or DAC0808)

In the MC1408 (DAC0808), the digital inputs are converted to current (Iout), and by connecting a

resistor to the Iout pin, we convert the result to voltage.
The total current provided by the Iout pin is a function of the binary numbers at the DO – D7 inputs of
the DAC0808 and the reference current (Iref), and is as follows:

where DO is the LSB, D7 is the MSB for the inputs, and Iref is the input current that must be applied to
pin 14. The Iref current is generally set to 2.0 mA. Figure 13-18 shows the generation of current

reference (setting Iref = 2 mA) by using the standard 5-V power supply and IK and 1.5K-ohm standard
resistors. Some DACs also use the zener diode (LM336), which overcomes any fluctuation
associated
 DAC INTERFACING:

This section will show how to interface a DAC (digital-to-analog converter) to the 8051. Then we

demonstrate how to generate a sine wave on the scope using the DAC.

R

1kΩ

R1

1kΩ

R2

1kΩ

2R
0Ω

2R1
1kΩ

2R2
1kΩ

2R3
1kΩ

2

3

4

R3
1kΩ

1

GND
GND

 8051 Connection to DAC808

with the power supply voltage. Now assuming that Iref = 2 mA, if all the inputs to the DAC are high,

the maximum output current is 1.99 mA (verify this for yourself).
Converting lout to voltage in DAC0808

Ideally we connect the output pin Iout to a resistor, convert this current to
voltage, and monitor the output on the scope. In real life, however, this can cause inaccuracy since
the input resistance of the load where it is connected will also affect the output voltage. For this

reason, the Iref current output is isolated by connecting it to an op-amp such as the 741 with Rf = 5K
ohms for the feedback resistor. Assuming that R = 5K ohms, by changing the binary input, the output

voltage changes as shown in Example 13-4.

Example

In order to generate a stair-step ramp, set up the circuit in Figure 13-18 and connect the output to an
oscilloscope. Then write a program to send data to the DAC to generate a stair-step ramp.
Solution:

Generating a sine wave

To generate a sine wave, we first need a table whose values represent the magnitude of the sine of

angles between 0 and 360 degrees. The values for the sine function vary from -1.0 to +1.0 for 0- to
360-degree angles. Therefore, the table values are integer numbers representing the voltage

magnitude for the sine of theta. This method ensures that only integer numbers are output to the DAC
by the 8051 microcontroller. Table 13-7 shows the angles, the sine values, the voltage magnitudes,
and the integer values representing the voltage magnitude for each angle (with 30-degree

increments). To generate Table 13-7, we assumed the full-scale voltage of 10 V for DAC output (as
designed in Figure 13-18). Full-scale output of the DAC is achieved when all the data inputs of the

DAC are high. Therefore, to achieve the full-scale 10 V output, we use the following equation.

Vout of DAC for various angles is calculated and shown in Table 13 -7. See Example 13-5 for
verification of the calculations.

Program:

ORG 0000h

mov P2,#00H

repeat: call squarwave ; generate square wave

calltriwave ; generate triangular wave

callstairwave ; generate staircase wave

jmp repeat

squarwave: mov P2,#FFH

call delay2sec

mov P2,#00H

call delay2sec

ret

triwave: mov R7,#00H

triwave1: mov P2,R7

inc R7

cjne R7,#FFH,triwave1

mov R7,#FFH

triwave2: mov P2,R7

djnz R7,triwave2

ret

stairwave: mov P2,#00H

call delay2sec

mov P2,#20H

call delay2sec

mov P2,#40H

call delay2sec

mov P2,#80H

call delay2sec

ret

delay1sec: mov r0,#10

del2: mov r1,#250

del1: mov r2,#250

djnz r2,$

djnz r1,del1

djnz r0,del2

ret

delay2sec: mov r0,#20

del22: mov r1,#250

del21: mov r2,#250

djnz r2,$

djnz r1,del21

djnz r0,del22

ret

 END

8051 data type and directives

 In 8051 microcontroller has only one data type. It is 8 bits, and the size of
each register is also 8 bits. It is the job of the programmer to break down data larger than 8 bits (00 to

FFH, or 0 to 255 in decimal) to be processed by the CPU. The data types used by the 8051 can be
positive or negative.

DB (define byte)

The DB directive is the most widely used data directive in the assembler. It is used to define the 8-bit

data. When DB is used to define data, the numbers can be in decimal, binary, hex, or ASCII formats.
For decimal, the “D” after the decimal number is optional, but using “B” (binary) and “H”

(hexadecimal) for the others is required. Regardless of which is used, the assembler will convert the
numbers into hex. To indicate ASCII, simply place the characters in quotation marks (‘like this’). The
assembler will assign the ASCII code for the numbers or characters automatically. The DB directive is

the only directive that can be used to define ASCII strings larger than two characters; therefore, it
should be used for all ASCII data definitions. Following are some DB examples:

Either single or double quotes can be used around ASCII strings. This can be useful for strings, which
contain a single quote such as “O’Leary”. DB is also used to allocate memory in byte-sized chunks.

Assembler directives

The following are some more widely used directives of the 8051.

ORG (origin)
The ORG directive is used to indicate the beginning of the address. The number that comes after
ORG can be either in hex or in decimal. If the number is not followed by H, it is decimal and the

assembler will convert it to hex. Some assemblers use “. ORG” (notice the dot) instead of “ORG” for
the origin directive. Check your assembler.

EQU (equate)
This is used to define a constant without occupying a memory location. The EQU directive does not
set aside storage for a data item but associates a constant value with a data label so that when the

label appears in the program, it constant value will be substituted for the label. The following uses
EQU for the counter constant and then the constant is used to load the R3 register.

When executing the instruction “MOV R3, #COUNT”, the register R3 will be loaded with the value 25
(notice the # sign). What is the advantage of using EQU? Assume that there is a constant (a fixed

value) used in many different places in the program, and the programmer wants to change i ts value
throughout. By the use of EQU, the programmer can change it once and the assembler will change*

all of its occurrences, rather than search the entire program trying to find every occurrence.
END directive
Another important pseudocode is the END directive. This indicates to the assembler the end of the

source (asm) file. The END directive is the last line of an 8051 program, meaning that in the source
code anything after the END directive is ignored by the assembler. Some assemblers use “. END”

(notice the dot) instead
of “END”.
Rules for labels in Assembly language

By choosing label names that are meaningful, a programmer can make a program much easier to

read and maintain. There are several rules that names must follow. First, each label name must be
unique. The names used for labels in Assembly language programming consist of alphabetic letters in
both uppercase and lowercase, the digits 0 through 9, and the special characters question mark (?),

period (.), at (@), underline (_), and dollar sign ($). The first character of the label must be an
alphabetic character. In other words it cannot be a number. Every assembler has some reserved

words that must not be used as labels in the program. Foremost among the reserved words are the
mnemonics for the instructions. For example, “MOV” and “ADD” are reserved since they are
instruction mnemonics. In addition to the mnemonics there are some other reserved words. Check

your assembler for the list of reserved words.

	Microcontroller (1).pdf (p.1-20)
	Microcontroller (2).pdf (p.21-46)

