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Notes on Hilbert Space 

The Projection Theorem and Some of Its Consequences  

 

Basic Results 

Let X  denote a vector space over the field of real scalars R . An inner product on X  is a 

function : X X⋅ ⋅ × → R  satisfying, for every , ,x y z X∈  and λ ∈ R , 

1. x y y x= , symmetry 

 2. x y z x z y z+ = + , linearity     

 3. x y x yλ λ= , linearity  

 4. 0 and 0 if and only if 0x x x x x≥ = = , positivity. 

The space X  with an inner product is called a pre-Hilbert space. We assume henceforth that X  

is a pre-Hilbert space. For each x X∈ , let 
1 2

x x x= . We will show below (in Proposition 2) 

that this gives a norm on X . A pre-Hilbert space that is complete in this norm is called a Hilbert 

space. So you have some idea that this is not an uninteresting abstraction, you should note that all 

Euclidean spaces nR  for finite n are Hilbert spaces with the standard Euclidean norm x  = 

( )1 2
2
11

n

i
x

=∑  and inner product 
1

n

i ii
x y x y x y

=
= ⋅ = ∑ , the standard dot product. We will 

introduce and different inner product below. The space of random variables with finite second 

moment is a Hilbert space. It is this space that is a standard model for contingent claims 

(securities, payoffs) in finance. First we need 
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Lemma 1. (The Cauchy-Schwartz Inequality) For each ,x y X∈ , x y x y≤ . Equality holds 

if and only if x yλ=  or 0y = . 

 Proof. If 0y = , the inequality holds trivially since by 1 and 3, 

0 0 0y x y x y x= = = . Therefore assume that 0y ≠ . For all scalars λ , we have  

0 x y x yλ λ≤ − −  = 
2

x x x y y x y yλ λ λ− − + .   (1) 

There can be equality in (1) if and only if x yλ= . In particular, for x y y yλ = , we have 

from (1) that 

2 2 2
0 2x x x y y y x y y y x x x y y y≤ − + = − , 

or  

2
x y x x y y≤ .  

Taking square roots completes the proof.[]  

Proposition 2. On a pre-Hilbert space X , the function 
1 2

x x x=  is a norm on X . 

 Proof. Clearly by 1 and 3, x xα α= , α ∈ R , and by 4, 0, 0x x> ≠ . The only 

requirement for a norm that remains is to prove the triangle inequality. For ,x y X∈ , we have 

that 

2
2x y x y x y x x x y y y+ = + + = + +  

    
2 2

2x x y y≤ + +  

    
2 2

2x x y y≤ + +  

where the last inequality follows from the Cauchy-Schwartz inequality. [] 
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There are various properties of the inner product that are useful. Two easy ones you 

should be able to show (ysbats) are the following. 

Lemma 3. For a given x X∈ , 0x y = , for every y X∈ , implies that 0x = .  

Lemma 4. (The Parallelogram Law) In a pre-Hilbert space, ( )2 2 2 2
2x y x y x y+ + − = + . 

A sequence { }nx X⊂ , converges to x X∈  if limn nx x→∞ −  = 0. In this case we abbreviate by 

writing nx x→ .1 

Lemma 5. (Continuity of the Inner Product) Suppose that nx x→  and ny y→  in X . Then 

n nx y x y→ . 

 Proof. Since the sequence { }nx  converges, it is norm bounded, say nx M≤ . Now 

n n n n n nx y x y x y x y x y x y− = − + −  n n nx y y x x y≤ − + − , 

the inequality following from the triangle inequality for absolute value. By the Cauchy-Schwartz 

inequality, we obtain 

n n n n nx y x y x y y x x y− ≤ − + −  0n nM y y x x y≤ − + − → . [] 

 In a pre-Hilbert space, two vectors x  and y  are said to be orthogonal (perpendicular) 

if 0x y = .  We symbolize this by writing x y⊥ . A vector x  is said to be orthogonal to a set S , 

written x S⊥ , if x s⊥  for every s S∈ . Using the first few lines of the proof of Proposition 2, 

ysbats that the Pythagorean Theorem holds in pre-Hilbert spaces. 

Lemma 6. (Pythagorean Theorem) If x y⊥ , then 
2 2 2

x y x y+ = + . 
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The Projection Theorem 

The next result is one of the most important optimization results in functional analysis. 

Theorem 7.  (Projection Theorem) Let X  be a pre-Hilbert space, let M  be a subspace of X , 

and let x  be an arbitrary vector in X . If there is a vector 0m M∈ such that 0x m−  ≤  x m−  

for all m M∈ , then 0m  is unique. A necessary and sufficient condition that 0m M∈  be the 

unique vector that minimizes x m−  over m M∈  is that 0x m M− ⊥ . If M  is complete 

(Cauchy sequences in M  converge in M ), then a unique vector that minimizes x m−  over 

m M∈  exists. 

Proof. Let x X∈  be arbitrary. We show first that if 0m M∈  minimizes x m−  over 

m M∈ , then 0x m−  is orthogonal to M . Suppose not. Then there exists m M∈  such that 

0 0x m m δ− = ≠ . Without loss of generality we may assume that m  = 1. Let 1m  = 0m mδ+ . 

Then 1m M∈ , and  

2

1x m−  = 
2

0x m mδ− −  = 
2 2

0 0 0x m x m m m x mδ δ δ− − − − − +   

= 
2 2 2

0 0x m x mδ− − < − . 

Thus if 0x m−  is not orthogonal to M , then m  is not a minimizing vector. 

 Next we show that if 0x m−  is orthogonal to M , then it is a unique minimizing vector. If 

0x m−  is orthogonal to M , then for any m M∈ , the Pythagorean theorem (Lemma 6) gives  

                                                                                                                                                             
1 Any convergent sequence is norm bounded in the following sense. Suppose that 

n
x x→ . Then there exists and 

integer N  such that for all n N≥ , 1
n

x x− ≤ . We then have ( ) 1
n n n

x x x x x x x x= − − ≤ + − ≤ + , for 

all n N≥ . Of course for n N< , 
1

max
n m N m

x x≤ ≤≤ . 
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2 2 2 2

0 0 0 0x m x m m m x m m m− = − + − = − + − . Thus 
2 2

0x m x m− > − , for any 0m m≠ . 

Taking square roots gives the result. 

Finally, we prove that a minimizing 0m  exists when M  is complete. If x M∈ , then 

0m x= and there is nothing to prove. Therefore assume that x M∉  and let 

{ }inf :x m m Mδ = − ∈ . Let { }nm  be a sequence of vectors in M  such that nx m δ− → . Now, 

by the parallelogram law (Lemma 4),  

( ) ( ) 2

k nm x x m− + − + ( ) ( ) 2

k nm x x m− − −   = 
2 2

2 2k nm x x m− + − .  (2) 

The first term on the left is 
2

k nm m− , while the second term is  

( )( ) 2
2 2k nx m m− +  = ( ) 2

4 2k nx m m− + . 

Substituting in (2) and rearranging, we get that  

( ) 22 2 2
2 2 4 2k n k n k nm m m x x m x m m− = − + − − − + . 

For all ( ), , 2k nk n m m+  is in M , and ( ) 2k nx m m δ− + ≥ . Therefore, 

  
2 2 2 22 2 4k n k nm m m x x m δ− ≤ − + − − . 

Since 
2 2

km x δ− →  and 
2 2

nx m δ− → , we conclude that 0k nm m− →  as ,k n → ∞ . Thus 

{ }nm  is Cauchy and hence it converges to some 0m M∈ . By continuity of the inner product 

(Lemma 5) and hence the norm, we have that 0limn nx m x mδ →∞= − = − . [] 

Theorem 7 does two things. First it characterizes the unique vector in the subspace M , if 

it exists, that minimizes the distance of x  to M  as the one 0m  such that 0x m−  is orthogonal to 

M . That vector 0m  is therefore called the orthogonal projection of x  onto M .  
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 The second thing that Theorem 7 does is give us sufficient conditions for the existence of 

the orthogonal projection, namely that the subspace M  be complete. Of course a complete 

subspace is closed in the norm topology, but the converse need not be true. It is true in an 

important class of cases, namely when the pre-Hilbert space is itself complete. A pre-Hilbert 

space that is complete in the norm of Proposition 2 is called a Hilbert space. A Hilbert space is 

then a Banach space (normed vector space that is complete) with an inner product that induces 

the norm. In a Banach space, a subspace is complete if and only if it is closed. As indicated 

above, all Euclidean spaces nR  for finite n are Hilbert spaces. The space of random variables 

with finite second moment is a Hilbert space (see below). 

 The development above was taken from David G. Luenberger, Optimization by Vector 

Space Methods , John Wiley & Sons, 1969. The projection theorem has numerous applications in 

optimization theory and statistics. See Luenberger for a range of these applications. It is used 

extensively in asset pricing theory, in particular, in John H. Cochrane, Asset Pricing, Princeton 

University Press, 2001, referred to hereafter as (C), and in Darrell Duffie, Dynamic Asset Pricing 

Theory, 3rd ed., Princeton University Press, 2001, referred to hereafter as (D). 

Representation of Linear Functionals 

One purely mathematical application that has some import for asset pricing has to do with 

the representation of continuous linear functionals on a Hilbert space. Ysbats that asset price 

functionals must be (positive and) linear or there will be arbitrage opportunities. See Theorems 

page 66, 71 in (C), lemma of 1F in (D), lemma of 2C in (D), lemma of 10B  in (D). 

Theorem 8. (Riesz Representation Theorem). Let X  be a Hilbert space and let :F X → R  be a 

continuous linear functional. Then there is a unique Xπ ∈  such that ( )F x xπ= , for each 

x X∈ . 
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 Proof.2 Given X  and F  as hypothesized, let ( ){ }: 0J x X F x= ∈ = , the kernel of F . 

Since F  is continuous,  (ysbats) J  is a closed subspace of X . If J X= , then F  is identically 

zero and the representation ( )F x xπ= , with 0π = (the zero vector in X) works. Its 

uniqueness follows from property 4 of the inner product. If J X≠ , then (ysbats) there exists an 

element 1z X∈  with ( )1 1F z = . By the Projection Theorem, there exists 2z J∈  such that 

1 2 0z z x− = , for all x J∈ . Let 1 2z z z= −  and let z z zπ = . Note that 

( ) ( ) ( ) ( )1 2 1 1F z F z F z F z= − = =  since 2z J∈ . Note also that Jπ ⊥  and that for any x , 

( )x F x z J− ∈ . Then for any x , 

( ) ( ) ( )0
z F x z

x F z x x F x
z z

π π π= − = − = − . 

This choice of π  thus works to represent F . It is unique because if there is another π̂  that 

represents F , then ˆ 0xπ π− =  for all x X∈ . By Lemma 3 above, ˆ 0π π− = .[] 

 In the application of the Riesz Representation Theorem to asset pricing, the vector π  

representing a pricing functional is sometimes referred to as a discount factor, a state-price 

density, state-price deflator, etc. There may be many discount factors and much of asset pricing 

theory is devoted to providing characterizations of these discount factors. An essential tool in 

those characterizations is the orthogonal decomposition of a Hilbert space. See in particular 

section 5.3 of (C). 

Orthogonal Compliments 

                                                 
2 The proof here is an elaboration of Exercise 1.17 in (D) referred to above in the text. 
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Given a subset S  of a pre-Hilbert space, the set of all vectors orthogonal to S  is called 

the orthogonal complement of S  and is denoted S ⊥ . Ysbats that S ⊥  is a closed subspace (using 

Lemma 5 above). We say that a vector space X  is the direct sum of two subspaces M  and N  if 

every vector x X∈ has a unique representation of the form x m n= + , where m M∈  and n N∈ . 

When X  is the direct sum of M  and N , we write X M N= ⊕ . The following is another result 

of the Projection Theorem.  

Theorem 9. If S  is a closed subspace of a Hilbert space H , then H S S ⊥= ⊕  and S S ⊥⊥= . 

 Proof. Let x H∈ . By the Projection Theorem, there is a unique vector s S∈  such that 

x s−  � x y−  for all y S∈  and ŝ x s S ⊥≡ − ∈ . Thus ˆx s s= +  with s S∈  and ŝ S ⊥∈ . This 

representation is unique, again by the Projection Theorem. This establishes that H S S ⊥= ⊕ . 

 To show that S S ⊥⊥= , note first that if x S∈ , then x y⊥  for all y S ⊥∈ . Therefore 

x S ⊥⊥∈ , and hence S S ⊥⊥⊆ . To go the other way, let x S ⊥⊥∈ . By the first part of this result, 

there exists s S∈  and ŝ S ⊥∈  with ˆx s s= + . Since both x S ⊥⊥∈  and s S S ⊥⊥∈ ⊆ , we have 

ŝ x s S ⊥⊥= − ∈ . But also ŝ S ⊥∈ , implying that ˆ ˆ 0s s = , and hence by property 4 of the inner 

product ˆ 0s = . Thus x s S= ∈ , proving S S⊥⊥ ⊆ .[] 

Many applications of interest in the theory of valuation involve the space of random 

variables with finite variances. We will casually refer to such spaces as payoff spaces. Fix a 

probability space ( ), , PΩ Φ  as the underlying model of uncertainty and let 2L  = ( )2 , ,L PΩ Φ  be 

the class of real valued ( Φ -measurable) random variables X  such that the expectation of the 

square of X  is finite, i. e., ( )2E X < ∞ , where E  denotes expectation with respect to the 

probability measure P . The space 2L  with the obvious definitions of addition and scalar 
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multiplication (with real scalars) is a real vector space. For each 2,X Y L∈ , we have ( )E X < ∞ , 

( ) ( ) ( )22Var X E X E X= − < ∞ , and ( ) ( ) ( )1 2 1 22 2E XY E X E Y≤ < ∞ , with the last (weak) 

inequalty following the Cauchy-Schwartz inequality for square integrable functions. It follows 

that ( ) ( ) ( ) ( ),Cov X Y E XY E X E Y= −  exists and is finite. 

 This square integrable structure allows us to conclude that 2L  (or at least equivalence 

classes of 2L  functions under the equivalence relation = almost surely) is a Hilbert space with 

inner product ( )X Y E XY≡  and norm ( )1 21 2 2X X X E X= = . The completeness of this 

space in this norm is proved in most books on probability theory. See Theorem 6.6.2 in the text 

by Resnick, A Probability Path, or Chapter 6, especially section 6.10 of the Williams text 

Probability with Martingales. To test your understanding of these ideas, use the Pythagorean 

theorem to show that ( ) ( ) ( )Var X Y Var X Var Y+ = + , provided ( ), 0Cov X Y = . 

 Special cases of great interest in asset pricing are when Ω  is a finite set of states, say 

{ }1, , SΩ = K , S  a finite integer. In this case Φ  can be taken to be the set of all subsets of Ω , 

and the measure P  can be specified by any vector ( )1, , Sp p p= K  >> 0 with ( ) ss A
P A p

∈
= ∑ , 

as in Section 1.F in (D). Any random variable or payoff X  defined on Ω  can be identified with 

an element of the Euclidean space SR  with ( ) ( )( )1 , ,X X X S= K , where ( )X s  is the payoff of 

X  in the ths  state. We know that SR  is a Hilbert space in the Euclidean norm and inner product. 

For most applications in asset pricing, however, it is more convenient to endow SR  with the 

machinery of ( )2 , ,L PΩ Φ . This is done in Section 1.F of (D) and less formally by (C) throughout 

when the space of payoffs is SR . 
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 For many applications in asset pricing, it is necessary to have a state space that is not 

finite. For example, for normally distributed or log normally distributed returns the underlying 

state space has to be at least as large as the set R  of real numbers. When Ω  is not finite, then the 

structure of ( )2 , ,L PΩ Φ  is still very valuable but this vector space is no longer a finite 

dimensional vector space. It is infinite dimensional and occasionally this infinite dimensional 

character must be handled with care because the mathematics of infinite dimensional vector 

spaces is more complicated than that of finite dimensional spaces.  

 Much of what is done in asset pricing, however, is done in terms of a finite number of 

assets or payoffs. In this case we would be dealing with the span of a finite number of elements 

of ( )2 , ,L PΩ Φ , a finite dimensional subspace. Finite dimensional subspaces of ( )2 , ,L PΩ Φ  are 

in most respects just like the spaces we deal with when Ω  is finite. 

 Another application of the Projection Theorem in the context of ( )2 , ,L PΩ Φ  is the 

existence of conditional expectations of square integrable random variables. Of course such 

things exist, and you need to be proficient in the use of their properties as described in section 2 

of the paper L. C. G. Rogers, “Stochastic Calculus and Markov Methods.” But the existence 

argument using the Projection Theorem allows an interpretation of the conditional expectation in 

terms of its optimality properties. This argument is given at the end of these notes, following the 

more technical existence stuff, which can be skipped. 

Conditional Expectation: An Application 

Let Σ  be a sub-σ-algebra of Φ , and let X  denote an integrable random variable on 

( ), , PΩ Φ . As in section 2 of the paper L. C. G. Rogers, “Stochastic Calculus and Markov 

Methods,” and in Appendix C of D. Duffie, Dynamic Asset Pricing Theory, there exists a random 
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variable E X  Σ , called the conditional expectation of X  given Σ , that has the following 

defining properties: 

(i) E X  Σ  is Σ -measurable and integrable, 

(ii) 
A

XdP∫  = 
A

E X dP  ∫ Σ , for all A∈ Σ . 

We want to apply the Projection Theorem to give the existence of this conditional expectation for 

square integrable random variables. We can then extend this existence result using denseness 

properties of a particular subset of 2L . 

 Therefore, assume first that X  is square integrable, i. e., ( )2 , ,X L P∈ Ω Φ . Let 

( )2 , ,L PΩ Σ  denote the space of square integrable Σ -measurable random variables. As noted 

above, (the spaces of equivalence classes of random variables) are Hilbert spaces and therefore 

( )2 , ,Y L P∈ Ω Σ  is a complete subspace of ( )2 , ,L PΩ Φ .  Hence by Theorem 7, there exists an 

element ( )2 , ,Y L P∈ Ω Σ  such that  

(a) ( )( ) ( ){ }2 22 2inf : , ,X Y E X Y x Z Z L P− = − = − ∈ Ω Σ   

 (b) ( )20,  all , ,X Y Z Z L P− = ∈ Ω Σ  

Since ( )2 , ,Y L P∈ Ω Σ , Y  is Σ -measurable and square integrable and hence satisfies condition (i) 

above. Now if A∈ Σ , then AZ I=  (the indicator function of the set A ) belongs to ( )2 , ,L PΩ Σ   

and (b) states that 

( )( ) ( )0
A A A

E X Y Z X Y dP XdP YdP= − = − = −∫ ∫ ∫      

But this is just condition (ii) above. Thus Y  is E X  Σ . 
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 The existence of E X  Σ  for X  such that ( )2E X < ∞  given by the Projection Theorem 

allows us an interesting interpretation that is not immediately available via other existence 

arguments. This interpretation is that E X  Σ  is the least-squares-best Σ -measurable predictor 

of X : among all predictors V of X  which can be computed based on information in Σ , 

E X  Σ  minimizes the squared deviation ( )( )2
E X Y− . This interpretation is the property (a) 

above, which is equivalent to (b) by the Projection Theorem. 

 See Williams, Probability with Martingales, Chapter 9 for motivation of the defining 

properties (i) and (ii) above for conditional expectation and for the extension of the existence 

argument  to larger sets of payoffs (beyond 2L ). 

  


