P.B. SSIDDHARTHA COLLEGE OF ARTS & SCIENCE

Siddhartha Nagar, Vijayawada— 520 010
Autonomous - Re-accredited at ‘A+’ by the NAAC - ISO 9001 - 2015 Certified

College with ---Potential for Excellence-Phase-I1 (Awarded by the UGC)

2.3.2 - Teachers use ICT-enabled tools including online resources for
effective teaching and learning

LECTURE NOTES

SRR, PARVATHANERI BRAHMAYYA(FS,)

&£ b

[§l15%! SIDDHARTHA COLLEGE OF ARTS & SCIENCE
) | VIAIAWADA, ANDHAA PRADESH

O Mmp A O Autatnie SyesLunn FAAY Aesresitadt ot (4! (Oefn A0 300 LEI0 AN s titingd

LECTURE NOTES PREPARED BY Dr.T.S.RAVI KIRAN, ASSISTANT

PROFESSOR & HOD DEPARTMENT OF COMPUTER SCIENECE

TETE
.

.J\

ISOX|

LEETEER]

P.B.SIDDHARHA COLLEE OF ARTS & SCIENECE, VIJAYAWADA, AP, INDIA PIN: 520010

Email: tsravikiran@pbsiddhartha.ac.in Mobile: 9441176980
COURESE: ADVANCED DATABASE MANAGEMENT SYSTEMS

ACADEMIC YEAR: 2021-2012 COURESE CODE: 21DS1T4

CONTENTS:

1. BASIC & MORE SQL

2. RELATIONAL ALGEBRA & RELATIONAL CALCULUS
3. ER- MODELLING

4. NORMALIZATION

5. TRANSACTION PROCESSING

6. CONCURRENCY CONTROL

7. DISTRIBUTED DATABASE CONCEPTS
8. NO saL

9. AGGREGATE DATA MODELS

10. MORE DETAILS ON DATA MODELS
11. DISTRIBUTION MODELS

12. CONSISTENCY

13. MongoDB CRUD OPERATIONS

14. DATA LAKES

CHAPTER 1
BASIC & MORE SQL

Data: Collection of facts (or) raw material for information.

Information: Processed data.

Schema: Structure of database (or) Structure of database objects.

Entity: A thing (or) object which have some implicit meaning.

Record: The values associated for collection of fields.

Domain: The range of finite values associated for attributes.

Database: Collection of files (or) collection of tables (or) collection of database objects.
Attribute: Property of entity.

Database management system: Set of software modules used to create database objects
and access the database objects.

TOPIC1: SQL AND SQL DATA TYPES

1.1sQL

The name SQL is presently expanded as Structured Query Language.

Originally, SQL was called SEQUEL (Structured English QUEry Language) and was designed and
implemented at IBM Research as the interface for an experimental relational database system called
SYSTEM R.

SQL is now the standard language for commercial relational DBMSs.

The standardization of SQL is a joint effort by the American National Standards Institute (ANSI) and
the International Standards Organization (ISO).

SQL Versions:

vk wnN e

The first SQL version is SQL-86 or SQL1.

The second SQL version is SQL-92 or SQL2

The next standard that is well-recognized is SQL:1999 (SQL3)

Additional updates to the standard are SQL:2003 and SQL:2006, which added XML features.

Another update in 2008 incorporated more object database features into SQL, and a further update
is SQL:2011.

1.2 SQL Data Types IMP

= SQL data types can be broadly divided into following categories.

bit, tinyint, smallint, int,
_—"| bigint, decimal, numeric, fioat, real

' Numaric

Date, Time, Datetime,

Date/Time — " Ti tamp, Year

Char, Varchar, |
Varchar (max), Text

2l Bty Character/String ——

Torfaini

MChar, NVarchar, |

Unicode ﬂhnri::ter}&tring—d-%mlu {max), NText

. Binary, Varbinary,

Binary varbinary (max), image
Cloh, Bioh,
Miscollaneous I !HL: Jmhﬁ
1.2.1 SQL Numeric Data Types
Datatype From To
bit 0 1
tinyint 0 255
smallint | -32,768 32,767
int -2,147,483,648 2,147,483,647

bigint -9,223,372,036, 854,775,808 | 9,223,372,036, 854,775,807

decimal |-10738 +1 10738 -1

numeric |-10738 +1 10738 -1

float -1.79E + 308 1.79E + 308

real -3.40E + 38 3.40E + 38

1.2.2 SQL Date and Time Data Types

Datatype Description

DATE Stores date in the format YYYY-MM-DD

TIME Stores time in the format HH:MI:SS

DATETIME | Stores date and time information in the format YYYY-MM-DD HH:MI:SS

TIMESTAMP | Stores number of seconds passed since the Unix epoch (‘1970-01-01 00:00:00’ UTC)

Stores year in 2 digits or 4 digit format. Range 1901 to 2155 in 4-digit format. Range 70 to

YEAR 69, representing 1970 to 2069.

1.2.3 SQL Character and String Data Types

Datatype Description

CHAR Fixed length with a maximum length of 8,000 characters

VARCHAR Variable-length storage with a maximum length of 8,000 characters

VARCHAR(max) | Variable-length storage with provided max characters, not supported in MySQL

TEXT Variable-length storage with maximum size of 2GB data

Note that all the above data types are for character stream, they should not be used with Unicode data.

1.2.4 SQL Unicode Character and String Data Types

Datatype Description

NCHAR Fixed length with maximum length of 4,000 characters

NVARCHAR Variable-length storage with a maximum length of 4,000 characters

NVARCHAR(max) | Variable-length storage with provided max characters

NTEXT Variable-length storage with a maximum size of 1GB data

Note that above data types are not supported in MySQL database.

1.2.5 Boolean:

= A Boolean data type has the traditional values of TRUE or FALSE. In SQL, because of the presence of
NULL values, a three-valued logic is used, so a third possible value for a Boolean data type is
UNKNOWN.

TOPIC 2: DBMS LANGUAGES AND INTERFACES IMP

2.1 DDL (Data Definition Language)

= Language used to create database objects.
= Used to create & alter the database objects.
E.g. create, alter commands.

E.g. create table emp
(empno number(10),
ename varchar2(15));

E.g. alter table emp
modify (empno number(15));

2.2 SDL (Data Definition Language)
= SDL (Storage Definition Language): Used to specify the internal schema of database objects.

= When employee table with 3 attributes EMPNO, DEPTNO & PAY is stored in database
persistently the following number of bytes allocated according to the shown format.

> create table emp

(empno varchar2(5),
deptno varchar2(10),
pay number(5));

STORED EMP LENGTH = 20
PREFIX TYPE = BYTE(6), OFFSET =0
EMPNO TYPE = BYTE(6), OFFSET =6, INDEX = EMPX
DEPTNO TYPE = BYTE(4), OFFSET =12
PAY TYPE = FULLWORD, OFFSET =16

= Allocation
Offset=0 Offset =6 Offset =12 Offset = 16

v v v v

[t]2]3]afs[ef[2[2]3]af[5[6[2]2]3[a[1]2 (3 [4]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

= From the given example
PREFIX System generated attributed where the values of attributes is fixed.
OFFSET Indicates starting address of next attribute.

2.3 DML (Data Manipulation Language)

= DML (Data Manipulation Language): Used to access database objects.
E.g. insert, delete, update commands

E.g. insert into emp
values (&empno,’&ename’);

E.g. update emp
set ename=’john’
where empno=1;
E.g. delete from emp;

2.4 DCL (Data Control Language)

= Used to provide persistency and recovery to database objects.

E.g.

Commit; Commits the transaction.

Rollback; Database items acquires previous state.
Savepoint <savepoint_name>; Creates savepoint in a transaction.
Rollback to <savepoint_name>; Databse item acquires savepoint status.

2.5 TCL (Transaction Control Language)

(a) Grant option assign privileges to the users.

(b) Revoke option cancel access privileges from the users.

E.g. GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;
E.g. GRANT SELECT ON ABEMPLOYEE TO A3 WITH GRANT OPTION;

E.g. REVOKE SELECT ON EMPLOYEE FROM A2;

TOPIC 3: RELATIONAL CONSTRAINTS VVIMP

Constraint: A rule at column level or table level.

= Relational constraints

. Not null (Defined at either column level or table level)
. Unique (Defined at either column level or table level)

1
2
3. Primary key (Defined at either column level or table level)
4. Foreign key (Defined at either column level or table level)
6

. Check (Defined at either column level or table level)

[EEN

. Not null: Specifies that may not contain null value.
E.g.

SQL> create table emp

(empno number(4),

ename varchar2(10) not null);

2. Unique: Every value in a column or set of columns be unique.
E.g.
SQL> create table dept

(deptno number(2),

dname varchar2(14),

constraint dept_dname_uk unique(dname));

3. Primary key: Creates primary key for the table.
= The value assigned for an attribute must satisfy the constraints unique and not null.
E.g.
SQL> create table dept
(deptno number(2),
dname varchar2(14),
constraint dept_dname_pk primary key(dname));

4. Foreign key: The foreign key is defined in the child table, and the table containing the
reference column is in the parent table.
E.g.
SQL> create table emp
(empno number(2),
ename varchar2(14) not null,
deptno number(2),
constraint emp_dept_fk foreign key(deptno) references dept (deptno));

5. Check: Defines the condition that the each row must satisfy.
E.g.
SQL> create table dept
(deptno number(2),
dname varchar2(14),
constraint emp_dept_ck check (deptno between 10 and 99));
= |nSQL, aview is a virtual table based on the result-set of an SQL statement.
= A view contains rows and columns, just like a real table. The fields in a view are fields from
one or more real tables in the database.

= You can add SQL functions, WHERE, and JOIN statements to a view and present the data as

if the data were coming from one single table.

TOPIC 4: VIEW VVIMP

= |nSQL, aview is a virtual table based on the result-set of an SQL statement.

= A view contains rows and columns, just like a real table. The fields in a view are fields from
one or more real tables in the database.

= You can add SQL functions, WHERE, and JOIN statements to a view and present the data as
if the data were coming from one single table.

Syntax:

CREATE VIEW view_name AS
SELECT column1, column2, ...
FROM table_name

WHERE condition;

Example:

CREATE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName
FROM Customers

WHERE Country = 'Brazil’;

TOPIC 5: CURSORS VIMP

A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor.
A cursor holds the rows (one or more) returned by a SQL statement. The set of rows the
cursor holds is referred to as the active set.

There are two types of cursors
Implicit cursors
Explicit cursors

.1 Implicit Cursors

Implicit cursors are automatically created by Oracle whenever an SQL statement is
executed, when there is no explicit cursor for the statement.

Programmers cannot control the implicit cursors and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is
associated with this statement. For INSERT operations, the cursor holds the data that needs
to be inserted. For UPDATE and DELETE operations, the cursor identifies the rows that
would be affected.

Example for Implicit Cursor:
DECLARE

total_rows number(2);

BEGIN

UPDATE customers
SET salary = salary + 500;
IF sgl%notfound THEN

dbms_output.put_line('no customers selected');

ELSIF sgl%found THEN

total_rows := sql%rowcount;
dbms_output.put_line(total_rows | |' customers selected ');

END IF;

END;

5.2 Explicit Cursor

® Explicit cursors are programmer-defined cursors for gaining more control over the context
area. An explicit cursor should be defined in the declaration section of the PL/SQL Block. It

is created on a SELECT Statement which returns more than one row.

Example for Explicit Cursor:
DECLARE
c_id customers.id%type;
c_name customers.name%type;
c_addr customers.address%type;
CURSOR c_customers is
SELECT id, name, address FROM customers;
BEGIN
OPEN c_customers;
LOOP
FETCH c_customers into c_id, c_name, c_addr;
EXIT WHEN c_customers%notfound;
dbms_output.put_line(c_id || "' || c_name || "' || c_addr);
END LOOP;
CLOSE c_customers;
END;

TOPIC 6: TRIGGERS VIMP

= Atrigger is a pl/sql block structure which is fired when a DML statements like Insert, Delete, Update
is executed on a database table.
= Atrigger is triggered automatically when an associated DML statement is executed.

Example 1:

CREATE OR REPLACE TRIGGER display_salary_changes
BEFORE DELETE OR INSERT OR UPDATE ON customers
FOR EACH ROW
WHEN (NEW.ID > 0)
DECLARE
sal_diff number;
BEGIN
sal_diff := :NEW.salary - :0LD.salary;
dbms_output.put_line('Old salary: ' || :OLD.salary);

dbms_output.put_line('New salary: ' | | :NEW.salary);
dbms_output.put_line('Salary difference: ' | | sal_diff);
END;

TOPIC: JOIN OPERATION IN RELATIONAL ALGEBRA VIMP

Join Operation: It is used to combine tuples from multiple relations so that related information can be
presented.

= |tis denoted by join symbol .

Syntax: R Mjin condition> S

Types of joins:

(a)Theta Join: A general join condition.

= Syntax: Ai 0 Bi

= 0is one of the comparison operators of {=,>,>=,<,<=, #}

(b)Equi Join: Join based on the common columns in different relations.

Syntax: R ™ <column = column> S
E.g. DEPARTMENT ™ .<mgrssn = ssn> EMPLOYEE

DEPT EMP
ENO | DEPTNO | DNAME ENO | ENAME
1 10 RESEARCH 1 KING
2 20 OPERATIONS 2 BLACK
DEPT
ENO | ENAME DEPTNO | DNAME
1 | KING 10 RESEARCH
2 | BLACK 20 OPERATIONS

(c)Non Equi Join: Join of two relations.

= Non equi join always return “Cartesian Product” or “Cross Product”
= |tis also known as natural join.

= |tis denoted by *

SyntaX: R *(<Iist1> <Iist2>)s
E.g. DEPARTMENT < EMPLOYEE

EMP DEPT
ENO | ENAME DEPTNO DNAME
1 | KING 10 RESEARCH
2 | BLACK 20 OPERATIONS
EMP_CROSS_DEPT
ENO | ENAME | DEPTNO | DNAME

1 | KING 10 RESEARCH
1 | KING 10 OPERATIONS
2 | BLACK 20 RESEARCH
2 | BLACK 20 OPERATIONS

(d)Outer Join: Join condition that returns tuples with direct map.
(i) Left Outer Join: Returns the unmatched tuples in the left side relation.
= Itis denoted by the symbol <.

Syntax: R P<condition> S

Note: The tuple with DEPTNO 40 in EMP relation does not participate in the relation.

EMP DEPT
ENAME | DEPTNO DEPTNO | DNAME
KING 10 10 ACCOUNTING
BLAKE 30 20 SALES
CLARK 10 30 RESEARCH
JONES 20
JAMES 40

(ii) Right Outer Join: Join condition that returns tuples in the right side relation.

= |tis denoted by the symbol »<

Syntax: RS
EMP
ENAME | DEPTNO
KING 10
BLAKE 30
CLARK 10
JONES 20

DEPT
DEPTNO | DNAME
10 ACCOUNTING
20 SALES
30 RESEARCH
40 OPERATIONS

Note: The tuple with DEPTNO 40 in relation DEPT does not participates in relation.

(iii) Full Outer Join: Join condition that returns tuples in both the relations that participates relation.
= Itis denoted by the symbol <.

Syntax: R>< S
EMP
ENAME | DEPTNO
KING 10
BLAKE 30
CLARK 10
JONES 20
JAMES 40

(e)Self Join: Joining a relation itself.

DEPT
DEPTNO | DNAME
10 ACCOUNTING
20 SALES
30 RESEARCH
40 OPERATIONS

EMP
EMPNO | ENAME | MGR
7839 KING
7698 BLACK 7839
7782 CLARK 7839
7654 MARTIN | 7698
7499 ALLEN 7698

KING
I
\2 \Z
BLACK CLARK
|
\2 \4
MARTIN ALLEN

RELATIONAL CALCULUS IMP

= Relational calculus is declarative Non-procedural Language based on mathematics.
= Relational calculus are two types (a) Tuple Relational Calculus (b) Domain Relational Calculus.

1.1 TUPLE RELATIONAL CALCULUS
= Tuple Relational Calculus: Tuple Relational Calculus is a Non-procedural Query Language unlike
relational algebra. Tuple Calculus provides only the description of the query but it does not
provide the methods to solve it.
= Tuple Relational Calculus range over tuple.
Syntax: {t | cond(t) }
T: Tuple
Cond(t): Formula
Query 0: Find all employees whose salary is above $50000
Relational Calculus Expression:
QO : {t | employee(t) and t.salary > $50000}
Note: t is the tuple variable that ranges that ranges over the relation employee.
Query 1: Retrieve the Birthdate and Address of the employee whose name is “John B Smith”
Q1 : {t.Birthdate, t.Address | Employee(t) and t.Fname = ‘John’ t.Minit="B’ and t.Lname="Smith’}
1.2 DOMAIN RELATIONAL CALCULUS

= Domain Relation Calculus ranges over finite values assigned for an attributes.

= Domain Relational Calculus provides only the description of the query but it does not provide the
methods to solve it.

Syntax: {x1,X2,., Xn | COND(X1,X2,., Xn, Xn+1, Xn+2,.., Xn+m)}

Note: COND is Condition (or) Formula
A domain relational calculus is of the form
{x1,%2,.., Xn | R(X1,X2,X3.., Xn)}

Note: R is a relation

X; is Domain Variable (Attribute)

An ATOM is of the form Xi OP X; (or) Xi OP C
Note: OP is a operation

ATOM: Relation between two Attributes
Cis constant.

X, X;j is attributes.

OP: (=,<>,<=,>,>=)

Eg: Xi OP X;

e.sal > d.sal

Query 0: Retrieve the Birthday and Address of Employee whose Name is ‘John B Smith’.
Note: Use quantifiers to express the formula.

QO :{uv | (3q)(3r) (3s) (3t) (3w) (3x) (Ty) (32) (Employee (qrstuvwxyz) AND g="John’ AND
r="B’ AND S="Smith’)}

CHAPTER 2
RELATIONAL ALGEBRA & RELATIONAL CALCULUS

TOPIC 1: SELECT OPERATION (o) VIMP

= Used to select subset of tuples (rows) from relation (table) that satisfies a select condition.
SyantaX: O <Select Condition>(R)

Syntax for Select Condition:
1.<attribute_name> <comparision_operation><constrant_value>
E.g. sal > 5000;

2.<attribute_name> <comparision_operation><attribute_name>
E.g. e.esal > d.esal
Note: e and d are table aliases

3.<selection_condition><boolean operator><selection_condition>
E.g. ename= ‘James’ and salary>5000

= Comparison operators: There are normally one of the operations from the set {=, <, >, £, 2,
#}

= Boolean operators: Boolean operation is normally one of the operations of the set {AND,
OR, NOT}

= Selection operations is commutative:
0'<condl>(0'<condz>(R)) = 0<cond2>(o<cond1>(R))

= We can always combine a cascade (or sequence) of SELECT operations into a single SELECT
operation with a conjunctive (AND) condition; that is,
O-<cond1>(0-<cond2>(---(0-<condn>(R)))) = O<cond1> AND<cond2> AND...AND <condn>(R)

Qeury 0: Select list of employees who work for department number 4

Sql query:
sql> select *
from employee
where dno=4 and salary>25000;

Select expression:
Odno=4 and salary>25000 (employee)

TOPIC 2: PROJECT OPERATION (T]) VIMP

= Selects certain columns from a relation.
Syntax: ﬂ<attribute_list>(R)

= Degree of relation: Number of attributes in a relation.
= Duplicate elimination: Duplicate rows are eliminated when projection operation done.

= Super key: Key may have single attribute or group of attributes used to distinguish one
record with another record.

TTaiist1> (TT<iist2>(R)) = TT<iist1> (R) when list1 and list2 is same.
Qeury 0: List each employee first name, last name and salary from the relation employee.
Sql query:
select fname, Iname, salary .

from employee;

Project expression:
ﬂ<fname,lname,sa|ary> (em ployee)

TOPIC 3: RENAME OPERATION (p)

= To rename relation and columns of the relation.

Syntax to rename relations and attributes: ps (81,82,83,...8n) (R)

Syntax to rename relation: p (R)

Qeury 0: Retrive the first name, last name and salary of employees who work for department 5.
Sql query:

select fname, Iname, salary

from employee

where dno=5.

Rename expression:

DEP5_EMPS & G gnos (EMPLOYEE)
RESULT & ﬂfname,lname,salary (DEPS_EMPS)

TOPIC 4: SET OPERATIONS VIMP

UNION: Include all the tuples in R and S by eliminating duplicate rows.
= The result of operation is represented by R U S.

R SSN S SSN
123456789 333445555
333445555 888665555
666884444
453453453

RUS RUS

123456789
333445555
666884444
453453453
888665555

INTERSECTION: Includes all the tuples that are common in both R and S.
= The result of operation is represented by R N S.

RNS RNS
888665555

DIFFERENCE: Includes all the tuples that are in ‘R’ but not in ‘S’.
= The result of operation is represented by R —S.

R-S R-S

123456789
666884444
453453453

TOPIC 5: DIVISION OPERATION

= Used to execute special kinds of queries.
Syntax: R+ S

= The division operation can be expressed as follows.
T1 < TIy (R)

T2 < Ty ((SxT1)—-R)

T ¢T1-T2

R A |B S A
al | b1 al
a2 | b1 a2
a3 | b1 a3
ad | bl
al | b2
a3 | b2
a2 | b3
a3 | b3
ad | b3
al | b4
a2 | b4
a3 | b4

Step 1: Let us assume that
X= {A}

Y ={B}

Z={AB}

Step 2:

T1< Ty (R)

T1| B
bl
b2
b3
b4

Step 3:

T2 < Ty ((SxT1)—-R)

SxT1 A B
al | b3
a2 | b2

Ty(SxT1-R) B

b3
b2

T2 | B

b3
b2

SxT1 A B A B
al | bl x al | blx
al | b2 x a2 | blx
al | b3 a3 | blx
al | b4 x a4 | bl
a2 | bl x al | b2x
a2 | b2 a3 | b2x
a2 | b3 x a2 | b3 x
a2 | b4 x a3 | b3 x
a3 | bl x a4 | b3
a3 | b2 x al | b4 x
a3 | b3 x a2 | b4 x
a3 | b4 x a3 | b4 x

Step 4:

T ¢T1-T2

T1 B T2 B

bl b3
b2 x b2
b3 x
b4
T | B
bl

b4

CHAPTER 3
ER- MODELLING

3.1 Entity types, Entity sets, Attributes & Keys IMP

o Entity: An object in the real world with an independent existence.
o Attribute: Property that describes an aspect of the entity.

o Attribute types:

(a) Simple: Attribute that is not divisible

E.g. Age

(b) Composite: Attribute that can be divided into smaller parts.
E.g. Address

Figure 3.4 A hierarchy of composite attributes; the
StreetAddress component of an Address 15 further composed
of Number. Street, and ApartmentNumber.

Address

G

StreetAddress City State Zip

Number Street ApartmentNumber

(c) Single-valued: Attribute containing single value.
E.g. Age, City

(d) Multi-valued: Attribute containing set of values.
E.g. Locations for DEPARTMENT
E.g. College degree

(e) Stored: Attribute having fixed value.
E.g. Date Of Birth

(f) Derived: Attribute derived from the value of the existing attribute.
E.g. NumberOfEmployees for DEPARTMENT
E.g. Age

(g) Complex attribute: Composite and multivalued attributes can be nested
in an arbitrary way.

Figure 3.7 The CAR entity type. with two key attributes Registration and
VehicleID. Multivalued attributes are shown between set braces {}.
Components of a composite attribute are shown between parentheses ().

Registration(RegistrationNumber, Staggl,:{‘ufehicielﬂ Make, Model, Year, {Color}
—
car, e
((ABC 123, TEXAS), TKB29, Ford Mustang, convertible, 1998, {red, black})
car, e
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 1999, {blue})
car, @
((WVSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 1995, {white, blue})
o

o Entity sets: The collection of all entities of a particular entity type in the
database at any point of time.

Figure 3.6 Two entity types named EMPLOYEE and COMPANY.
and some of the member entities in the collection of entities
(or entity set) of each type.

ENTITY TYPE NAME: EMPLOYEE COMPANY
Name, Age, Salary Name, Headquarters, President
7 N 7
€14 Ci o
(John Smith, 55, 80K) (Sunco Oil, Houston, John Smith)
€2 o -
ENTITY SET: (Fred Brown, 40, 30K) (Fast Computer, Dallas, Bob King)
(EXTENSION)
=] .
(Judy Clark, 25, 20K)

_\1.\'

Figure 3.3 Two entities, an employee ¢, and a company .,

and their attribute values.

_—— Name = John Smith _— Name = Sunco Oil

- e

—— Address = 2311 Kirby, a/

Houston, Texas 77001 c
! % Headquarters = Houston

~—— Age=55 \
B,

— HomePhone = 713-749-2630 —— President = John Smith

SECOND
S# | STATUS CITY
S1 |20 LONDON
S2 10 PARIS
S3 |10 PARIS
S4 | 20 LONDON
S5 |30 ATHENS

Domain

A: E— P(V)

A : Attribute

E : Entity set

V : Value set

V =P(V1) x ... x P(Vn) for composite attributes
A(e) denotes the value of attribute A for entity e

o Relationship: The reference between two tables.

o Relationship type: Set of associations between n entities .

Note: Relationship type R among n entity types E1, ..., En defines a set of
associations among entities from these types. Each association will be

denoted as (el, ..., en) where ei belongs to Ei, 1 <=i<=n.

o Relationship degree: The number of entity types participates in a
relationship type.

o Binary Relationship degree: When two entity types participates in a
relationship type.

o Ternary Relationship degree: When three entity types participates in a
relationship type.

Figure 3.9 Some instances of the WorRkKs FOR
relationship between EMPLOYEE and DEPARTMENT.

EMPLOYEE WORKS _FOR DEPARTMENT

Figure 3.10 Some relationship instances
of a termary relationship suppry.

SUFPLIER SUFPLY

PROJECT

o Role: Each entity participating in a relationship has arole.
E.g. Employee plays the role of worker and department plays the role of
employer in the WORKS_FOR relationship.
Note: Role names are more important in recursive relationships.

o Recursive relationship: If one entity plays two roles then the
relationship is called recursive relation.

Figure 3.11 The recursive relationship supervisioN, where the Emer
entity type plays the two roles of supervisor (1) and supervisee (2

SUPERVISION
EMPLOYEE

- /
// 5\ B S \\

o Structural constraints on relationships: We have two relationship
constraints.

(a) Cardinality ratio constraint (1-1, 1-N, M-N)

(b) Participation constraint

1. Total participation (existence ependency):All the tuples of the participating
entity relates with the tuples of related entity represented with double line.

2. Partial participation : Some tuples of the participating entity relates with all the
tuples of related entity represented with single line.

o Note: Participation constraint is represented by (min,max) pair.

If min value =0 then theis patial paticipation.
If min value >= 0 then the is total paticipation.

Figure 3.12 The 1:1 relationship maNaces. with partial
participation of employee and total partictpation of DEPARTMENT.

EMPLOYEE
MANAGES

Figure 3.13 The M:N relationship works oN
between EMPLOYEE and PROJECT.

WORKS_ON

EMPLOYEE

PROJECT

10

o Attributes of relationships:

1.

Note: Relationship types can have attributes, similar to entity types.

E.g. Hours attribute for WORKS_ON relationship

2.

If relationship is 1-N or 1-1, these attributes can be be migrated to the
entity sets involved in the relationship.

a) 1-N: migrate to N side

b) 1-1: migrate to either side

3.2 Weak Entity types IMP

o Weak entity: Entity that do not have key attribute.
E.g. DEPENDENT

Weak entity types: Entity Types that do not have key attributes.

Weak entities are identified by being related to other entity sets called
identifying owner. This relationship is called identifying relationship.

Partial key: Attributes that uniquely identify entities within the
identifying relationship.

(or)
A partial key is a key used to distinguish one record with another record
but not guarentted to be a key when new records are inserted.

A weak entity type always has TOTAL participation.

11

3.4 ER Schema Constructs (or) Symbols to write ER diagrams IMP

Symol Meaning

ENTITY TYPE

‘ : ‘ WEAK ENTITY TYPE

ra
il RELATIONSHIP TYPE
8
D IDENTIEYING RELATIGNSHIP TYRE
/’f
&N ATTRIBUTE
N
Y
— KEY ATTRIBUTE
N —!
) MULTIVALUED ATTRIBUTE
La\t =

Ny _/J COMPOSITE ATTRIBUTE

DERIVED ATTRIBUTE

E; —@: E; ‘ TOTAL PARTICIPATION OF E-INR

5 \‘\ M
E, {\\f b E CARDINALITY RATID 1: NFOR EpiEn IN R

(MIN, MAX]

E STRUCTURAL CONSTRAINT (min, max)
ON PARTICIPATION OF EIM R

"UONBIOU WRISBIP ¥d JO ArBuiwng -1°¢ 2INSI
l 2 L

EPLOYES | Paldbes | s | Casmc B8N AOATE ANDREES o | saasy | surcrosn lowo
o Srdh V2L SN -00 T Fardrer, Mo sl TX il 2000 oA i 2
Fizrdn Yoy Bt | s iad 8 Vo M. TR B4 LK) e | o |
ks Tk CETTTY | Anmasio FigH Canshe, Spwng, TH F AT AL TESEEA 4
e Wellon | s | ik 9500 =1 Bowy, Cnlin, TH r £ e |
Fewmin=t Mame | FERRRdnd | TRREEE 1 965 Tk SRATTEn, T B TIEY oo L 5
e Enghen | essasmasa | 1erzarad 5671 P, Hougher, TN 5 5K i B
Muran LahEs S TERIRRT i | 5 e T T, Hrwsin, T 0| = AL i
B=STE Y ey FREWSRAT 1= 110 A0 Mirne Hoe=ar, TX L Y il |

__,_—'—'_ T
EMPLOVEE ‘,_/”’ ‘\
EHAME MINIT | INAME | ssNM BOATE ADORESS "5EH'| SALARY | sUPSRsEN | omo
DERAFTMEMT

HEPASTIMENT

GNAME DNUMBER MERGEH MGRGTAFTTMTE
(DEFT_ LOCATIONS
\r BRUMBER DLOCATION

Constraints:

An employee work for one department.

Department may have any number of employees.
Adepartment can be located any number of locations.

2 e = [E

13

Constraints:

An employee who is manager is supervisor.
Manager supervise any number of employees.
A manager is supervised by another manager.

WN O

T D G ¢

14

_,—'—"'_F'_F'—'__-’_'_ - -
EMPLOVEE g \\
EMANE MINT | LNAME | ey BOWTE MIDAESS | =2 | SaAfy | SUPEASSM | DO
".' L
DEPEMDENT
=1 REPENDENT NANE SEX POWTE AELATICRGHIP
o Constraints
1. An employee may not have dependents.
2. An employee may have any number of dependents.
3. Every dependent must belongs to an employee.

15

Figure 3.15 ER diagram for the COMPANY schema, with all role
names included and with structural constraints on relationships
specified using the alternate notation (min, max).

G:ame} @'&H_m;) g .ﬂ.djregs_) @LFHI:'EF
harr-e e = = _____,F~— empb'_fee deparime _\\ T
= - o DEFARTMENT

o)

c&w@

SUPERVISION

DEPENDENTS_OF

DEFEMNDENT
2N \< ST
o) = Coome > ~—?

o Relationship attribute: Attribute derived from the relationship.
E.g. Hours, StratDate

17

Functional Dependency: The functional dependency is a relationship that exists between two
attributes of relation.

NORMALIZATION

First Normal Form

a First Normal Form: A relation is said to be in first normal form if and only if it contains
atomic or scalar values.

SCP

S# STATUS CITY P# QTY

S1 |{20,20,20,20,20,20} |LONDON |{P1,P2,P3,P4,P5,P6} |{200,200,400,200,100,100 }

S2 [{10,10} PARIS {P1,P2} { 300,400 }
s3 |10 PARIS P2 200
sS4 [{20,20,20} LONDON | { P2,P4,P5} { 200,300,400 }

Note: The relation should not contain sets

DBMS Normalization

DBMS

FIRST

S# STATUS CITY P# QTY
S1 P1 200
S1 P2 200
S1 P3 400
S1 P4 200
S1 P5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 P5 400

o Therelation FIRST stated as

FIRST{ S#, STATUS, CITY, P#, QTY }

PRIMARY KEY { S#, P# }

o Functional Dependencies in relation FIRST are

oTY

S#

P#

{ S#,P#} —> QTY

S# —> CITY

CITY » STATUS
By transitivity S# - STATUS

Normalization

-->

> CITY
STATUS

o UPDATE ANOMALIES

INSERT: We can not insert particular suppliers located in particular city until the supplier
supplies at least one part.

UPDATE: If supplier S1 moves from LONDON to AMSTERDAM, we need to change city as
AMSTERDAM for every supplier S1 otherwise the database contains inconsistent values
or data.

DELETE: If we delete first tuple of S1 among six tuples we lost the information of part P1.

Second Normal Form

o Therelation FIRST is projected into two relations SECOND, SP
o Therelation SECOND is stated as

SECOND
S# | STATUS CITY SECOND { S#, STATUS, CITY }
S1 20 LONDON PRIMARY KEY S#
S2 10 PARIS o Functional Dependencies in relation SECOND are
—>
S3 | 10 |PARIS i | Ty
! v
S4 20 LONDON I
— — > STATUS
S8 30 ATHENS

S# - CITY
CITY »> STATUS
By transitivity S# —» STATUS

DBMS Normalization 3

SP
S# P# | QTY o Therelation SP is stated as

SP { S#, P#, QTY }
PRIMARY KEY { S#,P#}

S1 P1 | 200

S1 P2 | 200 _ . ,
o Functional Dependencies in relation SP are

S1 |P3 |400

s1 |pa 200 =i s orv

s1 |ps |100 P#

s1 |pe |100
{ S#, P# - QTY
s2 [pP1 [300
s2 P2 [400
s3 (P2 [200
s4a P2 [200

S4 | P4 |300

S4 | P5 |400

Second Normal Form: A relation is said to be in 2NF if and only if it is in 1NF and every non
key attribute is irreducibly (loss less) depend on key attribute (Primary key).

o UPDATE ANOMALIES

INSERT: We can not insert the fact that a particular city have particular status.

E.g. We can not state that any supplier in ROME must have status of 50 until we have
some suppliers actually located in that city.

UPDATE: If we need to change STATUS of LONDON from 20 to 40, we should change for

all the tuples otherwise the database consists inconsistent data.

DELETE: If we delete second tuple of city PARIS, the information of supplier S2 will be
lost.

DBMS Normalization 4

Third Normal Form

Third Normal Form: A relation is said to be in 3NF if and only if it is in 2NF and every non key
attribute non transitively depend upon the key attribute.

Decomposition - A

o Decompose the relation SECOND into two relations SS and CS

SS : .
S# | STATUS o Therelation SSis stated as
S1 20 SS{ S#, STATUS}
PRIMARY KEY S#
S2 10 _ o _
o Functional Dependencies in relation SECOND are
>3 10 S# —3> STATUS
S4 20
S# —» STATUS
S5 30
SC . .
o Therelation SCis stated as
STATUS CITY
20 LONDON SC { STATUS, CITY }
PRIMARY KEY STATUS
e HARE o Functional Dependencies in relation SC are
30 | ATHENS STATUS |—> <ty

STATUS —» CITY

o This decomposition is not correct since the Functional Dependency | S# - STATUS
produces transitivity.

DBMS Normalization 5

Decomposition - B

o Decompose the relation SECOND into two relations SC and CS

o Therelation SC is stated as

SC{ S#, CITY }
PRIMARY KEY S#

o Functional Dependencies in relation SC are

S# —_—> CITY

S# > CITY

a Therelation CSis stated as

SC
S# CITY
S1 LONDON
S2 PARIS
S3 PARIS
S4 | LONDON
S5 | ATHENS
CS
CITY STATUS
LONDON 20
PARIS 10
ATHENS 30

SC{ CITY, STATUS }
PRIMARY KEY CITY

o Functional Dependencies in relation CS are

CITY —> STATUS

CITY » STATUS

o This decomposition is correct .Therefore the relations SC and CS satisfies 3NF.

o UPDATE ANOMALIES

INSERT: We can not insert the fact that a particular city have particular status.

E.g. We can not state that any supplier in ROME must have status of 50 until we have some
suppliers actually located in that city.

UPDATE: If supplier S1 moves from LONDON to AMSTERDAM we need to change city as
AMSTERDAM for every supplier S1 otherwise database contains inconsistent data.

DELETE: If we delete second tuple of city PARIS the information of S2 will be lost.

Normalization 6

Dependency Preservation

o Consider the relation SECOND

SECOND

S# | STATUS CITY o The relation SECOND is stated as

S1 |20 LONDON SECOND { S#, STATUS, CITY }

PRIMARY KEY S#
S2 10 PARIS
o Functional Dependencies in relation SECOND are
S3 10 PARIS
S# _>| CITY
S4 20 LONDON I ¢
S5 30 ATHENS I— = 3| STATUS

S# — CITY
CITY - STATUS
By transitivity S# - STATUS

o Decompose the relation SECOND into two relations SC and CS

SC . .
S# CITY a Therelation SC is stated as
S1 LONDON SC{ S#, CITY }
PRIMARY KEY S#
S2 PARIS

o Functional Dependencies in relation SC are

S3 PARIS S 3 CITY
S4 LONDON

S# —» CITY

S5 | ATHENS

CS a The relation CS is stated as

CITY STATUS
LONDON 20 SC{ CITY, STATUS }

PRIMARY KEY CITY

PARIS 10 o Functional Dependencies in relation CS are

ARIENS] &0 CITY > STATUS

CITY -» STATUS
o Dependency preservation: Functional dependencies of the projected tables are implied by
the dependencies of original table.

DBMS Normalization 7

o From the above tables the FD’s of SC and CS are implied by the FD’s of SECOND. Therefore
dependencies are preserved.

BCNF (Boycee Code Normal Form)

BCNF: A relation is said to be in BCNF if and only if it is in 3NF and only determents are
candidate keys.

o Candidate key : An attribute (or) group of attributes which is used to distinguish one
record with another record.

a Consider the relation SECOND a Therelation SECOND is stated as

SECOND SECOND { S#, STATUS, CITY }
S# | STATUS CITY PRIMARY KEY S#
S1 |20 LONDON
o Functional Dependencies in relation SECOND are
S2 |10 PARIS
S# — CITY
S3 |10 PARIS | l,
S4 |20 LONDON L >| STATUS
S5 |30 ATHENS S# s CITY

CITY - STATUS
By transitivity S# - STATUS

o The above relation does not doesn’t satisfies 3NF and all the determinants are not the
candidate keys. Therefore the relation SECOND is not in BCNF.

DBMS Normalization 8

o Therelation SECOND is projected into two relations SC and CS

SC . .
SH CITY o Therelation SC is stated as

S1 | LONDON SC{ S#, CITY }
PRIMARY KEY S#

S2 PARIS _ o)
o Functional Dependencies in relation SC are

S3 PARIS S 3 CITY
S4 LONDON

S# —» CITY

S5 | ATHENS

o Intherelation SCis the only determinant S# is the primary key .

CS o Therelation CSis stated as
CITY STATUS
LONDON | 20 SC{ CITY, STATUS }
PRIMARY KEY CITY
PRI e o Functional Dependencies in relation CS are
i Ty p——> sTATUS

CITY - STATUS
o Intherelation CS is the only determinant CITY is the primary key .

a There fore the relations SC and CS satisfies BCNF and all the determinants are candiadate
keys

ANF (Fourth Normal Form)

o Consider the relation UCTX (Un normalized relation)

UCTX
DBMS Normalization 9

COURSE TEACHER TEXT
PHYSICS | {Prof. GREEN, |{BASIC MECHANICS,
Prof. BROWN} | PRINCIPLES OF OPTICS}

MATHS {Prof. GREEN} | {BASIC MECHANICS,
VECTOR ANALYSIS,
TRIGNOMETRY}

o Constraints on table UCTX

1. A specified course can be taught by specified teacher and uses all the specified textbooks as
references.

2. Ateacher can teach any number of courses.

3. There are no functional dependencies for the table UCTX.

o Now we are normalizing UCTX table as CTX

CTX

COURSE TEACHER TEXT
PHYSICS | Prof. GREEN | BASIC MECHANICS
PHYSICS | Prof. GREEN | PRINCIPLES OF OPTICS
PHYSICS | Prof. BROWN | BASIC MECHANICS
PHYSICS | Prof. BROWN | PRINCIPLES OF OPTICS
MATHS Prof. GREEN | BASIC MECHANICS
MATHS Prof. GREEN | VECTOR ANALYSIS
MATHS Prof. GREEN | TRIGNOMETRY

o Therelation CTX is stated as

CTX {COURSE, TEACHER,TEXT }
CANDIDATE KEY {COURSE, TEACHER, TEXT}

o The above relation satisfies 1INF,2NF, 3NF and BCNF since the determinant itself is the
candidate key.

o Update anomalies:
To add information about a teacher who teaches a course PHYSICS, it is necessary to
create two tuples one for each of the text books BASIC MECHANICS and PRINCIPLES

OF OPTICS.

o MVD’S: Multi valued dependencies are general dependencies based on the attributes
and their domains.

o Let R bearelation and let A,B,&C be arbitrary subsets of R then we can say that
A—>>B if and only if the set B values matching with pair (A,C) dependents only
on A value independent of C value.

COURSE —>>TEXT

COURSE —>TEACHER

DBMS Normalization 10

The above MVD’s exits in CTX.

o Consider first two tuples from the relation CTX.

CTX
COURSE TEACHER TEXT
Tuplel ——»| PHYSICS | Prof. GREEN | BASIC MECHANICS
Tuple2 — | PHYSICS | Prof. GREEN | PRINCIPLES OF OPTICS

o Consider two subsets CT and CX from CTX

CT
COURSE TEACHER
Tuplel » PHYSICS | Prof. GREEN
Tuple2 —» PHYSICS | Prof. GREEN

Tuplel = Tuple2

CX
COURSE

Tuplel ——» PHYSICS

Tuple2 —» PHYSICS

TEXT
BASIC MECHANICS
PRINCIPLES OF OPTICS

Tuplel# Tuple2
o Therefore the relation CTX violating the condition of FD.

o Project the table CTX into CT and CX

CT
COURSE TEACHER
PHYSICS | Prof. GREEN
PHYSICS | Prof. BROWN
MATHS Prof. GREEN

o Therelation CT is stated as

CT {COURSE, TEACHER}
CANDIDATE KEY {COURSE, TEACHER}

CX
COURSE TEXT o Therelation CX is stated as
PHYSICS | BASIC MECHANICS
PHYSICS | PRINCIPLES OF OPTICS CTX{COURSE, TEXT }
MATHS BASIC MECHANICS CANDIDATE KEY {COURSE, TEXT}
MATHS VECTOR ANALYSIS
MATHS TRIGNOMETRY

DBMS Normalization

o Therefore the relations CT and CX satisfies 1NF,2NF,3NF,BCNF and preserves MVD’* and
FD’s.

o Therefore the relations CT and CX satisfies 4NF.

ANF: The relation is said to be in 4NF if and only it is in BCNF and must have both MVD’s and
FD’s.

Fagin’s theorem: Let R=A,B,C be arelation where A,B,C are set of attributes the R =join of its
projection on {A,B} and {A,C} if and only if R satisfies A —>>B and A—>>C

5NF (Fifth Normal Form)

Join Dependencies

o Consider the following relation

SPJ
S# | P# | J#
S:1 |P1 |J2
S1 [Pz | J1
S |P1 |1
S: |P1 |1

a Therelation SPJ is stated as

SPJ {S#,P#,J#
CANDIDATE KEY { S#,P#,J#}

o Join Dependencies: Let R be arelation and let A,B,...,Z be arbitrary subsets of set of attributes
of R. Then we can say that R satisfies join dependency *(A,B,...,Z) if and only if R is equal to
join of its projections on A,B,...,Z

DBMS Normalization 12

P J JS

S P P J# S J#
S1 | P: Pi] J2 S1] J2
S1| P2 P | J1 Si1| J1
Sz | P Pi1] 1 S2 | N1

L) Join over P# (J
e

S P J# > Join over S#, J# €——
Si1 | P1] J2 \L
Si1 | P1] J1 pJ
_ S | P2 | 01 S P | J#
Sprious tuple—={|[s, | P1 | J2 |] s e | o
S| P1] J1 s | pi | oas
Si1| P2] J1
So | P1| A1

o Constraint on the following table is

If the pair (S1, P1) appear in SP, the pair (P1,J1) appear in PJ the the pair (J1, S1) appear in JS
then the triple (S1, P1,J1) appear in SPJ

Table violating the specified constraint

SPJ P J JS
S# | P# | J# S P P J# S J#
S1 |P1 | J2
S:1 |[P2 |1 S1 | Pa P1]| J2 S1| J2
S |P1 |J1 S1 | P2 P2 | J1 Si1 | J1
S2 | P2 Pi1] 1 Sz | 1

L) Join over P# (J
>

S | P | 3 > Joinover S#, J# €—

Si1 | P1] J2

Si1|P1]| J1 2]

Si1 | P> | Js S P J#

Spurioustuple—>| S2 | P1] J2 I Si1 | P11] J2

S| P1| J1 [TsS:]P: |31 [Je——spurious tuple
S1 | P2] J1
S| P1 | J1

DBMS Normalization 13

Table satisfying the specified constraint

SPJ SP =N S
S# | P# | I# S|P P | J# S
21 El jz S1| P2 P, | 3o S1|J2
1 2 | J1 S1| P2 P, | 11 Si1 |
S1 [P1 |J1

P1] J1

—> Join over P# (J

s

s | P | j#g > Joinover S#, J¢# €—
S1 | P1] J2 \L
S1 | P1] J1 PJ
S1 | P2 | N1 S P J#
S1 | P1] J2
Si1| P1] J1
Si1| P2 J1

5NF: A relation R is in 5NF is also called PIJNF (Projection Join Normal From) if and only if
every join dependency in R is implied by the candidate key of R.

o Consider the relation SPJ
SPJ {S#,P#,J#}
CANDIDATE KEY { S#,P#,J#}

o SPJ is projected into SP,PJ and JS

SP {S#,P#}
CANDIDATE KEY { S#,P#}

PJ {S#,P#}
CANDIDATE KEY { P#,J#}

JS {I#,S#)
CANDIDATE KEY { J#,S#)}

DBMS Normalization 14

o Candidate keys of SP, PJ and JSis not implied by the candidate key of SPJ. Therefore SP, PJ
and JS are not satisfies 5NF.

o Consider the relation

SUPPLIER
S# SNAME STATUS CITY
S1 SMITH 20 LONDON
S2 JOHN 20 PARIS

o Therelation SUPPLIER is stated as

SPJ {S#,SNAME,STAYUS,CITY}
CANDIDATE KEY S#

o FD’sin relation SUPPLIER
CITY

7

S# —>»| SNAME

v

STATUS

S# - CITY
S# - STATUS
S# > SNAME

o The above relation satisfies 1NF,2NF, 3NF, BCNF (No need to check 4NF since there are FD’S).

o Therelation SUPPLIER is projected into SS and SC.

SS
S# SNAME | STATUS SS{ S#,SNAME,STATUS)
S1 SMITH 20 CANDIDATE KEY S#
S2 JOHN 10
FD’Sin SS
S# >] SNAME
STATUS
S# — SNAME
S# — STATUS

DBMS e 15

SC

S# CITY SS{ S#,CITY}
S1 | LONDON CANDIDATE KEY S#
S2 PARIS
FD’S in SS
S# >] cImy
S# — CITY

= The relations SS and SC satisfies 5NF since the candidate keys of SS and CS is implied
by candidate key of SUPPLIER.

Domain Key Normal Form

1. Thisis proposed by FAGIN and it is also called FAGIN NF.
2. ltis not defined in terms of FD’s ,MVD’s,JD’s .

A relation R is said to be in DKNF if and only if it should contain KEY CONSTRAINT
and DOMAIN CONSTRAINT.

= Key constraint : The relation must have primary key .

= Domain constraint : The set of values associated for an attribute must have finite values.

DBMS Normalization 16

Transaction Processing

o Transaction : Logical unit of sequence of processing.

o Transaction operations: Insert, Delete, Update & Retrieve.

o Transaction boundaries: Begin, End.

o Begin transaction: Transaction begins when user enters into SQL plus environment.

o End transaction: Transaction ends when one of the following statements are executed.
(a) Exit

(b) Commit
(c) Rollback

Topic 1: Transaction read & write

read item(x)

o Reads a database item into a program variable.

=

Find the address of the disk block that contain data item x.

N

Copy the disk block contain the data item x into primary memory.

w

Copy data item x to program variable named x.

write item(x)

o Writes the value of program variable x into database.

1. Find the address of the disk block that contain data item Xx.

2. Copy the disk block contain the data item x into primary memory.

3. Copy data item x to program variable named X.

4. Store the updated data item contained in disk block to secondary memory.

Topic2: What are the problems in transaction processing (or) What are the
problems due to concurrency (or) Why concurrency control is needed [VIMP]

o Concurrency : When multiple transactions request single database item simultaneously,
the updations of transactions produce inconsistent data.

The lost update problem

o The updations of interleaving transactions produce inconsistent data.

T1 T2 X 1My
80 5 4 10
x=80 read_item(x) ; 84 15
x=80-1=79 X=X —1;
read_item(x); x=80
X=X +m; x=80+4=84
x=84 write_item(x);
y=10 | | read_item(y);
write_item(x); x=84
y=10+5=15 || y:i=y +n;
y=15 || write_item(y);
o Serial operations of transaction T1 is
T1 X n y
x=80 read_write(x);
80 5 10
x=80- 1=79 X:=X - 1; 79 11
Xx=79 write_item(x);
Y=10 read_item(y);
y=10+1=11 y:=y+1;
y=11 write_item(y):

o The final result of serial transaction is x=79 but the interleaving transaction operation
shows that x=84.

The temporary update problem (Dirty read)

o The problem occurs when one transaction update the database item and then fails

T1 T2 X n m y
x=80 read_item(x) ; 80 5 4 10
5
x=80-5=75 X:=X —n; 79
x=75 write_item(x);
read_item(x); X=75
X=X +m,; X=75+4=79
write_item(x); X=79
X=79 read_item(x);
FAIL

o |If transaction T1 fails the database item roll backs to its previous state, but transaction T2
has read the incorrect value of x.

The incorrect summary problem

o A transaction T receives different values for two reads on the same data item.

y sum X

n a

read_item(y);

y=20
y:=y+n;
y=20 +5=25
write_item(y);
y=25

20 0 18 5 5
25
T1 T2
sum:=0;
read_item(a); a=b
sum:=sum +a, sum=0+5=5
x=10 read_item(x);
x=10-5=5 X=X - n;
X =5 write_item(x);
read_item(x); X =5
SUM:I=SUMH+X; SUM=0+5=5
read_item(y); y=20
sum:=sum-+y; sum=0+20=20

Topic3: Types of transaction failures (or) Why recovery is needed [IMP]

o Types of failures

(a) Physical (or) Catastrophic

(b) Disk failure

(c) Transaction failure

Physical (or) Catastrophic failure

A/C failure.

Theft.

Sabotage.

Mounting wrong tape.

Over riding disks (or) taps.

o0~ WNIE

Giving same name to the file.

Disk failure

Read / write head malfunctioning. |

Transaction failure

1. Operations of transaction may fail due to logical errors.
E.g. Division by 0.
Integer over flow.
Error in parameters.
Error in control structures.

n

Transactions may fail due to concurrency.

3. Transaction may fail due to S/W, H/W errors during the execution of
transaction.

4. Transaction may fail if the data for the transaction may not be found or
insufficient.

Topic4: Transaction states

Begin_transaction This makes begin the transaction.
Read / Write Specifies either read operation or write operation.
End_transaction Specifies all the read & write operations are commited

partially commited and aborted.

Commit Indicates successful updation of transaction.

Rollback / Abort Indicates that the transaction ended unsuccessfully.

(or) Specifies all the read & write operations are

Read,
write

End
Transaction

Begin
Transaction

Commit

Partially
commited

Commited

Abort

Topich: The system log [IMP]

o System log: System log is file keep track of all transaction operations on database items.

Advantages

The log file entries used for recovery purpose.

The log file is periodically backed up into magnetic tape (Archival storage)

WIN =D

Log record: Entry of log file.

o Entries of log file

[start_transaction,T] Indicates that transaction T has
started execution

[write_item,T,X,old_value,new_value] Indicates that transaction T has
changed the value of database item X
from old value to new value.

[read_item,T,X] Indicates the transaction T has read
the value of database item X.
[commit, T] Indicates that transaction T has

completed successfully and effect of
transaction can be recorded
permanently in the database.

[abort,T] Indicates that transaction T has been
aborted.

Topic 6: Desirable properties of transaction (or) ACID properties of transaction [IMP]

Atomicity

o The transaction is atomic unit of processing i.e. either performed entirely or none
performed at all.

Atomicity

Consistency

Transaction

Isolation

Durability

Consistency

o A correct execution of transaction must take the database item from one consistent state
to another consistent state.

Isolation

o A transaction is isolated from other transactions when multiple transactions are accessing
the same data item concurrently in a serial or interleaving fashion.

Durability

o The changes applied to the database item by a commited transaction must persistent in the
database.

Topic 7: Schedules & Recoverability

o Schedule (or) History: The order of execution of operations of serial or interleaving
transactions.

T1 T2

read_item(x)
X:=X-n;
read_item(x);
X:=X+N;
write_item(x);
read_item(y);
y:=y+n;

write_item(x);
write_item(y); Sa: r1(x); r2(x); wil(x); rl(y); w2(x); wi(y); 7

T1 T2

read_item(x)
X:=X-nN;
write_item(x);
read_item(x);
X:=X+m;
write_item(x);

read_item(y);
Fails

Sg: ri(x); wa(x) ; ra(x); wa(x); ra(y); al;

Topic8: Conflict operations

Two operations in a schedule are said to be conflict, if they satisfy all three of the following
conditions.

O

=

. They belongs to different transactions.

N

. They access the same data item.

w

. At least one of the operation is a write operation.

o Consider schedule Sp

Sa: ra(x); r2(x); wa(x); ra(y); wa(x); wa(y);

o Consider two operations from schedule

ri(x) & wa(x);

The above two operations are conflict since

The operations belongs to different transactions T1 &T2.

They access the same data item x.

One of the operation is write operation.

o Verify which of the operations are conflict

ro(x) & wi(x); Conflict
Wi(X) & wa(X);

ri(x) & ro(x); Not conflict

Wo(X) & wi(y); Not conflict

Topic 8: Complete schedule

o A sehedule ‘s’ of ‘n’ transactions T; T,

following conditions hold.

1.The operations in ‘s’ are exactly those operations in Ty T,

.....

T, including a

commit or abort operation as the last operation for each transaction in the

schedule.

2. For any pair of operations from the same transaction T; their order of
appearance is ‘s’ is the same as their order of appearance in T;

3. For any two conflicting operations, one of the two must occur before the order

in the schedule.

Topic 9: Serial schedule

o Serial schedule: The order of execution of operations of serial transactions.

T1

T2

read_item(x) ;
X:=X —n;
write_item(x);
read_item(y);
y:=y +n;
write_item(y);

read_item(x);
X=X +m;
write item(x);

Sa: ri(x); wa(x); ra(y); way); ra(x); wa(x);

T1

T2

read_item(x);
X=X - n;
write_item(x);
read_item(y);
y:=y +n;
write_item(y);

read_item(x) ;
X:=X +m;
write_item(x);

Se: ra(x); Wa(x); ru(x); wa(x); ru(y); wa(y);

T, is said to be a complete schedule if the

Topic 10: Non serial schedule

o Non serial schedule: The order of execution of operations of interleaving transactions.

T1 T2

read_item(x) ;
X=X +n;
read_item(x);
X=X +m;
write_item(x);
read_item(y);
write_item(x);
X:=y +n;
write_item(y);

Sc: ra(X); ra(x); wa(x); ra(y); wa(x); wa(y);

T1 T2

read_item(x) ;
X=X - n;
write_item(x);
read_item(x);
X:=X +m;
write_item(x);
read_item(y);
y:=y +n;
write_item(y);

Sp: ri(x); wa(x); ra(x); wa(x); ra(y); wa(y);

10

Topic 11: Result equivalent schedule

o Two schedules are result equivalent if they produce the same final states of the database

item.

Tl

T2

x=90

x=90-3=87

X=87

y=90

y=90+3=93

y=93

read_item(x) ;
X:=X —n;
write_item(x);
read_item(y);
y:=y +n;

write_item(y);

read_item(x);
X=X + m;

write_item(x);

x=87

Xx=87+2=89

X=89

| Schedule A |

T1

T2

Xx=90

x=90-3=87

x=87

y=90

y=90+3=93

y=93

read_item(x) ;
X=X —n;

write_item(x);

read_item(y);

Y=y +n;

write_item(y);

read_item(x);
X=X + n;

write_item(x);

x=87

x=87+2=89

X=89

Schedule C

11

Topic 12 : Serializable schedule

VIMP

o Serializability: A schedule ‘s’ of ‘n’ transactions is serializable if it equal to some serial

schedule of same ‘n’ transactions.

Schedule D

T1 T2 -
_ _ — 90 90 3
read_item(x) ; x=90 93 92
X=X +m; Xx=90+2=92 89
write_item(x); x=92
x=92 read_item(x);
x=92-3=89 X=X -n;
Xx=89 write_item(x);
y=90 read_item(y);
y=90+3=93 y:=y+n,
y=93 write_item(y):
Schedule B
T1 T2 y X N _m
90 96 3 2
Xx=90 read_item(x) ; 93 89
X=90 -3=87 X:=X - n;
x=87 write-item(x);
read_item(x); x=87
X=X +m,; X=87 +2=89
write_item(x); Xx=89
y=90 [| read_item(y);
y=90 +3=93 y:=y +n;
y=93 || write_item(y);

12

o A non serial schedule , schedule D is serializable to serial schedule schedule B , since they
are equivalent.

Topicl4: Conflict Equivalent Schedule [IMP]

» Two schedules are said to be conflict equivalent if the order of any two conflicting
operations is the same in both the schedules.

= Two operations in a schedule are said to be conflict, if they satisfy all three of the
following conditions.

1. They belongs to different transactions.

2. They access the same data item.

3. At least one of the operation is a write operation.

E.gl: Si: ri(x); wa(x)
Sz1 wa(x); ri(x)

Both S;and S, contains conflict operations but they are NOT CONFLICT equivalent.

E.g2: Sii wai(x); wa(x)
Szt Wa(X); Wi(x)
Both S;and S, contains conflict operations but they are NOT CONFLICT equivalent.

E.g3: Sar wi(x); ra(x)
Sg: Wi(X); ra(x)
Both Spand Sg contains conflict operations but they are CONFLICT equivalent.

Topic 15: Uses Of Serializability

1. A Serializable schedule gives the benefits of concurrent execution

2. The interleaving of operations from concurrent transactions is typically determined by
OS SCHEDULER which allocates resources to all the processes

3. Enforces TWO PHASE LOCKING PROTOCOL (Concurrency control protocol)
4. Ensures TIME STAMP ORDERING PROTOL (Concurrency control protocol)
5. Ensures MULTIVERSION PROTOCOL (Maintains multiple versions of database item)

6. Ensures OPTIMISTIC (or) CERTIFICATION (or) VALIDATION protocol (Concurrency
control protocols)

13

Topicl6: Conflict Serializable Schedule [IMP]

Conflict Serializable: A schedule S is conflict serializable if it is conflict equivalent to some
serial schedule S'

= Consider the schedules S, and Sp
Sa: ri(x); wai(x); ri(y); wa(y); ra(x); wa(x);
Sp: ri(x); wa(x); ra(x); wa(x); ra(y); wa(y);

= Consider | wy(x) ;ra(x)in Sa

w1(X) ;ra(x) in Sp

1. In both the schedules Transaction 2 reads the values after Transaction 1 writes
2. The operations w;(x) ;r2(x) is conflicting operations
3. Last operations are write operation in both the schedules

= Therefore Sp is conflict serializable to Sa

Topic 17: View Equivalence [IMP]

Consider two schedules S and Sy

S:ri(x); wi(x); ra(y); wa(x); ws(x);

Sg: ri(x); wa(x); wi(x); wa(X); Ci; Ca; Cs;

= Two schedules S and Sy are said to be view equivalent

1. Bothe schedules have same transactions and same operations

S Sy
T1,7T2,T3 T1,T2,T3
read_item(x) read_item(x)
write_item(x) write_item(x)

14

2. The first operation of first schedule should be same as the first operation of second
schedule

3. The last operation of first schedule should be same as the last operation of second
schedule

4. Both the schedules enforce conflict equivalence

Topic 18: View Serializability [IMP]

= A Schedule Sy is view serializable if it is view equivalent to some serial schedule S

S:ri(x); wa(x); ru(y); wa(x); wa(x);
Sg: ri(x); wa(x); wi(x); ws(X); Ci1; Cz; Cs;

Non serial schedule Syis view serializable to serial schedule S

= CONSTRAIND WRITE ASSUMPTION :

Any write operation w;j(x) in T;is preceded by a read operation ri(x).

Sg: ri(x); wa(x); wi(x); ws(x); Ci; Ca; Cs;

Note : Read value for data item before writing it.
Note : wi(x) preceded by the ri(x)
Note: In the above schedule wi(x) is preceded by ri(x)
* UN CONSTRAIND WRITE ASSUMPTION (OR) BLIND WRITES
The read operation ri(x) is not preceded by write operation wj(x)
Note: Data item value can’t be read before writing it

Note: w,(x) and w3(x) is not preceded by the read operations ry(x) and r3(x)
15

Topic 19: Transaction Support In SQL IMP

» Transaction: Sequence of statements that performs specified task.
» A single SQL statement always considered to be atomic.

= Characteristics :

(a) Access Mode

Access Mode specified as READ ONLY (or) READ WRITE

READ ONLY: Read the data from database (SELECT)
READ WRITE: INSERT, UPDATE, DELETE

(b) Diagnostics Area Size

DIAGNOSTIC SIZE N
The integer value N indicating the number of error conditions or exceptions.

These conditions supply feedback information to the users on the most recently
executed SQL statements.

EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION

READ WRITE

DIAGNOSTICS SIZE 5

ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE(Fname,Lname,SSN,Dno,Salary)
VALUES(‘Robert’,’Smith’,’991004321’,2,35000);

EXEC SQL UPDATE EMPLOYEE
SET Salary = Salary * 1.1 WHERE Dno = 2;

EXEC SQL COMMIT;

UNDO: EXEC SQL ROLLBACK;
THE_END: ...;

(c) ISOLATION LEVEL

16

Isolation level specified with option

ISOLATION LEVEL < ISOLATION>

hropdPR

ISOLATION:

READ UNCOMMITED

READ COMMITED
REPEATABLE READ
SERIALIZABLE

There may be three of the following violations in SQL TRANSACTIONS

1. Dirty read :

» The problem occurs when one transaction update the database item and then

fails

T1

T2

x=80

read_item(x) ;

x=80-5=75

X=X —-N,

X=75

write_item(x);

X=79

read_item(x);

FAIL

read_item(x);
X=X +m;

write_item(x);

X n m vy

80 5 4 10
+5
79

X=75

X=75+4=79

X=79

= If transaction T1 fails the database item roll backs to its previous state, but

transaction T2 has read the incorrect value of x.

17

2. Nonrepeatable read

A transaction T; may read a given value from a table. If another transaction T, later
updates that value and T, reads that value again, T will see a different values.

3. Phontoms

1. Atransaction Ty may read the rows from table based on the where condition.

2. Atransaction T, inserts a new record that satisfy where condition used in Tj,

3. If T, is repeated, then T; will see a PHONTOM, a row that previously did not exist.

Read by

Read by T,

To

Read by T,

Possible violations Based on isolation levels as defined in SQL

TYPE OF VIOLATION

Isolation Level Dirty Read | Non repeatable Read | Phantom
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

18

Testing Serializability (or) Confilct Serializability
Problem 1: Verify whether the following Transactions ensures serializablity.

e . T i S
rescl_tem{X)
X .
ekl [ferdidA)
X = X M
Tifria werite_itemiX);
raael ol

wirte it
:_.' e Ty |.I|II J 5 s :I

wriie el

Schaedulae C

Sc: ri(x) ; ra(x); wa(x); ri(y); wa(x); wa(y);

X Yy
T1->T2 T1>T2
r1 (x) W (x) £ {y} wa {y)
wi(x) ra(x) wily} Ry
wi (x) wy(x) wi(y) waly)
X y
25711 T25>T1
rz (x) wi(x) By wiiy
W (x) ry (x) waify) ey
wy (x) wy(x) woly) waly)

(™

= Since the Precedence Graph has Cycle, the schedule Sc is not Serializable or
Conflict Serializable.

Problem 2: Verify whether the following Transactions ensures
serializablity.

I T T.

rezad nemilX);
b

wirite eml X)

T read_item{X);
X = X+
wiite tam(X)

raad_fem| X)
Y=V + N

¥ wintel fem(¥):

Schedule D

Sp: ri(x); wa(x); ra(x); wa(x); ru(y); waly);

X y
T1->T2 T1->T2
ry (x) w; (x) £ {y) w (v}
wi(x) r2(x) wily) iy
wi (x) wy(x) wify) waly)
X Yy
T25>T1 T25T1
¥ (4 wy (d £ {y} wy (y)
wab kb9 woly) £y
wot wabd waly) waly)

X g

® Since the Precedence Graph has No Cycle, the schedule Sy is Serializable
or Conflict Serializable.

Problem 3: Verify whether the following schedule enforces conflict serializability.

Time

Transaction T,

Transaction T;

Transaction T,

feracd (femii)
WTE =l

tedd tem{¥)
wWrite llemlY):

fessct (bemng b
pEEG lamyr g
write. HemiyY

read lemiX)

wite itamiX');

Sehedule E

regd tany ¥}
read itemiZ)

wile: lemi’)
write |lemls)

Se: ra(2); ra2(y); wa(y); rs(y); rs(z); ru(x); wa(x); wsly); wa(z); ra(x); ra(y); wa(y); wa(x);

X
T1->T2
ri (x) wy(x)
wq (x) rz (x)
wy (x) wa(x)

Yy
T1-> T2
iy waly
wily) fiy
wify) waly)

y 4
T1->T2
£z} waiz)
wilz) iz}
w2} waolz)

X
T1->T3
¥4 W (¢
wilx} 04
e

y
T1-> T3
iy weiy
wily) by
wi-br) waly)

Z
T1>T3
£z wafz)
wilz} iz}
w2} wa(z)

X Yy y
T3->T1 T3> T1 T3-5>T1
£ (4 wy (b rs (y) waly) B w{z)
walx) Fbg wi(y) ri(y) walz} rfz)
wa-bg wabg ws(y) waly) wa{z} wifz)
X Yy z
T3> T2 T3> T2 T3> T2
£ (4 w0 B0 waiy BE w(z
wibg b9 waly} #aiy walz} k)
wa-(¢) welx) wa-{y) wuly) ws{z) wa(z)
X y z
T2->T1 T2->T1 T2-5T1
£204 waig ra (y) wil(y) £ {2 wi {3
wo 0 £ 0d wa(y) rily) wafz} fulz)
wrhg wahd wy (y) wa(y) wofz) wy(z}
X Yy z
2> T3 2> T3 T2-> T3
£ (4 w3 (¢ r (y) wasly) r; (z) ws(z)
wo 0 £ 04 wa(y) ra(y) wz(z) r3(z)
wog wabg wz (y) ws(y) wy (z) ws(z)

Y,z

= Since the precedence has cycles , the schedule Sg is not conflict
serializable or serializable.

CONCURRENCY CONTROL

Concurrency: A problem situation as a single data item is required by the multiple
transactions simultaneously.

Topic 1: Two Phase Locking Techniques for Concurrency Control

Lock: A lock is a variable that prescribe the state of database items.

1.1 Binary Locks

1.
2.

A binary lock can have two states or values locked and unlocked (or) 1 and 0.

States:
Lock(x)=0 indicates that the database item is available.
Lock(x)=1 indicates that the database item is not available.

Operations:
Lock_item(x);
Unlock_item(x):

Note: x is a database item.

= Algorithm:
lock _item(X):
B: i LOCKIX)=0 (*mem-m urlockad *)
fhan LSRN +—1 [" otk the #am ®|
i
begin

wealt {unbl LOCKX) =0
ant the lock manager wakea up the transacton):
gota B
end;
unlock temiX):
LOHOHR A a0 1 unlogk the dem ®)
if any transactiona are walting

then wakeup one of the waiting transactions;

Rules for Binary Locking:

T

pancl ol ¥ |
read_jtem(¥;
pnfock{¥:
Wit ook [¥9;
faad (=)
X =X+
WG (T)
[ETRIfATE 0 S

PwnNnpE

1.2 Shared/Exclusive Lock (or) Read/Write Lock

= Multiple transactions can simultaneously read the data but single transaction exclusively

The read/write operation is preceded by lock operation.

A transaction must be unlocked if it is locked.

A transaction must not issue lock operation once it is locked.
A transaction will not issue unlock if it is not locked.

updates the data while remaining transactions are waiting.

= QOperations:

1. read_lock(x): Multiple transactions are allowed simultaneously to read the data base

item.

2. write_lock(x): A single transaction exclusively holds lock on the database item.

write_lock(x)

T1

Waiting Transactions

read_lock(x

T1 . ())
read_lock(x

— ())
read_lock(x

. ())

read_lock(x)

read_lock(x)

T4

read_lock(x)

T5

T2

T3

T4

T5

T6

T6

3. unlock(x): Release of lock on data base item after completion of transaction.

= Algorithm:

read lock(X):

end

alse begin

oo to B
and!

B: if LOCK(X) = "unlocked"
then begin LOCK(X) «— "read-lockad”;
o ol readdsl) =1

abge i LOCKLY) = “raad-|ocked”
than rin_af readsiX +~— no ol reads{x) +

it b il LOCGK DR = "unlookesd”
and the ook manage! wakas up 1he tranaaction);

write lockiX):
B: it LOCKX) = "unfockad"
then LOCKIX) «— "wrlte-locked”
elke bagin
wall {ntl LDCKX) = “unlocked"
and thia otk manager wakes Jp the Iransachon),
goto B
[x]q]s

unleck (X):
if' LGE X = Ywnitstocked”
e begin L.l.'_.l CRX —"imlocked;
wakoup ang of The waiting rangactions, o any
anid
pleg o LOCKLY] = ‘read-ipcked”
1hen begin
ne_ol_réads(X} = no of readatX) -
if A ol reads(X]=10
thenbegin LOCKEX] = “unlocked’;
waksnn one of e w.'||1|l'|':'| tranazatng, i Ay
enil

mnd:

* Rules for Shared/Exclusive Locking

T

el ookl Y |
read_jtem(¥,
pnfook]{ .
wrlts losk (X,
faad (1=mis),
Bl o L e
T e)
ETRIATE e R

The read/write operation is preceded by lock operation.

A transaction must issue write lock before write operation.
A transaction must be unlocked if it is locked.

A transaction must not issue lock operation once it is locked.
A transaction will not issue unlock if it is not locked.

vkhwneE

Topic 2: Guaranteeing Serializability by Two-Phase Locking

Objective: Concurrency Control.

N

Hw

read_lock(x): Multiple transactions are allowed simultaneously to read the data base

item.

read_lock(x) read_lock(x)

T1 > € T4

- read_lock(x) > x < read_lock(x) =

= read_lock(x) > < read_lock(x) -
\/

write_lock(x): A single transaction exclusively holds lock on the database item.

)
—

write_lock(x) L x

T1

N——

Waiting Transactions | T2 T3 T4 T5 T6

Rule:

T

riacl lock{ Y
remd ftemi ¥
niock]r)
Wit ok X);
faad e
X=X+ Y
WIS (Tarm A)|
ETRIETE R o F

All the locking operations are preceded by the un lock operation.

Growing Phase:
A new lock on data base item can be acquired but none can be released.
Up gradation of lock is possible (Changing read lock to write lock)

Shrinking Phase:
Existing locks can be released but no new locks can be acquired.
Down gradation of lock is possible (Changing write lock to read lock)

.1 Static 2PL (or) Conservative 2PL:

All the locking operations are preceded by the un lock operation.
Read Set & Write Set for the transactions are formulated.

Read Set: Set of all the data items that the transaction reads.
Write Set: Set of all the data items that the transaction writes.

Example: Find Read Set & Write Set for the following Transaction.

Ty Read Set
piacl ook Y X,Y
rEgd_|tem(¥,
untock{¥); Write Set
wrlte ek (X);
raad teml(X): X
X=X+'Y
W Ty)
Lrfackix),

PROBLEMS

Problem 1: Find Read Set & Write Set for the following Transactions.

L)

Time

T

Ts

rispz] ok
raad_iloml)
dcsLr |

wrthie Wik
rerdd et X1

K=K+
witle_ibarlX)
untocklA)

Pyl lesckXh
et ilmmiA)
unfe kX,

write bockl ¥

=R T [
P=¥+5Y

wirts gdam|)

pinbecki)

Read Set

Write Set

X,Y

X,Y

Problem 2: Verify whether the following transaction ensures 2PL.

Tg'

read, lock(X):
read item(X);
unlockiX);
wiite_ lock(Y);
read item(Y):
=X+
write item(¥);
unloak{ ¥);

Result: The Transaction T, ensure 2PL since all locking operations precedes un lock
operations.

Problem 3: Verify whether the following transactions ensures 2PL.

(e) | 7, T,
raz lock K],
raad_ilmi ¥
sy |
prael JesekiXh
Iﬂilﬂ_lllf:nl'.:l'_l
unbask A,
Tume wiile bookl Y],
mead itemil
V=5
wirpts gt)
pinskiE) !
e ik
read itemt X,
{ K=K+
Y witle_ilgriAg]
urbocklX)

Result: The Transaction T, and T, ensure 2PL since all locking operations precedes un lock
operations.

CONCURRENCY CONTROL BASED ON TIME STAMP ORDERING

(i) Time Stamp Ordering Algorithm (TO): The Timestap ordering protocolis a protocol used to

sequence the transactions based on their Timestamps.
= Each transaction must have time stamp when it gets started.
= Time Stamp: The unique identification number assigned for transaction.

= The time stamp of T is also called as TS (T).

Operations:
= read_TS(X): The read timestamp of item X is the largest timestamp among all the timestamps of

transactions that have successfully read item X.
= write_TS(X): The write timestamp of item X is the largest of all the timestamps of transactions that

have successfully written item X.

read_TS(x): write_TS(x): X:
100 100 10
101 101 11
102 102 12
TS(T1)=100 TS(T2)=101 TS(T3)=102
T1 T2 T3
read_item(x); 10 read_item(x); 11 read_item(x); 12
X:=x+1; 11 X:=x+1; 12 X:=x+1; 13
write_item(x); 11 write_item(x); 12 write_item(x); 13

(ii) Basic Time Stamp Ordering Algorithm: The order of transaction is nothing but the

ascending order of the transaction creation.
= Every transaction is issued a timestamp based on when it enters the system. Suppose, if an old

transaction T;has timestamp TS(T)), a new transaction T;is assigned timestamp TS(T;) such
that TS(T;) < TS(T)).

read_TS(x): write_TS(x): X:
100 100 10
101 101 11
99 12
101 11
TS(T1)=100 TS(T2)=101 TS(T3)=99
T1 T2 T3
read_item(x); 10 read_item(x); 11 read_item(x); 12
X:=x+1; 11 X:i=x+1; 12 X:=x+1; 13
write_item(x); 11 write_item(x); 12 write_item(x);
aborted;

Condition 1:

= Whenever a transaction T issues a write_item(X) operation, the following is checked:

99> 101

operation.

b. If the condition in part (a) does not occur, then execute the write_item(X) operation of T and

set write_TS(X) to TS(T).
Condition 2:

101>99
a. Ifread_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and reject the

Whenever a transaction T issues a read_item(X) operation, the following is checked:

101 >99

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation.

101<=99

b. If write_TS(X) <= TS(T), then execute the read_item(X) operation of T and set read_TS(X) to the

larger of TS(T) and the current read_TS(X)

Condition 3:

Cascading Rollback: If transaction T is aborted and rolled back, any transaction T; that may have used a

value written by T must also be rolled back.

X:
read_TS(x): write_TS(x): 10
100 100 i
101 101 2
102 102 i3
TS(T1)=100 TS(T2)=101 TS(T3)=102
T1 T2 T3
read_item(x); 10 read_item(x); 11 read_item(x); 12
X:=x+1; 11 X:=x+1; 12 X:=x+1; 13
write_item(x); 11 write_item(x); 12 write_item(x); 13
Failed Failed Failed;

(iii) Strict Time Stamp Ordering Algorithm (TO): Every transaction must commit when it exits.

read_TS(x): write_TS(x): X:

100 100 10

101 101 11

102 102 12

13

TS(T1)=100 TS(T2)=101 TS(T3)=102
T1 T2 T3
read_item(x); 10 read_item(x); 11 read_item(x); 12
X:=x+1; 11 X:=x+1; 12 X:=x+1; 13
write_item(x); 11 write_item(x); 12 write_item(x); 13
commit; commit; commit;

A transaction T that issues a read_item(X) or write_item(X) such that TS(T) > write_TS(X) has its
read or write operation delayed until the transaction T that wrote the value of X has committed

or aborted.

Thomas’s Write Rule: This is modification of the basic TO algorithm. When the current transaction

102 > 101

(TS(T)) fails then continue the read operation and abort write operation.

102 > 102

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

102 > 102

2. If write_TS(X) > TS(T), then do not execute the write operation but continue processing.

read_TS(x): write_TS(x): X
100 100 10
101 101 11
102 102 12
101
TS(T1)=100 TS(T2)=101 TS(T3)=102
T1 T2 T3
read_item(x); 10 read_item(x); 11 read_item(x); 12
X:=x+1; 11 X:=x+1; 12 X:=x+1; 13
write_item(x); 11 write_item(x); 12 write_item(x); 13
commit; commit; Failed;

1.4 Multiversion Concurrency Control Techniques

= Version: State of database item after successful updation.

read_TS(x): write_TS(x): X:
100 100 10
101 101 11-xi First Version
102 102 12 xi+1 Second Version
13-xi+2 Third Version
TS(T1)=100
(T1) TS(T2)=101 TS(T3)=102
T1
read_item(x); 10 T2 T3
= ! read_item(xi); 11 read_item (xi+1); 12
X:=x+1; 11 . - -
write_item(x); 11 Xi:=xi+1; 12 X:=(xi+1)+1; 13
~ ! write_item(xi); 12 write_item((xi+1)+1); 13
commit; . .
commit; commit;

= Temporal Database: Database keeps track of multiple versions of database items.
E.g. xi, xi+1, xi+2, xi+3 etc.

= Advantage: Multiple versions of database items are maintained so that concurrency is avoided to
certain extent.

= Operations:
1. read_TS(Xi): The read timestamp of Xi is the largest of all the timestamps of transactions that have
successfully read version Xi.

2. write_TS(Xi): The write timestamp of Xi is the timestamp of the transaction that wrote the value of
version Xi.

= Serializability in Multiversion Concurrency Control:

To ensure the serializability the follow rules are used

1. If transaction T issues a write_item(X) operation, and version i of X has the highest write_TS(Xi) of
all versions of X that is also less than or equal to TS(T), and read_TS(Xi) > TS(T), then abort and roll
back transaction T; otherwise, create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has the highest
write_TS(Xi) of all versions of X that is also less than or equal to TS(T); then return the value of Xi
to transaction T, and set the value of read_TS(Xi) to the larger of TS(T) and the current
read_TS(Xi).

= Multiversion Two-Phase Locking Using Certify Locks:

1. Compatability table for read/write locks:

Mead Write
Reacl Yes MNo
Write Mo Mo
Case 1: Case 2:
read_lock(xi)
T1 2 T read_lock(xi) .
read_lock(xi) X1 XI
T2 P
T2 Cannot impose write_lock(x)
Case 3: Case4:
write_lock(xi) . write_lock(xi
Tl > Xi T2 Ll > xi
T Cannot impose read_lock(x) T1 Cannot impose read_lock(x)

2. Compatability table for read/write/certify locks:

Certify Lock (or) Notify Lock: Certify lock has highest priority. It is the monarch lock where other locks

can not be done.

Hioai Winte Cartify \/
write_lock(xi) | .
Read Yees Yos Mo T2 >| xi
Wi Yo No Ma T write_lock(xi+1) >| xi+1
Certify hin {5 Me 3 write_lock(xi+2) > | xie2

N——"

DISTRIBUTED DATABASE CONCEPTS

TOPIC1: DISTRIBUTED DATABASE CONCEPTS

= Centralized database: Centralized database is a software system that creates & access data base at

central site
= Disadvantage of central site: If central site fails, database is not available for other sites in the
network
O] >
Central Site
(Chiocago)
Site 1 Site 3
(San Francisco) T~ — | (Dallas)

Communication
Network

Site 2 /

(Texas)

\ Site 4

(NewYork)

Figure 1. Centralized Database Architecture.

= Distributed Database Management System (DDBMS): Distributed database management system is a
software system that creates & access the distributed database over a computer network.

1.1 DIFFERENCES BETWEEN DDB AND MULTIPROCESSOR SYSTEMS

= Connection of database nodes over a computer network: There are multiple computers, called sites
or nodes. These sites must be connected by an underlying communication o transmit data and
commands among sites.

= Logical interrelation of the connected databases: It is essential that the information in the databases
be logically related.

= Absence of homogeneity constraint among connected nodes: It is not necessary that all nodes be
identical in terms of data, hardware, and software.

1.2 TRANSPARENCY

(a) Data Organization
Transparency (or)
Distribution or
Network Transparency

This refers the user can access any site across the network.

= [ocation Transparency: The commands used to perform a task is independent
of the location of data and location of system across the network.

= Naming Transparency: The name of the objects can be accessed
unambiguously without additional specifications.

(b) Replication

Copies of data may be stored at multiple sites for better availability, performance,

Transparency & reliability.
(c) Fragmentation Two types of fragmentation are possible
Transparency 1. Horizontal Fragmentation: Distributes the relation into set of tuples (rows).
2. Vertical Fragmentation: Distributes the relation into sub relations where each
sub relation is defined by a subset of the columns of the original relation.
I-'-I-'I'r Urrihubeisy mro-repEcsiion
ginon) deshibolke daiabuises EMPLOYEES Al
EMPLOYEES Son Froncisco PROIECTE all
anel Leos Argnales WIORKS O Al EMPLCYEES (Mew Yk
PREWECTS San Farcisco I 1 FROIECTS Al
r'.hu.;_a,_-l.-;
WORKS OM San Fraciscn | IHzadguartars| | WIORKS O MNew York
nirgslpgiaig I - armmloyeel
e 1 S U— B e T |
San Frrympdi i_ ; | 4 | Moiw Yok |
= e Laommunmaticns 1 —== . :
- Mok —
| Los Angeiss | _ .- | Alanta |
EMPLOYEES Los Angolan EMPLOYWEES Aflanfa
PROJECTS Lde Angilas Hhd PRCIECTS Adlaimla
S Frawicimic WORKS OGN Allantd
WORHS ON Lus Anguil= srnrfloymes

nrnF-In_:.'l,'.-n-u

1.3 AUTONOMY

Figure 2. A Truly Distributed Database Architecture

= Autonomy determines the extent to which individual nodes or databases in a connected Distribute
Data Base can operate independently.
= A high degree of autonomy is desirable for increased flexibility and customized maintenance of an

individual node.

= Autonomy can be applied to design, communication, and execution.

1. Design Autonomy: Design autonomy refers to independence of data model usage and transaction
management techniques among nodes.

2. Communication Autonomy: Communication autonomy determines the extent to which each node

can decide on sharing
3. Execution Autonomy:

of information with other nodes.
Execution autonomy refers to independence of users to act as they please.

1.4 RELIABILITY & AVALIABILITY

Reliability: Reliability is broadly defined as the probability that a system is running (not down) at a
certain time point.

Availability: The probability that the system is continuously available during a time interval.

1.5 ADVANTAGES OF DISTRIBUTED DATABASE

1.

4.

Improved ease and flexibility of application development.
Increased reliability and availability

Improved performance
Data localization reduces the contention for CPU and I/O services and reduce access delay.

Local queries & transactions accessing data at a single site have better performance because of the
smaller local databases.

Inter query & Intra query parallelism can be achieved by executing multiple queries at different
queries at different sites or by breaking up query into a number of sub queries that execute in

parallel.

Easier expansion.

1.6 FUNCTIONS OF DDBMS

Keeping Track of Data Distribution: The ability to keep track of the data distribution, fragmentation,
and replication by expanding the DDBMS catalog.

Distributed Query Processing: The ability to access remote sites and transmit queries and data
among the various sites via a communication network.

Distributed Transaction Management: The ability to access remote sites and transmit queries and
dataamong the various sites via a communication network.

Replicated Data Management: The ability to decide which copy of a replicated data item to access.

Distributed Database Recovery: The ability to recover from individual site crashes and from new
types of failures, such as the failure of communication links.

Security: Distributed transactions must be executed with the proper management of the security of
the data and the authorization/access privileges of users.

Distributed Directory (Catalog) Management: A directory contains information
(metadata) about data in the database. The directory may be global for the entire DDB, or local for
each site.

TOPIC 2: DATA FRAGMENTATION, REPLICATION, AND ALLOCATION TECHNIQUES FOR
DISTRIBUTED DATABASE DESIGN VIMP

= Fragment: Subset of table.
2.1 DATA FRAGMENTATION

= Fragmentation is the task of dividing a table into a set of smaller tables.
= The subsets of the table are called fragments.

= Fragmentation can be of three types: horizontal, vertical, and hybrid.

EMPLOYEE
EMPNO ENAME SALARY
1 JOHN 3400
2 MARTIN 4300
3 ELICA 4500
4 MILLER 3400

2.1.1 Horizontal Fragmentation: A horizontal fragment of a relation is a subset of the tuples in that
relation. The tuples that belong to the horizontal fragment are specified by a condition on one or more

attributes of the relation.

EMPLOYEE
EMPNO ENAME SALARY
1 JOHN 3400
2 MARTIN 4300

2.1.2 Vertical Fragmentation: Vertical fragmentation divides a relation “vertically” by columns. A

vertical fragment of a relation keeps only certain attributes of the relation.

EMPLOYEE
EMPNO ENAME
1 JOHN
2 MARTIN
3 ELICA
4 MILLER

2.1.3 Mixed Fragmentation: We can intermix

fragmentation.

EMPLOYEE
EMPNO ENAME
1 JOHN
2 MARTIN

the two types of fragmentation, yielding a mixed

2.2 DATA REPLICATION AND ALLOCATION

i = =
(&) e '| Contral Site. | [~ -~
DBy | (Chicaga) | B8;
Sito e | Site
[San-Francisoo) |—___ ' = iNew York)
T Caommidnication=) L
| MNiatwork . ;
Site = : — it
(Los Angelas) — [Atlanta)

= Data Replication is the process of storing data in more than one site or node.

= |tis useful in improving the availability of data.

= |t is simply copying data from a database from one server to another server so that all the users can
share the same data without any inconsistency.

= The most extreme case is replication of the whole database at every site in the distributed system,
thus creating a fully replicated distributed database.

= The other extreme from full replication involves having no replication that is, each fragment is

stored at exactly one site. This is also called non redundant allocation.

TOPIC 3: LOCKS FOR CONCURRENCY CONTROL IN INDEXES

= Types of Locks for Concurrency Control in indexes are IX (Intension Exclusive), IS (Intension Shared),
Shared (S), Exclusive (X).

= All the locking operations must precede with unlock operations in the same order and indexes.

Figure 22.7 :ﬂl}
& yrarulaiity, hismnchy A
i illustraling mulliphe *

frranubarity Jevel

W e —
e

lecking, _::)
| |
1 j A 4 1
Py () P GO P
—— T]
' LA | vy P T 0y \
P = figy fugp *** ey 70 R o P ot =" P Faig) gy
T T, T,
IX{db)
X{f;)
X {dlb)
IS{db)
1S{h)
1S{0y1)
Xl ,)
Xlry)
%41,
Xipya)
Siryy)
X{F,)
IX(p)
Xl
unlocklry)
unlock(p,,)
unlocikif,}
S({f)
unlock(p;.)
unim::k{m
unloek{db)
unlock(r, .}
unlock(p,)
unleckif,)
unlockdb)
un[n-nk{rnlj
unlock(g,)
unloak(f,)
unlock{f.)
unlock({dh)

TOPIC 4: QUERY PROCESSING AND OPTIMIZATION

Query Processing and Optimization determines the efficient way to execute a query with

different possible query plans.

It cannot be accessed directly by users once the queries are submitted to the database
server or parsed by the parser.

A query is passed to the query optimizer where optimization occurs.

Main aim of Query Optimization is to minimize the cost function i.e. I/O Cost, CPU Cost,
Communication Cost.

It defines how an RDBMS can improve the performance of the query by re-ordering the
operations.

It is the process of selecting the most efficient query evaluation plan from among various
strategies if the query is complex.

It computes the same result as per the given expression, but it is a least costly way of

generating result.

Advantages:

It requires less cost per query.
It gives less stress to the database.
It provides high performance of the system.

It consumes less memory.

A distributed database query is processed in stages as follows:

1.
2.

Query Mapping: Mapping joins multiple source tables.

Localization: Data localization is the practice of keeping data within the region it originated from. For
example, if an organization collects data in the UK, they store it in the UK rather than transferring it
to another country for processing.

Global Query Optimization: The tables required in a global query have fragments distributed across
multiple sites. The local databases have information only about local data. The controlling site uses
the global data dictionary to gather information about the distribution and reconstructs the global

view from the fragments.

Distributed Query Optimization at Global Level

Distributed Execution Manager at Global Level

Local Execution Local Execution Local Execution
Manager Manager Manager
Local Query Local Query Local Query
Optimization Optimization Optimization

4.1 Data Transfer Costs of Distributed Query Processing
= Suppose that the EMPLOYEE and DEPARTMENT relations are distributed at two sites.
= Consider the query Q: For each employee, retrieve the employee name and the name of the

department for which the employee works. This can be stated as follows in the relational algebra:

Q R["I'IiI'I'-H.LI'IEI.n"'-E,D-I'IEI'I'IEI:' EMPLOYEE 4 Crnc=Dimimbsar DEPARTMENT)
Slte 1:

EMPLOYEE

! Frigms | Tfimy | Lrsirms | Siah | Boats | Addiees | Gex | Saliny. | Bupne gan | Dy |
18000 roc orfds

eaon record 5100 byvias long

Sy fiedof e B byfes png Frame fild s 15 bytey long

Dina field = 4 bytas lorg Enmme-field iz 15 bytes og

= The size of EMPLOYEE relation is 10,000 x 100 = 1,000,000 bytes.

Site 2:
DEPARTMENT
| Dname Dnumibe; | Mg g0 | Mor_start_dato

e e L

100 recards

ol roeoord 18 35 bytas ong

Onurnber freld is 4 bytes long Dname field is 10 birtes long
Megr_ssn field is 9 byles long

= The size of DEPARTMENT relation is 100 x 35 = 3,500 bytes.

= The size of the attributes Fname, Lname and Dname is 40 bytes.

There are three simple strategies for executing this distributed query:

1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result site, and perform the join
at site 3. In this case, a total of 1,000,000 + 3,500 = 1,003,500 bytes must be transferred.

2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send the result to site 3. The
size of the query result is 40 x 10,000 = 400,000 bytes, so 400,000 + 1,000,000 = 1,400,000 bytes
must be transferred.

3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and send the result to site 3.
In this case, 400,000 + 3,500 = 403,500 bytes must be transferred.

We choose strategy 3 for optimization criteria.

TOPIC 5: TRANSACTION MANAGEMENT IN DISTRIBUTED DATABASES
= Global Transaction Manager is introduced for supporting distributed transactions.
= Global Transaction Manager coordinate the execution of database operations like
BEGIN_TRANSACTION, READ or WRITE, END_TRANSACTION, COMMIT_TRANSACTION, and
ROLLBACK (or ABORT) across multiple sites.
= The Global Transaction Manager stores bookkeeping information related to each transaction, such
as a Unique Identifier, Originating Site, Name, and so on.
= For READ operations, it returns a local copy if valid and available.
= For WRITE operations, it ensures that updates are visible across all sites containing copies (replicas)
of the data item.
= For ABORT operations, the manager ensures that no effects of the transaction are reflected in
any site of the distributed database.
= For COMMIT operations, it ensures that the effects of a write are persistently recorded on all
databases containing copies of the data item.
= Atomic termination (COMMIT/ ABORT) of distributed transactions is commonly implemented

using the two-phase commit protocol.

5.1 ACID properties of Transaction

Atomicity

Consistency

Transaction

Isolation

Durability

= Atomicity: The transaction is atomic unit of processing i.e. either performed entirely or none
performed at all.

= Consistency: A correct execution of transaction must take the database item from one consistent
state to another consistent state.

= |solation: A transaction is isolated from other transactions when multiple transactions are accessing
the same data item concurrently in a serial or interleaving fashion.

= Durability: The changes applied to the database item by a commited transaction must persistent in

the database.

l cIEent] I coordinator | j FB

bEgi n 7

[| --.-_---——_-_.L
H " | 4 gl
¢ ... usual transactipn execution... || o 11
>
commit 7;
-\ELE;FEEM_-
0\kt —-_.___-_-—_-‘}

10

5.2 Two Phase Commit Protocol

If transaction updates data on multiple nodes, this implies

Either all nodes must omit, or all nodes must abort

If an node crashes, all must abort

5.3 Three-Phase Commit Protocol

The biggest drawback of 2PC is that it is a blocking protocol. Failure of the coordinator blocks all

participating sites, causing them to wait until the coordinator recovers.

This can cause performance degradation, especially if participants are holding locks to shared

resources. Other types of problems may also occur that make the outcome of the transaction

nondeterministic.

]

Coordinator Participant
= Vole request
i 5 %
7 g Yoo Vaig - ———1
=] -~
ﬂ? Prapara ToCommil
-—‘_‘_'_'_'_‘—.I-
(P4 p ad —
S
o - — Cn;rni'r dgc:&ann
@, i
]
=
e
L
|

11

5.4 Operating System support for Transaction Management

= Semaphore: Semaphore in OS is an integer value that indicates whether the resource required by
the process is available or not. The value of a semaphore is modified by wait () or signal () operation
where the wait () operation decrements the value of semaphore and the signal () operation
increments the value of the semaphore.

= OS supports semaphore to guarantee mutually exclusive access to shared resources.

= Specialized hardware support for locking can be provided.

= Common transaction support operations can be supported.

TOPIC 6: CONCURRENCY CONTROL AND RECOVERY IN DISTRIBUTED DATABASES

= For concurrency control and recovery purposes, numerous problems arise in a distributed DBMS
environment that are not encountered in a centralized DBMS environment. These include the
following.

Dealing with multiple copies of the data items.

Failure of individual sites.

Failure of communication links.

Distributed commit.

v R wN e

Distributed deadlock.

6.1 Distributed Concurrency Control Based on a Distinguished Copy of a Data Item

Primary Site Technique: In this method, a single primary site is designated to be the coordinator site for
all database items. Hence, all locks are kept at that site, and all requests for locking or unlocking are sent
there.

Primary Site with Backup Site: In this method, all locking information is maintained at both the primary
and the backup sites. In case of primary site failure, the backup site takes over as the primary site, and a
new backup site is chosen.

This simplifies the process of recovery from failure of the primary site, since the backup site takes over
and processing can resume after a new backup site is chosen and the lock status information is copied to

that site.

12

Primary Copy Technique:

This method attempts to distribute the load of lock coordination among various sites by having the
distinguished copies of different data items stored at different sites. Failure of one site affects any
transactions that are accessing locks on items whose primary copies reside at that site, but other
transactions are not affected. This method can also use backup sites to enhance reliability and
availability.

Choosing a New Coordinator Site in Case of Failure:

Whenever a coordinator site fails in any of the preceding techniques, the sites that are still running
must choose a new coordinator.

If a backup site X is about to become the new primary site, X can choose the new backup site from
among the system’s running sites. However, if no backup site existed, or if both the primary and the
backup sites are down, a process called election can be used to choose the new coordinator site.

In this process, any site Y that attempts to communicate with the coordinator site repeatedly and
fails to do so can assume that the coordinator is down and can start the election process by sending
a message to all running sites proposing that Y become the new coordinator. As soon as Y receives a
majority of yes votes, Y can declare that it is the new coordinator. The election algorithm itself is
complex, but this is the main idea behind the election method. The algorithm also resolves any
attempt by two or more sites to become coordinator at the same time.

6.2 Distributed Concurrency Control Based on Voting:

If a lock request is sent to all sites that includes a copy of the data item. Each copy maintains its own
lock and can grant or deny the request for it.

If a transaction that requests a lock is granted that lock by a majority of the copies, it holds the lock
and informs all copies that it has been granted the lock.

If a transaction does not receive a majority of votes granting it a lock within a certain time-out
period, it cancels its request and informs all sites of the cancellation.

TOPIC7: TYPES OF DISYRIBUTED DATBASES

7.1 FEDERATED DATABASE MANAGEMENT SYSTEMS

A Federated Database System (FDBS) is a collection of cooperating database systems that are

autonomous and possibly heterogeneous.

The type of heterogeneity present in FDBSs may arise from several sources.

TYPES OF HETEROGENEITY:

1

Differences in Data Models:

13

Data is represented using different data models. (Hierarchical, Relational, Network & Object
Oriented data models).

Differences in Constraints:

The global schema must also deal with different constraints. (Not null, Unique, Primary Key, Foreign
Key, Check)

ER models are represented as referential integrity constraints in the relational model.

Triggers may have to be used to implement certain constraints in the relational model.

Differences in Query Languages:

Even with the same data model, the languages and their versions vary. For example, SQL has
multiple versions like SQL-89, SQL-92, SQL-99, and SQL: 2008, and each system has its own set of

data types, comparison operators, string manipulation features, and so on.

.1.2 SEMANTIC HETEROGENEITY.

Semantic heterogeneity occurs when there are differences in the meaning, interpretation, and
intended use of the same or related data.

The universe of discourse from which the data is drawn.

For example, for two customer accounts, databases in the federation may be from the United States
and Japan and have entirely different sets of attributes about customer accounts required by the
accounting practices. Currency rate fluctuations would also present a problem. Hence, relations in
these two databases that have identical names-CUSTOMER or ACCOUNT-may have some common
and some entirely distinct information.

Representation and Naming.

The representation and naming of data elements and the structure of the data model may be pre
specified for each local database.

The understanding, meaning, and subjective interpretation of data.

This is a chief contributor to semantic heterogeneity.

Transaction and Policy Constraints.

These deal with serializability criteria, compensating transactions, and other transaction policies.

Derivation of Summaries.

14

= Aggregation, summarization, and other data processing features and operations supported by the

system.

TOPIC 9: DISTRIBUTED DATABASE ARCHITECTURES IMP

9.1 PARALLEL VERSUS DISTRIBUTED ARCHITECTURES

There are two main types of multiprocessor system architectures that are commonplace:

= Shared Memory (tightly coupled) Architecture: Multiple processors share secondary (disk) storage

and also share primary memory.

Shared Disk (loosely coupled) Architecture: Multiple processors share secondary (disk) storage but

each has their own primary memory.

{5

Mgy

Computbes Systemn |

Compular Syatam 2
CPU —| %D_E_.I

Memory

Swilch

Campter Syaterm o

E&—H

MWH'F -

Fig 1. Shared nothing architecture.

= | — |7 Caontral Site _[“' =
DH, (Chicaga) | B8,
Sito r— Sitp
[Sanfrancisoo] | , =4 iiNew York)
= r Commiunications "'l' —
) Niatwork e
Site =] 3 ; = Site
(Los Angelas) S = [Atiants)

15

Fig 2. A networked architecture with a centralized database at one of the sites.

{c) °}
Sito B
g - A
A S Y e o A
—{ Shes | -~ T | Site 1
— r Lammunications T S
— Mestvark ' ——
P = e _F.'| _-.--__"" — p——
Sita 3 Nl P Site 2

Fig 3. A truly distributed database architecture

9.2 GENERAL ARCHITECTURE OF PURE DISTRIBUTED DATABASES

In this section we discuss both the logical and component architectural models of a DDB.

9.2.1 SCHEMA ARCHITECTURE OF DISTRIBUTED DATABASES.

Usar Lhiar Figure 254
Erhermarchechie of
dimtThdud dilabazes

Exsgrmal Extathil

Wiriw / Wiy

3

Gileka| Corsentonl Sehamp (GEE)
Local Congoptal Schemi (LGE) |eeesvassnaed] Lochl Conoopiunt Sohoma (LS
l |
L
Loyl Intstrmsl Sohama LG P — Lol |rarmil Schama LIS
Eoing
s Chartn
——
Site 1 Gites 2 1o n=1 Sh=n

Fig 4. Schema Architecture of Distributed Database.

16

= [logical Internal Schema (LIS) specifies physical organization details at that particular site.
= [logical Conceptual Schema (LCS) specifies the logical organization of data at each site is specified by
the local conceptual schema

= The Global Conceptual Scheme (GCS) specifies provides network transparency.

9.2.2 COMPONENT ARCHITECTURE OF DISTRIBUTED DATABASES.

User

:

Interactive Global Cluery

¥
Global Query Compiler

Y
Global Query Optimizer

Y
Global Transaction Manager

“ l

Local Transaction Manager | sssssscassennas

Local Trapsaction Manager

Y Y

Local Local Query Local Local Cluery
System [Translation |ssesscisssssssss| System [Translation
Catalog and Execution Catalog and Execution

' '

Stored
Data

Stored
Data

N

Figure 255
Companent architecture
of distributed databacses,

Fig 5. Component architecture of distributed database.
= Query Compiler: Inspects the process of query compilation.
= Query Optimizer: The optimizer selects the minimum cost for execution.

= Transaction Manager: Coordinates and executes the transactions.

17

= System Catalog: The system catalogue stores meta-data including the schemas of the databases.

9.2.3 FEDERATED DATABASE SCHEMA ARCHITECTURE

= Federated Schema is an integration of multiple export schemas.

) i
External External External
schema schema schema
e =4
| |
|
~
Federated Federated
schema schema
. A
| : \
|
| | —
Export Export Export
schema schema schema
l | [
—)
Component Component
schema schema
L
— 1
Local Local
L schema schema
| |
Component Component
DBS DBS

Fig 6. The five-level schema architecture in a federated database system (FDBS).

= Component DBS: Database control system.

= Local schema: Conceptual schema.

= Component schema: Translates the local schema into common data model.

= Export schema: Subset of component schema.

= Federated schema: The federated schema is the global schema or view, which is the result of

integrating all the shareable export schemas.

= External schema: External schemas define the schema for a user group or an application.

9.2.4 THREE-TIER CLIENT-SERVER ARCHITECTURE

In the three-tier client-server architecture, the following three layers exist:

Client
User inferface or pressntation Her

(Web browsar, HTT'.-'I_L,.IavaEJ:r_ipl, Visual Baszic, . .)

f

HT TP Prolocol

#

Application server
Application (business) logic tier
(Application program, JAVA, CICH++ C# ..)

!

ODEC, IDBC, SAL/CLI, SAL

'

Database server

Clusry and transachon processing tier
[Daiabase access, SAL, PSM, XML, ..)

Fig 7. The three tire client server architecture.
1. Presentation Layer (Client):
= This provides the user interface and interacts with the user.
= The programs at this layer present web interfaces or forms to the client in order to interact with the
application.
= Web browsers are often utilize the languages like HTML, XHTML, CSS, Java, JavaScript and others to

perform client side validations.

19

2. Application Layer (Business Logic):

= Application logic is written in this phase.

= Queries can be formulated based on user input from the client.

= Query results can be formatted and sent to the client for presentation.

= Additional application functionality can be handled such as security checks, identity verification, and
other functions.

= The application layer can interact with one or more databases or data sources as needed by
connecting to the database using ODBC, JDBC, SQL/CLI, or other database access techniques.

3. Database server.
= This layer handles query and update requests from the application layer, processes the requests,

and sends the results.

= Usually SQL is used to access the database if it is relational or object-relational and stored
database procedures may also be invoked.

Query results (and queries) may be formatted into XML when transmitted between the application
server and the database ser

TOPIC 10: VALIDATION (OPTIMISTIC) CONCURRENCY CONTROL TECHNIQUES

= |n all the concurrency control techniques we have discussed so far, a certain degree of checking is
done before a database operation can be executed. For example, in locking, a check is done to
determine whether the item being accessed is locked.

= |ntimestamp ordering, the transaction timestamp is checked against the read and write timestamps
of the item. Such checking represents overhead during transaction execution, with the effect of
slowing down the transactions.

= |n optimistic concurrency control techniques, also known as validation or certification techniques,
no checking is done while the transaction is executing.

= |n this scheme, updates in the transaction are not applied directly to the database items until the
transaction reaches its end.

= During transaction execution, all updates are applied to local copies of the data items that are kept
for the transaction.

= At the end of transaction execution, a validation phase checks whether any of the transaction’s

updates violate serializability.

20

= |f serializability is not violated, the transaction is committed and the database is updated from the
local copies; otherwise, the transaction is aborted and then restarted later.

There are three phases for this Concurrency Control Protocol:

1. Read phase: A transaction can read values of committed data items from the database. However,
updates are applied only to local copies (versions) of the data items kept in the transaction workspace.
2. Validation phase: Checking is performed to ensure that serializability will not be violated if the
transaction updates are applied to the database.

3. Write phase: If the validation phase is successful, the transaction updates are applied to the database;
otherwise, the updates are discarded and the transaction is restarted.

= The validation phase for Ti checks that, for each such transaction Tj that is either committed or is in

its validation phase, one of the following conditions holds:

1. Transaction T;completes its write phase before T; starts its read phase.

2. Tistarts its write phase after Tjcompletes its write phase, and the read_set of T; has no items in
common with the write_set of T;.

3. Both the read_set and write_set of T; have no items in common with the write_set of Tj, and T;

completes its read phase before Ti completes its read phase.

read_TS(x): write_TS(x): X
100 100 10
101 101 11
12
TS(T;)=100 TS(Ti)=101 Read Set of T; Read Set of T;
T; T
read_item(x); 10 read_item(x); 11 X X
x:=x+1; 11 X:=x+1; 12 : :
write_item(x); 11 write_item(x); 12 Write Set of T; Write Set of T;
commit; commit; « .

21

CHAPTER 1
WHY NoSQL?

1.1 WHY NOSQL-INTRODUCTION

For more than four decades people are using relational databases as a primary data
storage mechanism.

Structured Query Language (SQL) happens to be the more structured, rigid way of storing
data, like a phone book. They are designed for reliable transactions and follow a proper
structure to store data in a very organized manner.

Relational databases can handle thousands of queries in just a fraction of seconds but
this is possible at the small scale applications.

When the application grows relational databases start facing the scalability issue. If we
talk about the big gigantic website (such as Facebook, Google, Amazon) that throws
billions or trillions of queries within a small amount of time then relational databases get
failed in handling the queries.

To get rid of this limitation in relational databases NoSQL comes in the picture that
mainly focuses on high operations speed and flexibility in storing the data.

Let’s discuss 5 important features of NoSQL databases.

Multi-Model

Relational databases store data in a fixed and predefined structure. It means when you
start development you will have to define your data schema in terms of tables and
columns. You have to change the schema every time the requirements change. This will
lead to creating new columns, defining new relations, reflecting the changes in your
application, discussing with your database administrators, etc.

NoSQL database provides much more flexibility when it comes to handling data. There
is no requirement to specify the schema to start working with the application. Also, the
NoSQL database doesn’t put a restriction on the types of data you can store together. It
allows you to add more new types as your needs change. These all are the reasons
NoSQL is best suited for agile development which requires fast implementation.
Developers and architects choose NoSQL to handle data easily for various kinds of agile
development application requirements.

Easily Scalable

The primary reason to choose a NoSQL database is easy scalability. Relational databases
can also be scaled but not easily and at a lower cost. Relational databases are built on the

1

concept of traditional master-slave architecture. Scaling up means upgrading your
servers by adding more processors, RAM, and hard-disks to your machine to handle more
load and increase capacity. You will have to divide the databases into smaller chunks
across multiple hardware servers instead of a single large server. This s
called sharding which is very complicated in relational databases. Replacing and
upgrading your database server machines to accommodate more throughput results in
downtime as well. These things become a difficulty for developers and architects.

NoSQL database built with a masterless, peer-to-peer architecture. Data is partitioned
and balanced across multiple nodes in a cluster, and aggregate queries are distributed by
default. This allows easy scaling in no time. Just executing a few commands will add the
new server to the cluster. This scalability also improves performance, allowing for
continuous availability and very high read/write speeds.

Distributed

Relational databases use a centralized application that is location-dependent (e.g. single
location), especially for write operations. On the other hand, the NoSQL database is
designed to distribute data on a global scale.

It uses multiple locations involving multiple data centers and/or cloud regions for write
and read operations. This distributed database has a great advantage with master class
architecture. You can maintain continuous availability because data is distributed with
multiple copies where it needs to be.

Redundancy and Zero Downtime

NoSQL is also designed to handle hardware failures. Hardware failure is a serious concern
while building an application. Rather than requiring developers, DBAs, and operations
staff to build their redundant solutions, it can be addressed at the architectural level of
the database in NoSQL. If we talk about Cassandra then it uses several heuristics to
determine the likelihood of node failure. Riak follows the network partitioning approach
(when one or more nodes in a cluster become isolated) and repair itself.

The masterclass architecture of the NoSQL database allows multiple copies of data to be
maintained across different nodes. If one node goes down then another node will have a
copy of the data for easy and fast access. This leads to zero downtime in the NoSQL
database. The down time of resource is almost zero.

Big Data Applications

NoSQL can handle the Massive Amount of data very quickly and that’s the reason it is
best suited for the big data applications.

= NoSQL databases ensure data doesn’t become the bottleneck when all of the other
components of your server-side application are designed to be faultless and fast.

1.2 THE VALUE OF RELATIONAL DATABASES (OR) ADVANTAGES OF
RELATIONAL DATABASES IMP

1.2.1 Getting at Persistent Data

= Data Persistence is a concept that defines a data is going to be saved on media, and
therefore you can recover it even if your computer process is deletes it or corrupts it.

= Traditional Relational Database Management Systems (RDBMS) store persistent data in the
form of records and tables. The records are permanent in the database even hardware or
software changes.

Application

1.2.2 Concurrency Control

= Concurrency: A problem situation as a single data item is required by the multiple
transactions simultaneously.

= |n a Database Management System (DBMS), concurrency control manages simultaneous
access to a database. It prevents two users from writing the same data item simultaneously
and also serializes transactions for backup and recovery.

T

. HEpsls
= - Writes
Transsistion
: Martalst Sehmdulir 3

T Controls:
fran=aciions

Controls
sEeaution of
DR calls

1.2.3. Integration

= Inshared integration multiple applications store their data in a single database.

External
Applications

i
E Data
@ Sl DATA ENTERPRISE
0 @ A INTEGRATION DATA
Ll
© Enterprise WAREHOUSE
3 Applications
h
£
Unstructured

Files

Cloud Applications Capritrfahid 8200 Athern TT Sadutioens
& Databases

1.2.4 A Standard Model

= Developers and Database Professionals can learn the Basic Relational Model and apply it in
many projects.

= Although there are differences between different relational databases, SQL Type System
and Transaction Processing are same for all DBMS's.

1.2.5 Simple Model

= A Relational Database system is the simplest model, as it does not require any complex
structuring or querying processes. It follows Network Model to establish relationships
between various tables.

1.2.6 Data Accuracy

Various Relational Model Constraints validates the data at time during entry time to ensure
accuracy of data. In the relational database system, there can be multiple tables related to
one another with the use of a primary key and foreign key concepts. This makes the data to
be non-repetitive. There is no chance for duplication of data. Hence the accuracy of data in
the relational database is more than any other database system.

1.2.7. Easy Access to Data

In the Relational Database System, there is no pattern or pathway for accessing the data, as
to another type of databases can be accessed only by navigating through a tree or
a hierarchical model. Anyone who accesses the data can query any table in the relational
database. Using join queries and conditional statements one can combine all or any number
of related tables in order to fetch the required data. Resulting data can be modified based
on the values from any column, on any number of columns, which permits the user to
effortlessly recover the relevant data as the result. It allows one to pick on the desired
columns to be incorporated in the outcome so that only appropriate data will be displayed.

1.2.8 Data Integrity

The process of ensuring the correct data in the database is called Data Integrity. Integrity
Constraints and relationships can be established to ensure the data integrity to certain extent.

E.g. Number of hours worked per week

EMPNO NHWW

1 160

2 300 Inconsistent Data

1.2.9 Multiple Transactions can be supported. (Multi Transaction System)

E.g. Online transaction processing system (Railway reservation)

In multi transaction system, a single database item can be accessed by multiple users
simultaneously.

1.2.10 Provides Security

= DBA assigns privileges (read, write & modify) to individual users and group of users to
restrict the database access from unauthorized users.

1.2.11 Provide Multiple User Interface
= DBMS provides GUI's, Query Languages, Application Programs and Menu Driven Interfaces

to users.

1.2.12 Complex relationships can be established between the database objects using
referential integrity.

1.2.13 Integrity constraints can be enforced.

1.2.14 Provides Backup and Recovery

= Using backup & recovery subsystems, software & hardware failures can be recovered.
1.2.15 Standards can be enforced

= DBA ensures all applicable standards while assigning privileges to individual users (or) user
groups.

1.2.16 Conflicting requirements can be balanced

= Knowing the overall requirements of enterprise the DBA structures the system and provides
resources.

1.3 EMERGENCE OF NOSQL

NO SQL: A NoSQL (originally referring to "non-SQL" or "non-relational") database provides a
mechanism for storage and retrieval of data that is modeled in means other than the
tabular relations used in relational databases.

1.3.1 Brief History of NoSQL Databases:

= 1998: Carlo Strozzi use the term NoSQL for his lightweight, open-source relational database.
= 2000: Graph database Neo4j is launched

= 2004: Google BigTable is launched

= 2005: CouchDB is launched

= 2007: The research paper on Amazon Dynamo is released

= 2008: Facebooks open sources the Cassandra project

= 2009: The term NoSQL was reintroduced

1.3.2 RDBMS versus NoSQL

= Traditional RDBMS uses SQL syntax to store and retrieve data for further insights. Instead, a
NoSQL database system encompasses a wide range of database technologies that can store
structured, semi-structured, unstructured and polymorphic data.

Note: Polymorphic Data: A single column or field to contain data of different types.

= NoSQL Database is a non-relational Data Management System does not require a fixed
schema. It avoids joins, and is easy to scale. The major purpose of using a NoSQL database is
to process the huge data in distributed environment. NoSQL is used for Big data and Real-
time Web Apps. For example, companies like Twitter, Facebook and Google collect
terabytes of user data every single day.

Non Relational

Performance

= Scalability: The ability to expand or contract the capacity of system resources in order to
support the changing usage of application.

= Vertical scaling: Vertical scaling refers to increasing the processing power of a single server
or cluster. Both relational and non-relational databases can scale up, but eventually, there
will be a limit in terms of maximum processing power and throughput.

>

Advantage: No change is required for database infrastructure other than the hardware
specifications of the machine running the database.

Disadvantages:

* More storage and processing power can be a lot more expensive.

= There is a physical limit on the amount of CPUs, memory, network interfaces, and hard-
drives that can be used on a single machine.

= Requires a migration between hardware’s, it could result in downtime or service disruption.

= Horizontal scaling: Horizontal scaling refers to add additional nodes to share the load. This
is difficult with relational databases to distribute the database tables across the network.
With non-relational databases, this is made simpler since collections are self-contained and
not coupled relationally. This allows them to be distributed across nodes more simply, as
queries do not have to “join” them together across nodes.

a il 11

1.3.3 Polyglot Persistence: Polyglot persistence is a term that refers to using multiple data
storage technologies for varying data storage needs across an application.

Example:

- RENF
Aol |canong
Price Chock, Praduct Catalog, Usnr Bahovine Purcheses Loge
Uruae Pasvwords Shopping Cant
—&--a-a
—8-809 _ E
Koy Value Dacument Storm Calurmm Famihy Tronsactinmal B Darta Lnka

1.4 IMPEDANCE MISMATCH PROBLEM

= Impedance mismatch is the term used to refer to the problems that occurs due to
differences between the database model and the programming language model.

Following problems may occur due to the impedance mismatch:

= The Type System of Data Sub Language (SQL Queries) is differs from the Type System of
Host Language (Programming Language).
Note: Type system include
Syntax: Set of rules
Semantics: Meaningful representation of the rule
Pragmatics: Practical approach

= Data type mismatch: The data types of different programming languages are differ.

4

Inhetitance:

3

Relatianships

s
-

: S o-f o
Wﬁusinesa
Ohjects: Rules

—lr
Stored {E I D

Procedures :c_qu

Relational Tablas:
Database TR

Fig. The Impedance mismatch between Relational Model and Object Oriented Model (The Type
System of Relational Model differs with the Type System of Object Oriented Model).

10

CHAPTER 2
AGGREGATE DATA MODELS

2.1 AGGREGATE DATA MODELS VIMP

= Aggregation refers to the process by which entities are combined to form a single
meaningful entity. The specific entities are combined because they do not make
sense on their own.

Parson
- >
Haud Hand L
SYSTEM
SYSTEM
1.*| Type

System Name <> Generation
IP Address
- Manufacturer
ocation Model

= Structural constraints on relationships: We have two relationship constraints.

(a) Cardinality ratio constraint (1-1, 1-N, M-N)

(b) Participation constraint

1. Total participation (existence ependency): All the tuples of the participating entity relates with
the tuples of related entity represented with double line.

2. Partial participation : Some tuples of the participating entity relates with all the tuples of
related entity represented with single line.

= Note: Participation constraint is represented by (min,max) pair.
If min value =0 then the is patial paticipation.

If min value >=0 then the is total paticipation.

11

Hark

scouin

secihesn 0

Example of Aggregation.

= = AT
e LAL LRI
':'I.l',:llﬂﬂ':'r Alncilisn
R ELTET T
={1ATR
e s
! (P el
*:::;l__“ = ekl nced)
ATM Trpfieicn s
s [1 :] ATIARERAE Gon ui
+iliain :
4 PRI b 1
12 +hulande [bt
il ﬂﬂ'r@i,hdlnnm
+imite
+amoifiesy)
Cheching Acctn| Lxpiyy Areolin
Lm;TTd}, 1.!..H1Il:'El'll‘-l'l
Wit 6 ?"‘régﬂmmmf
chavng mig a
nn:.u'niu.lr'lLEI fRRANOS Ao T

12

2.2 KEY-VALUE AND DOCUMENT DATA MODELS

* The data is fetched by a unique key or a number of unique keys to retrieve the associated
value with each key.

= The values can be data types like strings and numbers or complex objects.

= Data is accessed (inserted, updated, and deleted) and queried based on the key to
store/retrieve its value.

= Key-value databases use compact, efficient index structures to be able to quickly and
reliably locate a value by its key, making them ideal for systems that need to be able to find
and retrieve data in constant time.

Keyl [—»| Valuel

\4

Key 2 Value 2

A4

Key 3 Value 3

Primary Key Products
IPaf‘titiDﬂ Key Sort Ke',f1 Attributes

l L ‘ 1

Fm;”“' Schema is defined per item
e

| PENVE Odynsoy | Homer | 187
s Beibiria I [EFm-uu [Bach

Items—

Moum D [F'unjta

TrackiD

XY rews [2o | coapin |

e

2.3 COLUMN-FAMILY STORES

= Column-family stores, such as allow you to store data with keys mapped to values and the
values grouped into multiple column families, each column family being a map of data.

Examples: Cassandra, HBase, Hypertable, and Amazon SimpleDB.

= Column-family databases store data in column families as rows that have many columns associated
with a row key.

= Column families are groups of related data that is often accessed together. For a Customer, we
would often access their profile information at the same time, but not their orders.

L

f R Columnl Columnz
! r‘.
L | KeyX I llmﬂll wluﬂ l’ nm: valwe? ;l

talamnM .'“-,

I misniet - valuel) r.l

F

r

(o \[(Corumr Y\ Mcotums Y\ Scotumw
I. Heﬂ" I.l niamd L waloed j l mmnl y-iuwl |. m.m.H v luak |

Cassandra’s data model with column families.

14

Colurmn Eamily

Column-family
Database

Column family Structure of Database.

Custamel

Cmum& Kay

—
MName

= Column Value

hdzk
/-"
+Address 13th Almrue
Baymant |
o Cleck
-8l LEpegp HP

Samsu e akile

Nptebnok

Habtonary

= Skinny rows have few columns with the same columns used across the many different
rows. In this case, the column family defines a record type, each row is a record, and each

column is a field.

= A wide row has many columns (perhaps thousands), with rows having very different
columns. A wide column family models a list, with each column being one element in that

list.

15

Example:

//column family

{

//row
"arjun-thatavarthy" : {
firstName: "arjun”,
lastName: "thatavarthy",
lastVisit: "2012/12/12"
}

//row

"martin-fowler" : {
firstName: "martin",
lastName: "fowler",
location: "boston"

}

}

Note: We have the pramod-sadalage row and the martin-fowler row with different columns;
both rows are part of the column family.

16

CHAPTER 3
MORE DETAILS ON DATA MODELS

3.1 RELATIONSHIPS

Relationship: The logical connection between the documents.

= MonagoDb relations are
1. Oneto One

2. Oneto Many

3. Many to One

4. Many to Many

= Aggregation: The term aggregate means a collection of objects that we use to treat as a

unit.
Customer | ! = Order
Mame
]
Address b
- - | prder pay
Address Cirder ey Fayment
':'.t':r_ee_’r 1 Price: Ceointo
ity] i
Crare Shipping Address " tenid
Post code 1!
| Produit

1 Billing Address |-_
Mame

Aggregation of different entities.

17

3.2 GRAPH DATABASES

A graph database is a type of database used to represent the data in the form of a graph.
It has three components: nodes, relationships, and properties. These components are
used to model the data.

The concept of a Graph Database is based on the theory of graphs. It was introduced in
the year 2000. They are commonly referred to NoSql databases as data is stored using
nodes, relationships and properties instead of traditional databases. A graph database is
very useful for heavily interconnected data.

The description of components are as follows:

Nodes: represent the objects or instances. They are equivalent to a row in database. The
node basically acts as a vertex in a graph. The nodes are grouped by applying a label to
each member.

Relationships: They are basically the edges in the graph. They have a specific direction,
type and form patterns of the data. They basically establish relationship between nodes.

Properties: They are the information associated with the nodes.
E.g. Neo4j, Oracle NoSQL DB, Graph base etc.

Nodes

- L kL . .

r

Schema of Graph Databases.

18

-~

i ; 1“
L

lllustration of Graph Databases. e

When to Use Graph Database?

= Graph databases should be used for heavily interconnected data.

= |t should be used when amount of data is larger and relationships are present.
= |t can be used to represent the cohesive picture of the data.

How Graph and Graph Databases Work?
= Graph databases provide graph models. They allow users to perform traversal queries

since data is connected. Graph algorithms are also applied to find patterns, paths and
other relationships this enabling more analysis of the data.

19

Example of Graph Database:

Recommendation engines in E-Commerce use graph databases to provide customers with
accurate recommendations, updates about new products thus increasing sales and
satisfying the customer’s desires.

Social media companies use graph databases to find the “friends of friends” or products
that the user’s friends like and send suggestions accordingly to user.

Advantages of Graph Database:

Establishing the relationships with external sources as well

No joins are required since relationships is already specified.

Query is dependent on concrete relationships and not on the amount of data.
It is flexible and agile.

it is easy to manage the data in terms of graph.

Disadvantages of Graph Database:

Often for complex relationships speed becomes slower in searching.
The query language is platform dependent.

They are inappropriate for transactional data.

It has smaller user base.

3.3 SCHEMALESS DB

Traditional relational databases are well-defined, using a schema to describe tables, rows
views, indexes, and relationships. By exerting a high degree of control, the database
administrator can improve performance and prevent capture of inconsistent or incomplete
data. In a SQL database, the schema is enforced by the Relational Database Management
System (RDBMS) whenever data is written to disk.

Schemaless databases are designed to store and query unstructured data, they do not
require schemas used by relational databases. Although a schema can be applied at the
application level, NoSQL databases retain all of your unstructured data in its original raw
format.

Example of Schemaless Database:

<Row> <Person>
N \V
<Column Family> “Friends” “Owns”
<Column Qualifier> <Person> <Thing>

Vv Vv 20

<Value > <History> <Count>

Alice

V \
“Friends” “Owns”
v v
& Q/ Old Mobile
Bob Charle

J
J J)

2001-2008 1985-2009

Schemaless Database:

= Does not require conforming to a rigid schema (database, schema, data types, tables, etc.)
that one is required use through the life of a system.

= Does not enforce data type limitations on individual values pertaining to one single column
type.

= Models the business usage and not a database schema, application, or product.

= (Can store structured and unstructured data.

= Eliminates the need to introduce additional layers (ORM layer) to abstract the relational
model and expose it in an object-oriented format.

Advantages of Schemaless Databases:

1.Greater flexibility over data types

= By operating without a schema, schemeless databases can store, retrieve, and query any
data type, perfect for big data analytics and similar operations that are powered by
unstructured data. Relational databases apply rigid schema rules to data, limiting what can
be stored.

2.No pre-defined database schemas
The lack of schema means that your NoSQL database can accept any data type, including those
that you do not yet use.

3.No data truncation

= A schemaless database makes almost no changes to your data, each item is saved in its own
document with a partial schema, leaving the raw information untouched. This means that
every detail is always available and nothing is stripped to match the current schema. This is
particularly valuable if your analytics needs to change at some point in the future.

21

4 Suitable for real-time analytics functions

= With the ability to process unstructured data, applications built on NoSQL databases are
better able to process real-time data, such as readings and measurements from loT sensors.

= Schemaless databases are also ideal for use with machine learning and artificial intelligence
operations, helping to accelerate automated actions in your business.

5.Enhanced scalability and flexibility

= With NoSQL, you can use whichever data model is best suited to the job. Graph databases
allow you to view relationships between data points, or you can use traditional wide table
views with an exceptionally large number of columns. You can query, report, and model

information however you choose. And as your requirements grow, you can keep adding
nodes to increase capacity and power.

3.4. MATERIALIZED VIEWS

= A materialized view is a replica of a target master from a single point in time.

= The master can be either a master table at a master site or a master materialized view at a
materialized view site.

= Whereas in multi master replication tables are continuously updated by other master sites,
materialized views are updated from one or more masters through individual batch
updates, known as a refreshes, from a single master site or master

Remote datsbase

o — ——

Zaiabase link
- — — — — — — — — — — — — — — — — —

Replication systém
Frimary. databass Replicate detabase

— :_._ I
e |
! |

OO -
| (IF erabled)

mn;trjd;ﬂﬂ;u_:
my_iable
I -

Example of Materialized View.

22

Application
data is the

source of truth

Orderid Arcount

Apphcation

31

Pant

143

Materialized view
is read-only

Materialized View

e | feme | o
30

Shirts 4

Crderid Itemid Qty
1 31 3
2 30 2

Example of Materialized View.

3.4.1 Advantages of Materialized Views

You can use materialized views to achieve one or more of the following goals

3.4.1.1 Ease Network Loads

Reduce network loads that is use of materialized views distribute corporate database to
regional sites.

Instead of the entire company accessing a single database server, user load is distributed
across multiple database servers.

Materialized views are updated through an efficient batch process from a single master site
or master materialized view site.

They have lower network requirements and dependencies than multi master replication
because of the point in time nature of materialized view replication.

Whereas multi master replication requires constant communication over the network,
materialized view replication requires only periodic refreshes.

Materialized views increase data availability by providing local access to the target data.
Materialized views greatly enhance the performance and reliability of your replicated
database.

3.4.1.2 Create a Mass Deployment Environment

Deployment templates create a materialized view environment locally.
This technology enables efficient and effective use of database infrastructure to hundreds
or thousands of users.

23

3.4.1.3 Enable Data Subsetting

= Materialized views allow you to replicate data based on column and row level subsetting,
while multimaster replication requires replication of the entire table.

= Data subsetting enables you to replicate information that relates only to a particular site.
For example, if you have a regional sales office, then you might replicate only the data that
is needed in that region, thereby cutting down on unnecessary network traffic.

3.4.1.4 Enable Disconnected Computing

= Materialized views do not require a dedicated network connection. Though you have the
option of automating the refresh process by scheduling a job, you can manually refresh
your materialized view on-demand, which is an ideal solution for sales applications running
on a laptop. For example, a developer can integrate the replication management API for
refresh on-demand into the sales application. When the salesperson has completed the
day's orders, the salesperson simply dials up the network and uses the integrated
mechanism to refresh the database, thus transferring the orders to the main office.

3.4.2 Types of Materialized Views

3.4.2.1 Read-Only Materialized Views: Materialized view read-only during creation.
3.4.2.2 Updatable Materialized Views: Materialized view updatable during creation.

3.4.2.3 Writeable Materialized Views: Created using the FOR UPDATE clause but the updates
are confined to local site. Users can perform DML operations on a writeable materialized view,
when materialized view is refreshed, then these changes are not updated in master site.
Writeable materialized views are typically allowed wherever fast-refreshable read-only
materialized views are allowed.

3.4.3 Required Privileges for Materialized View Operations

Three distinct types of users perform operations on materialized views:

= Creator: The user who creates the materialized view

= Refresher: The user who refreshes the materialized view

= Owner: The user who owns the materialized view. The materialized view resides in this
user's schema.

24

CHAPTER 4
DISTRIBUTION MODELS

4.1. SINGLE SERVER

= Inthe single server configuration, all server components run on the same computer.

= A single server configuration is useful on multiprocessor computers and in small-scale or
development environments.
Computal A

Admintstration
Procass

U > HeadWrite
[ELig=nt —_— — [S
S

== Kl Bane 1
! S Reaad-Unly Ciatay
] —_—— IO ——— —_—
SOAF i Knpwiidae Basa 1 Sarver
—d Management . | | Read/Write i |
L_|__|j Grmnscia Knowiedge Base 2
FieadWrite
—

Daclsion Pian 1
Single server configuration

4.1.1 Client Responsibilities

= Client interact with sever with Custom Application.

= The applications communicate with the listener that runs on the server by using the SOAP
protocol.
NOTE: SOAP is a messaging protocol specification for exchanging structured information in
the implementation of web services in computer networks.

= The listener forwards the request to the appropriate server component for handling.

= Administration requests are forwarded to the administration process, and runtime requests

on a specific knowledge base or decision plan are routed to the read/write or read-only
instances, depending on the request.

25

= Read/write requests are forwarded to read/write instances, and read-only requests are
forwarded to read-only instances.

4.1.2 Server responsibilities:

= The function of a computer server is to store, retrieve and send or "serve" files and data to
other computers on its network.

= Monitor whether Load Balancing is to be performed by the listener.

= Load balancing lets evenly distribute network traffic to prevent failure caused by
overloading a particular resource. This strategy improves the performance and availability
of applications, websites, databases, and other computing resources. It also helps process
user requests quickly and accurately.

= Monitor the Route Requests. The routing algorithm that provides the best path from the source
to the destination.

4.2. SHARDING

= Database partitioning in which a large Database is divided or partitioned into smaller data,
also known as shards. These shards are not only smaller, but also faster and hence easily
manageable.

4.2.1 Need for Sharding

= Consider a very large database whose sharding has not been done. For example, let’s take
a database of a college in which all the student’s record the whole college are maintained
in a single database. So, it would contain very large number of data, say 100, 000 records.

= Now when we need to find a student from this database, each time around 100, 000
transactions has to be done to find the student, which is very costly.

= Now consider the same college students records, divided into smaller data shards based
on years. Now each data shard will have around 1000-5000 students records only. So not
only the database became much more manageable, but also the transaction cost of each
time also reduces by a huge factor, which is achieved by Sharding. Hence this is why
Sharding is needed.

26

4.2.2 Features of Sharding

= Sharding makes the database smaller

= Sharding makes the database faster
= Sharding makes the database much more easily manageable
= Sharding can be a complex operation sometimes

= Sharding reduces the transaction cost of the database

Employee
Empno Ename Salary
1 John 3400
2 Martin 4300
3 Elica 4500
4 Miller 3400

Horizontal Sharding : A horizontal sharding is a subset of the tuples in that relation. The tuples
that belong to the horizontal sharding are specified by a condition on one or more attributes of

the relation.

Employee
Empno Ename Salary
1 John 3400
2 Martin 4300

Vertical Sharding: Vertical sharding divides a relation “vertically” by columns. vertical sharding
of a relation keeps only certain attributes of the relation.

Employee
Empno Ename
1 John
2 Martin
3 Elica
4 Miller

27

Exzh ehard resdy amd
wrHEl AN pan dala

i

/
/

s i N—

Sharding puts different data on separate nodes, each of which does its own reads and writes.

4.3. MASTER-SLAVE REPLICATION

= In master-slave distribution data can be replicated across multiple nodes.

= One node is designated as the master, or primary. This master is the authoritative source
for the data and is usually responsible for processing any updates to that data.

= The other nodes are slaves, or secondaries.
= The changes made at maser node is replicated in slave node.
= Master-slave replication is most helpful for scaling when you have a read-intensive dataset.

= Horizontal scaling handle more read requests by adding more slave nodes and ensuring that
all read requests are routed to the slaves.

Advantages:

= Master-slave replication is read resilience that is if master fail, the slaves can still handle
read requests.

= Master speed up recovery after a failure of by appointing new master very quickly.

28

Disadvantages:

= The failure of the master does eliminate the ability to handle writes until either the master
is restored, or a new master is appointed.

= All read and write traffic can go to the master while the slave acts as a hot backup.

updates are made

?5

Faade tam ba dowy from
IllFli'ﬂl'Ih.h"i

\Mwh —_—
slvoes

-E B-
|

Data is replicated from master to slaves. The master services all writes; reads may come from
either master or slaves.

4.4. PEER-TO-PEER REPLICATION

= Peer-to-peer replication provides a scale-out and high-availability solution by maintaining
copies of data across multiple server instances, also referred to as nodes.

29

= With a peer-to-peer replication cluster override node failures without losing access to data.

[R g | RS O S IR RPN M SR <

Peer-to-peer replication has all nodes applying reads and writes to all the data.

Advantages:
= Reads are spread across multiple nodes. This enables performance to remain consistent as
reads increase.

= |f one of the nodes in the system fails, an application layer can redirect the writes for that
node to another node. This maintains availability.

= |f a node requires maintenance or the whole system requires an upgrade, each node can be
taken offline and added back to the system without affecting the availability of the
application.

Disadvantage:

= |f a row is modified at more than one node, it can cause a conflict or even a lost update
when the row is propagated to other nodes.

30

= There is always some latency involved when changes are replicated. For applications that
require the latest change to be seen immediately, dynamically load balancing the
application across multiple nodes can be problematic.

31

CHAPTER 5
CONSISTENCY

5.1 READ CONSISTENCY

= Read Consistency: A read operation of data item / object must wait until the write commits
before being able to read the new version.

Data Center 1 Data Center 2

o
fat
1]
>
-
pe =
m
=
=
[+F)
-+
(0
—

1 e e
E NodeB | E Nade C E
| X ! i Xold |
Write Read Real
X X Xold
read_TS(x): write_TS(x): X:
100 100 10
101 101 11-xi First Version
102 102 12 xi+1 Second Version
13xi+2 Third Version
TS(T1)=100 TS(T2)=101 TS(T3)=102
T1 T2 T3
read_item(x); 10 read_item(xi); 11 read_item (xi+1); 12
X:=x+1; 11 Xi:=xi+1; 12 x:=(xi+1)+1; 13
write_item(x); 11 write_item(xi); 12 write_item((xi+1)+1); 13
commit; commit; commit;

32

5.2 UPDATE CONSISTENCY

Update Consistency: The database must reflect the latest changes.

Update bas wot ye! boae London

procesand hy Lomdon \\\“D

Piamad

An example of replication inconsistency a2 booked

Solution for replication inconsistency:

= Read your- writes consistency: The successful updation is visible to other reads.

= Sticky Session: When a client starts a session on one of your web servers, session stays on
that specific server.

33

W - == A |
| Availability <et |
| |
| 4 / |
| « |
= |
| o
| 3 |
| = :.‘:? |
| N '
e
| |
| . '
| < |
| o |
v} |
| = :
! Vg |
I'n,L""J.‘- >
3 i
)
Web Web2 Web 3 :
P S PPN R S S S S 4

¢

Yirtual Metwark

= Version Stamps: Follows Multiversion Concurrency Control Protocol.

5.3. RELAXING CONSISTENCY

= By relaxing consistency, distributed systems can be highly available and durable. It’s
possible for data to be inconsistent; a query might return old or stale data.

= Relaxing consistency is the phenomenon described as being eventually consistent. Over
time, data that is spread across storage nodes will replicate and become consistent.

34

With two breaks in the communication lines, the network partitions into two groups.

5.3.1 The CAP Theorem

= The CAP theorem applies a similar type of logic to distributed systems—namely, that a
distributed system can deliver only two of three desired
characteristics: Consistency, Availability, and Partition tolerance (the ‘C,’ ‘A’ and ‘P’ in
CAP).

= Consistency: Consistency means that all clients see the same data at the same time, no
matter which node they connect to. For this to happen, whenever data is written to one
node, it must be instantly forwarded or replicated to all the other nodes in the system
before the write is deemed ‘successful.’

35

= Availability: Availability means that that any client making a request for data gets a
response, even if one or more nodes are down. Another way to state this—all working
nodes in the distributed system return a valid response for any request, without exception.

= Partition tolerance: A partition is a communications break within a distributed system—a
lost or temporarily delayed connection between two nodes. Partition tolerance means that
the cluster must continue to work despite any number of communication breakdowns
between nodes in the system.

Today, NoSQL databases are classified based on the two CAP characteristics they support:

= CP database: A CP database delivers consistency and partition tolerance at the expense of
availability. When a partition occurs between any two nodes, the system has to shut
down the non-consistent node (i.e., make it unavailable) until the partition is resolved.

= AP database: An AP database delivers availability and partition tolerance at the expense
of consistency. When a partition occurs, all nodes remain available but those at the wrong
end of a partition might return an older version of data than others. (When the partition
is resolved, the AP databases typically resync the nodes to repair all inconsistencies in the
system.)

= CA database: A CA database delivers consistency and availability across all nodes. It can’t

do this if there is a partition between any two nodes in the system, however, and
therefore can’t deliver fault tolerance.

36

MongoDB CRUD OPERATIONS

TO SHOW THE DATABASE
> show dbs

admin 0.000GB

config 0.000GB

local 0.000GB

TO CREATE THE DATABASE

> use Employee

switched to db Employee

TO CREATE COLLECTION

> db.createCollection("EmployeeDetails");

{"ok":1}

TO INSERT DATA INTO COLLECTION

> db.EmployeeDetails.insert({eno:'1',ename:'kiran',esal:'10000'});
WriteResult({ "ninserted" : 1 })

> db.EmployeeDetails.insert({eno:'2',ename:'samrat’,esal:'12000'});
WriteResult({ "ninserted" : 1 })

> db.EmployeeDetails.insert({eno:'3',ename:'tulasi',esal:'13000'});
WriteResult({ "ninserted" : 1 })

TO DISPLAY DATA FROM COLLECTION

> db.EmployeeDetails.find().pretty();

{
"_id" : Objectld("628840622f3012f1bb3bfc46"),

Ilenoll : II1III

VVIMP

"ename" : "kiran",

"esal" : "10000"
}
{
"_id" : Objectld("628840dd2f3012f1bb3bfc47"),
"eno" : "2",
"ename" : "samrat",
"esal" : "12000"
}
{
"_id" : Objectld("628841532f3012f1bb3bfc48"),
"eno" : "3",
"ename" : "tulasi",
"esal" : "13000"
}

BATCH INSERTION

db.EmployeeDetails.insertMany([{eno:'4',ename:'raju’,esal:'4000'},{eno:'5',ename:'anil',esal:'5000'},{
eno:'4',ename:'padma’,esal:'4500'}]);

{
"acknowledged" : true,
"insertedlds" : [
Objectld("628accal67dc6828a6781837"),
Objectld("628accal67dc6828a6781838"),

Objectld("628accal67dc6828a6781839")

DISPLAY DATA

> db.EmployeeDetails.find();

{"_id" : Objectld("628accal67dc6828a6781837"), "eno" : "4", "ename" :
{"_id" : Objectld("628accal67dc6828a6781838"), "eno" : "5", "ename" :

{"_id" : Objectld("628accal67dc6828a6781839"), "eno" : "4", "ename" :

>

> db.EmployeeDetails.find().pretty();

{
" id" : Objectld("628accal67dc6828a6781837"),
"eno" : "4",
"ename" : "raju",
"esal" : "4000"
}
{
" id" : Objectld("628accal67dc6828a6781838"),
"eno" : "5",
"ename" : "anil",
"esal" : "5000"
}
{

" id" : Objectld("628accal67dc6828a6781839"),
llenoll : ||4||’

"ename" : "padma",

"raju", "esal" : "4000" }
"anil", "esal" : "5000" }

"padma", "esal" : "4500" }

"esal" : "4500"

UPDATE DABASE

> db.EmployeeDetails.update({'eno':'4'},{Sset:{'ename":"cherry"}});

> db.EmployeeDetails.find().pretty();

{
" id" : Objectld("628accal67dc6828a6781837"),
"eno" :"4",
"ename" : "cherry",
"esal" : "4000"
}
{
" id" : Objectld("628accal67dc6828a6781838"),
"eno" :"5",
"ename" : "anil",
"esal" : "5000"
}
{

" id" : Objectld("628accal67dc6828a6781839"),
llenoll : ll4||’
"ename" : "padma",

"esal" : "4500"

TO SAVE THE RECORD WITH SPECIFIED OBJECT ID

> db.EmployeeDetails.find();

{"_id" : Objectld("628accal67dc6828a6781837"), "eno" : "4", "ename" : "cherry", "esal" : "4000" }
{"_id" : Objectld("628accal67dc6828a6781838"), "eno" : "5", "ename" : "anil", "esal" : "5000" }
{"_id" : Objectld("628accal67dc6828a6781839"), "eno" : "4", "ename" : "padma", "esal" : "4500" }

> db.EmployeeDetails.save({"_id":new
Objectld("628accal67dc6828a6781842"),no:"5",name:"ratna",sal:"5600"});

WriteResult({

"nMatched" : 0,

"nUpserted" : 1,

"nModified" : 0,

"_id" : Objectld("628accal67dc6828a6781842")
1)
TO REMOVE SPECIFIC RECORD

> db.EmployeeDetails.remove({'ename':'cherry'})

TO DROP THE TABLE

> db.EmployeeDetails.drop()

DATA LAKES

TOPIC 1: WHAT IS DATA LAKE

= Data Lake: Data Lake is a single repository for both structured and unstructured data, making
it easy for data scientists to pull exactly what they need for analysis.

Duto Lake Sarvices

Data Lake REopomtons

Bata l_ake

IBM Data Lake Architecture

Diaka ke
o aEh EEA I]IIFI
e — A — W — 0
RAW Data Data Lake Formatted and U_r.
Processed Data sers
y B0
i et L WS T tat mads a o &
D oo flE
= o
- .= C 5 So—

Data Lake Data source. (Azure Data Lake, AWS Data Lake)

1.1 Key Features of Data Lake

10.

Data Lake is repository of Structured Data (Invoices and Receipts, Sensor Data, Online Forms,
Spread Sheets, CRM Profiles) and Unstructured Data (Social Media Content, Emails, Podcasts
(Voice Recognition), Security Footage, Transcripts).

Data Ingestion: Data is gathered from multiple data sources and loaded into the data lake. The
process supports all data structures, including unstructured data. It also supports batch and one-
time ingestion

Security: Security Protocols are implemented from loading, search, storage, and accessibility.
Other facets of data security such as data protection, authentication, accounting, and access
control to prevent unauthorized access are also paramount to data lakes.

Data quality: Information in a data lake is used for decision making, which makes it important for
the data to be of high quality. Poor quality data can lead to bad decisions, which can be
catastrophic to the organization.

Data governance: Administering and managing data integrity, availability, usability, and security
within an organization.

Data discovery: Discovering required data is important before data preparation and analysis. It is
the process of collecting data from multiple sources and consolidating it in the lake, making use
of tagging techniques to detect patterns enabling better data understandability.

Data exploration: Data exploration starts just before the data analytics stage. It assists in
identifying the right dataset for the analysis.

Data storage: Data storage should support multiple data formats, be scalable, accessible easily
and quickly, and be cost-effective.

Data auditing: Facilitates evaluation of risk and compliance and tracks any changes made to
crucial data elements, including identifying who made the changes, how data was changed, and
when the changes took place.

Data lineage: Concerned with the data flow from its source or origin and its path as it is moved
within the data lake. Data lineage smoothens error corrections in a data analytics process from its
source to its destination.

38 = Bl

S S el 3
Exiindaral Toam " [HERES

—————

" Crmmne ity =
Sell.Ea i 4
Sl binin b ALTRIR .I'WIEE-
(ECTIE }
Syulmins al I Entemsise Dlaitn Lake Reposilinds
g = 1
Engnpseani | T Cialn
= T aalf-
Eorres | s
Syaimma of i
AT !
ﬁ.r,rﬂ* Information Mansgemenl and Govemance Fabnc i e

88824

Services of Data Lake

1.2 Key services of Data Lake

Governance metadata: Metadata management involves managing data about data. Defines
the governance program and the glossaries of business terminology that describes the types of
data held and used by the organization.

Technical metadata: Provides the inventory of the data assets of the organization. These data
assets are used by numerous run times, such as applications, data movement and transformation
engines, and databases and reporting platforms.

Operational metadata: Provides transparency on the operation of the information supply chains
as they copy data between the systems and data platforms, which is often referred to as lineage.

Maintenance and Support: There’s no need to worry about the hardware, software, security, or
compatibility with other systems. This service includes the initial setup of all these elements as
well as any ongoing maintenance and support that is needed.

Limitless Capacity: When operating an on-prem data lake, user must balance storage space with
hardware availability. When using data lake as a service, however, storage capacity is always
available — you only pay for what you use.

Active Backups: As with any data storage solution, an effective backup program is critical for loss
avoidance. Data lake as a service includes a full backup of your data that you can rely on.

Enhanced Business Intelligence: When using data lake as a service on a cloud platform, required
data is available for analytics using modern tools.

1.2 Benefits of a Data Lake

2. A data lake is an agile storage platform that can be easily configured for any given data model,
structure, application, or query. Data lake agility enables multiple and advanced analytical
methods to interpret the data.

3. Being a schema on read makes a data lake scalable and flexible.

4. Data lakes support queries that require a deep analysis by exploring information down to its
source to queries that require a simple report with summary data.

5. Most data lakes software applications are open source and can be installed using low-cost
hardware.

6. Schema development is deferred until an organization finds a business case for the data. Hence,
no time and costs are wasted on schema development.

7. Data lakes offer centralization of different data sources. They provide value for all data types as
well as the long-term cost of ownership.

8. Cloud-based data lakes are easier and faster to implement, cost-effective with a pay-as-you-use
model, and are easier to scale up as the need arises. It also saves on space and real estate costs.

1.3 Challenges and Criticism of Data Lakes

1. Data lakes are at risk of losing relevance and becoming data swamps over time if they are not
properly governed.

2. ltis difficult to ensure data security and access control as some data is dumped in the lake without
proper oversight.

3. Thereis no trail of previous analytics on the data to assist new users.
4. Storage and processing costs may increase as more data is added to the lake.

5. On-premises data lakes face challenges such as space constraints, hardware and data center
setup, storage scalability, cost, and resource budgeting.

1.4 Popular Data Lake Technology Vendors

Popular data lake technology providers include the following:

= Amazon S3: Offers unlimited scalability

= Apache: Uses Hadoop open-source ecosystem

= Google Cloud Platform (GCP): Google cloud storage

= Oracle Big Data Cloud

= Microsoft Azure Data Lake and Azure Data Analytics

= Snowflake: Processes structured and semi-structured datasets, notably JSON, XML, and Parquet

TOPIC 2: THE VALUE OF THE DATA LAKE TO ING

T

oday, almost any company has the publicly stated ambition to become data driven.

Everybody recognizes the value of data and the potential for data to both transform existing

p

rocesses and to create new value.

Facebook, who collectively make billions from data, many organizations are struggling to deliver on
their strategy.

2

1

2

1

2

W o N o v B~ W NRe

.1 Problems for companies to become data driven and to obtain value from their data.

Historical perspective: Data has never been managed as an asset.

Not knowing what data is exchanged is a result of lacking documentation.

Many point-to-point connections built over time as “the fastest choice”.

Every new interface starts from scratch because we can’t re-use.

Conflicting definitions make it difficult to exchange data across domains and countries.
The need to go to real time.

The big data hype has led to more data that is less understood.

Is governance a four-letter word in an agile world?

Creating the data lake architecture was a major step in our journey.

0. Selling a complex architecture is more work than creating it.

.2 ING means Information Governance Catalogue.
. Understand the meaning of the data

Understanding data provides a common business language and vocabulary to enable a deeper
understand of data assets (Structured, Semi-structured and Unstructured).

. Establish a governance framework

Documents governance policies and enacts rules to help you define how information should be
structured, stored, transformed and moved.

w

4

. Explore data lineage

Enables to understand how data flows across the information landscape, to track where data was
sourced from or being consumed.
Allows to develop trust and confidence in such data.

. Benefit from the cloud
Helps the user to move to the cloud without the need for an on-premises environment and
reduces administration costs.

5. Strengthening data access across the organization without any problems.

6. Delivering the right data to the right people at the right time

TOPIC 3: THE 5-LEVEL MODEL OF GOVERNANCE MATURITY IMP

Data governance model addresses a total of 11 domains mentioned below:

1. Data Risk Management and Compliance

2. Value Creation

3. Organizational structure and awareness

4. Policy

5. Stewardship (Company executives protect the interests of the owners or shareholders and make
decisions on their behalf.)

Data Quality Management

Information Lifecycle Management

Information Security and Privacy

w o N o

Data Architecture
10. Classification and Metadata
11. Audit Information, Logging, and Reporting

3.1 Structuring the Governance Program

= I il 1y ,h
L T L* e
| |I_ ;Iu W I l::l-:iﬂ- | | _.;-EI -Ilﬂi- -
4 L 4}
Bt Ll F e -l.f'_:i gl b s B .:';_"‘:. L A L riosl i b sl |

Fgured SHUmure Gha governancs program

3.2 Governance Maturity Model

Azlibng

pratsE I leen Entspini=

fuzinesz Tontrolled Governance

Ll

IHTUN Ty |T|||t|r;.t|D|'..|| Eir'\-'.'l'_-l'l'-.[llill =

v

Govamance Dafinition

Cataloguing

Dedmdefing the scnpe of cata covared

Maturity Level 1: Cataloging

Cataloging refers all the data source used by the organization.

Cataloging stores the information about /ocation, description, and owner of data stored in the
Data Lake.

Analytical functions can help to identify the logical type and classifications for the data, but the
human expert is needed to confirm the classification is correct based on their understanding of
the business context around the data.

This is the stage at which a lack of data governance becomes evident. Business and IT leaders start
to understand and acknowledge the value of information and EIM (Enterprise Information
Management).

Maturity Level 2: Defining Governance

Governance is the collective tools, processes and methodologies that enable an organization to
align business strategy and goals with IT services, infrastructure or the environment

The next level of maturity is where the governance drivers, requirements, and controls are linked
to the catalog of data stores, typically via the classifications. This process creates an authoritative
definition of how data should be governed.

Maturity Level 3: Operational Governance

Operational governance is centred on key operating decisions made by executives and managers
and follow-through on the execution of policies. It presents a framework for managers to improve
how decisions are made and carried out.

The IT governance framework highlights the 'who' and 'how' elements of the operating model. It
defines the principles, rules and processes that enable effective decision-making. It provides the
framework to address how decisions are made, who has the authority to make decisions and how
decisions are communicated.

Maturity Level 4: Business-Controlled Governance

There are seven broad categories of information system management controls in an organization
i.e. top management controls, systems development management controls, programming
management controls, data resources management controls, security management controls,
operations management controls, and quality assurance management controls.

Top management controls involve activities like planning, organizing, leading, and monitoring /
evaluation.

Systems development management controls involve activities like feasibility study and project
initiation, system analysis and specifying user requirements, systems design and development,
acceptance testing, implementation and maintenance, and auditing the systems development
management function.

Programming management controls involve activities like planning, control, design, coding,
testing, and operation and maintenance.

Data resources management controls include defining, creating, redefining, and retiring data;
making the database available to the users; informing and servicing users; maintaining the
integrity of the database; and monitoring operations and performance.

Security management control involves conducting security programs.

Operations management controls include control of computer and network operations;
maintaining data files, program files, and documentation; help desk and technical support; and
management of outsourced operations.

Quality assurance management controls include establishing quality goals and standards;
checking conformity with QA standards; identifying areas for improvement; reporting to the
management; and training employees in QA standards.

Maturity Level 5: Data Driven Enterprises

Finally, the data-driven enterprise is one where decisions are routinely made using a wide variety
of data, from both inside and outside of the organization.

Individuals own and manage data and develop analysis and visualizations of data that is sharable.
They collaborate around the use of data, provide feedback opinions, and share knowledge about
the data they are using.

“'* PARVATHANENI BRAHMAYYA(F.B,) xf “\'

SIDDHARTHA COLLEGE OF ARTS & SCIENCE *w¥s=

VIJAYAWADA, ANLHRA PRADESH 1805
i

A ! ; din "an
Antotoommin Since 1980 MAAL Accimdited ab 'A<+ (Cysie NI 80 BOULTONY Cee bifiel CRTHED|

LECTURE NOTES PREPARED BY
G.SMART KRISHNA, ASSISTANT PROFESSOR
DEPARTMENT OF COMPUTER SCIENECE

P.B.SIDDHARHA COLLEE OF ARTS & SCIENECE, VIJAYAWADA, AP, INDIA PIN:
520010
COURESE: DATABASE MANAGEMENT SYSTEMS

CONTENTS:

Introduction

ER Modeling

EER Modeling

Record Storage

Concurrency Control

Indexing (B-Trees & B+-Trees)
Normalization

Relational Algebra Operations
. Secondary Storage Devices
10 Transaction Processing
11.Triggers, Cursors & Constraints

WO NV REWNER

Introduction to Data Base Management System

o Data: Collection of facts (or) raw material for information.

o Information: Processed data.

o Schema: Structure of database (or) Structure of database objects.
a Entity: A thing (or) object which have some implicit meaning.

o Record: The values associated for collection of fields.

o Domain: The range of finite values associated for attributes.

o Database: Collection of files (or) collection of tables (or) collection of
database objects.

o Attribute: Property of entity.

o Database management system: Set of software modules used to create
database objects and access the database objects.

1.1 How does traditional file processing system differs from DBMS IMP

a In traditional file processing system an entity can be described as a file
using programming language by the application programmer.

o To access the file i.e. to add the data into the file, to delete the data from
the file & to modify the content of the file, the file must be opened and
closed . Only an application programmer can access the file.

o In DBMS an entity is describes as tables. An end user can create &
access the table by invoking SQL commands.

o An end user having knowledge about SQL can create & access the
table.

o DBMS also provide GUI'® (Graphical User Interfaces) to design front-
end”.

a An end user who doesn’t having knowledge about SQL can also easily
access the table by operating the controls in the front-end °.

o Problems with traditional file system

1. Data redundancy.

E.g. In university database registration personnel and accounting office
maintains separate data files of same data for handling its data processing
applications.

2. Data inconsistency.
E.g. Files may consists inconsistent data since there are no validation
checks while accepting the data .

3. Does not have support for multiple transactions.

. Security features are limited.

. Does not have integrity constraints for validation checks.

4
5. Complex relationships can’t be established.
6
7

. Backup and recovery is difficult

1.2 Components of DBMS (or) Database System Environment

o Users: People who access the database.

o DBA Staff: DBA uses DDL statements and privileged commands to
assign access privileges to end users.

o DDL Compiler: Compiles DDL statements.

o Casual users: By invoking interactive queries, users creates & access
database according to the privileges assigned by DBA.

o Query compiler: Compiles the user queries.

o System catalogue (or) Data dictionary: A catalogue is a table that stores
entire description of database.

e sial

oL FRIVILEGED
STATEMENTS COMMAMNDS

)

DoL
Complier

Appication

Stared
Data
IManager

Concurmency Contral
Baciup/Racovery SUDEYEEMS

Drogramimers
CasuE APPLICATION
i PROGRAMS Par&;ﬂ“
— | Precompler
INTERACTIVE
QUERY
Hios? Language
Campler
¥
COMPILED
Query - A-Err::ém-“ (CANNED)
Compiler - - TRAMSACTIONS
o oHIL
- Complier
EEEion
¥
Run-ims -
DEanase -I—EEM
Processar
_________________________________ |
D

STORED DATASAZE

o Application programmers: They access the database by writing
application programs compatible to DBMS.

a Pre compiler: The pre compiler separates DSL (Data Sub Language) and
Host Language.

o Host languages compiler: Compiles the host language(Programming
language).

o DML compiler : Compiles the DML statements.

o Runtime database processor: Access the database (insert, delete and
update) when user request is successful.

o Parametric users: The persons who regularly access the database by
invoking transactions.
E.g. Bank clerks.

o Canned transactions: Transactions by parametric end users.
E.g. Bank credit / debit transactions.

o Store data manager: Manages the data stored persistently in the
database.

o Concurrency control subsystem: Avoids concurrency of multiple
transactions by enforcing concurrency control techniques.

o Backup subsystem: Provides backup to the database or database
objects.

1.3 Architecture of DBMS VV IMP

o ANSI (American National Standard Institute) / SPARC (Standards
Planning And Requirements Committee) formulated architecture of
DBMS.

o Architecture is divided into 3 levels
1. Internal level
2. Conceptual level
3. External level

Figure 2.2 [Illustrating the three-schema architecture.

F " F "

i END USERS “I

EXTERNAL EXTERNAL EXTERNAL
LEVEL WIEW A VIEW

extemalconcepual
mapping

CONCEPTUAL
VL CONCEPTUAL SCHEMA

concepiualintemal mapping

INTERMAL
LEVEL INTERMNAL SCHEMA,
ij C"ﬁ FL?
E_ L L VR
STORED DATABASE
Internal level

o Internal level Indicates number of bytes allocated by the table when it is
stored physically.

o When employee table with 3 attributes EMPNO, DEPTNO & PAY s
stored in database persistently the following number of bytes allocated
according to the shown format.

STORED EMP LENGTH = 20
PREFIX TYPE = BYTE(6), OFFSET = 0
EMP# TYPE = BYTE(6), OFFSET = 6, INDEX = EMPX
DEPT# TYPE = BYTE(4), OFFSET = 12
PAY TYPE = FULLWORD, OFFSET = 16

o Allocation
Offset =0 Offset = 6 Offset = 12 Offset = 16

v ' v v
(L [2]3[4 5]6[1[2]3[4]5]6][1[2]3[4][1 |2 3[4]
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

a From the given example

PREFIX System generated attributed where the values of attributes is
fixed.
OFFSET Indicates starting address of next attribute.

Conceptual level

o Using interactive queries user defines

Entities

. Attributes

Datatypes for attributes

Constraints imported over the database objects
Relationship between the entities

olalo|o(p

E.g. Create table EMP (EMP_NO varchar2(6),
DEPT_NO varchar2(4),
SAL Number(4));

E.g. Alter table emp
add constraint ENO_PK primary key (EMP_NO);

External level

o Entity can be represented and accessed using different programming
languages by different users.

o Different Application programmers uses different Programming
languages comptable to DBMS.

o Programming languages are combination of Host language and DSL
(SQL queries).

o Embedded SQL: SQL statements embedded in programming languages.

o Both DSL and Host langage are tightly coupled.

EXTERNAL (PL/I) | coBoL
DCL 1.EMP 01 EMP
2. EMP# CHAR(6), : 02 EMPNO PIC X(6)
3. SAL FIXEDBIN(31); : 02 DEPTNO PIC X(4)

CONCEPTUAL
EMP
EMP_NO CHARACTER(6)
DEPT_NO CHARACTER(6)
SAL NUMBER(5)

INTERNAL

STORED EMP LENGTH = 20
PREFIX TYPE = BYTE(6), OFFSET =0
EMP# TYPE = BYTE(6), OFFSET=6, INDEX = EMPX
DEPT# TYPE =BYTE(4), OFFSET = 12
PAY TYPE = FULLWORD, OFFSET = 16

1.4 Data Independence VVIMP

o Data Independence: The immunity of application (components of
DBMS) to change its storage structure and accessing techniques.

E.g. Create table EMP(empno varchar2(10),
ename varchar2(10));

E.g. Alter table EMP modify ename varchar2(20);
(or)

o The capacity to change schema at one level of a DBMS without having
to change the schema at next higher level.

A [

f END USERS jf

EXTERNAL EXTERNAL EXTERNAL
LEVEL WIEW e WIEW

extemal’conceptual
mapgping

CONCEPTUAL
LEVEL CONCEPTUAL SCHEMA

concepualintemal mapping

INTERNAL
LEVEL INTERMNAL SCHEMA
- J__‘“ i ‘J_-\-\.‘
_j o _ﬁ f,__ —
t_ - |y T
STORED DATABASE

o Physical data independence: The capacity to change internal schema
without having to change conceptual and external schemas.

o Logical data independence: The capacity to change conceptual schema
without having to change external schema.

1.5 Advantages of DBMS IMP

1. Redundancy can be reduced.
Note: Duplication can be reduced by establishing relationship between
tables.

2. Inconsistency can be avoided.
E.g. Number of hours worked per week
EMPNO NHWW
1 160
2 300 |« Inconsistent data

3. Multiple transactions can be supported (Multi transaction system).
E.g. Online transaction processing system (Railway reservation)
a In multi transaction system, a single database item can be accessed
by multiple user simultaneously.

4. Concurrency can be avoided.
o When multiple transactions update the single table simultaneously,
then concurrency occurs. DBMS solves the problem of concurrency
by using Concurrency Control Algorithms.

5. DBMS provides security to database items.
o DBA assigns privileges (read, write & modify) to individual users and
group of users to restrict the database access from unauthorized
users.

6. Provide persistent storage to database objects and data structures.

7. Provide multiple user interface.
o DBMS provides

GUP

Query languages

Application programs

Menu driven interfaces to users

7. Complex relationships can be establish between the database objects
using referential integrity.

8. Integrity constraints can be enforced.

9. DBMS provides backup and recovery.
o Using backup & recovery subsystems, software & hardware failures can
be recovered.

10. Standards can be enforced.
o DBA ensures all applicable standards while assigning privileges to
individual users (or) user groups.

11.Conflicting requirements can be balanced.
o Knowing the overall requirements of enterprise the DBA structures the
system and provide resources.

1.6 Classification of DBMS (or) Different data models of DBMS IMP

o DBMS are classified into 4 types
| (a) Hierarchical model |

(b) Relational model

(c) Network model

(d) Object oriented model

1. Hierarchical model

PROJECT

PMAME | PNUMBER | PLOCATION

D DEPARTMENT
Level b DNAME | DNUMBER | MGRNAME | MGRSTARTDATE
Level 1: E EMPLOYEE P
MAME | ssn | BDATE | aDDRESS
s DEPENDENT S| SUPERVISEE w WORKER
DEPNAME | SEx | BIRTHDATE NamE | SsN

o Represent data as hierarchical tree structures.
E.g. Top down approach

name | ssi | Hours

o Parent table is represented at Level 0 and child’s are represented at next

higher level.

o Advantages

(a) Parent and child relationship is represented as hierarchy.

(b) Easy to represent and simple to construct.

(c) Navigational & procedural nature of processing.

o Disadvantage

| There is no structured query language for hierarchical model . |

2. Relational model

o Represents relationship between tables in the database.

o Referential integrity can be enforced between any number of tables.

o Query language is used to access the table.

El

E2

1 N
w

10

o Advantages

(a) Data redundancy can be reduced.

(b) Retrieval scope is more.

3. Network model

o Multiple relations between the multiple tables are formulated.

Record type | A Table is Record type.
Set type 1 : N relationship between tables.

o Example for Record type

Student

o Example for Set type

STUDENT

COURSE

COURSE_OFFERINGS
HAS_ A

STUDENT_GRADES
SECTION

PREREQUISITE

SECTION_GRADES

GRADE_REPORT

o Advantages

(a) Complex relationship between entities should be expressed.

(b) Entities (Record types) can be added or deleted from Set type.

o Disadvantages

(a) Record types and relations can’t be specified exactly.

(b) Navigational & procedural nature of processing.

relations between the Record type.

(c) Database contains complex array of pointers to establish the

11

4. Object oriented model

o Class : Description of entity in terms of data (attributes) & operations

(functions).
E.Q. Class emp

{

int empno;
char ename;

public :
void ac
void ac

}

emp X,y,z

cept_empno();
cept_ename();

o Object: Instance of class (or) runtime entity in the application software

domain.

o OODBMS: Collection of software modules used to create the object ,
provide persistence & access to the object .

o Features

(a) Encapsulation

Wrapping up of data (attributes) & functions into a
single unit.

(b) Data
Abstraction

Representing essential features without including the
explanation or implementation.
E.g. #include<stdio.h>

(c) Polymorphism

Different behaviors of same object.

(d) Inheritance

The mechanism of deriving a new class from an
existing class without modifying the original one.

(e) Functional
Programming

Every component (sub module) can be implemented
as functions.

(f) Information
hiding

Hiding implementation and complexity of object.
E.g. Predefined functions like SUM,AVG.

o Advantages

(a) Complex engineering & scientific applications can be developed.

(b) Support for distributed database environment.

(c) Uses the concepts of artificial intelligence & neural networks.

12

1.7Actors on the scene (or) Important persons involved in RDBMS

DBA(Database Administrator) VIMP

(a) Responsible for authorizing access to the database.

(b) Formulates software & hardware resources needed in the enterprise.

(c) Verifies system log to keep track activities of users.

(d) Responsible for database security.
o Security can be imposed by assigning access privileges to the users.
o There are two types of access privileges.

1.Discretionary access privileges: Each individual user will be assigned USER ID,
PASSWORD, and ACCESS PRIVILEGES (Read / Write / Update).

2.Mandatory access privileges: Users are classified into user groups
TS(TOPSECRETS), S(SECRETS), C(CLASSIFIED), U(UNCLASSIFIED) and
appropriate access privileges will be assigned.

Database Designers

o Database designer is person

(a) Responsible for identifying data to be stored in database.

(b) Represent appropriate structure of database.

(c) Database designer interact with users and develop database view
according to users requirement.

(d) Designer must have complete exposure of DBMS architecture.

End Users

o End users are the people who access the database.

(a) Casual users o Users who occasionally access the database
using query languages.
E.g. Middle level or high level managers.

(b) Naive(or) Parametric | o Users who regularly access the database.
end users E.g. Blank clerks.

o Naive user may or may not have knowledge
about queries.

o Canned transaction: Transaction by Naive

users.
(c) Sophisticated end | Users DBMS to facilitate complex operations.
users E.g. DBA, DA, Business Analysts, Scientists,

Engineers, Professors etc.

13

(d) Stand alone users o Access database through GU/I’s.
o User doesn’t have knowledge about SQL
queries and Programming languages.

System Analysts

| (a) Identifies overall requirements to formulate Physical Design.

Application Programmers

(a) Responsible for developing applications using programming languages.

(b) Application programmer must be expert in both Host Language and
Data Sub Language.

1.7 Workers behind the scene (or) Persons involved in the development RDBMS

Tool Developers

o Tool: Tool is a software package.
o Tool developer: Person who design tools to access the database.

o Database contain the following tools

Forms Forms used to design GUI°.

Wizards Wizards are windows to facilitate automated tasks.
Prototypes | Prototype is resembling model for actual model.
Simulation | Simulation is atechnique used to transform one object into
another object.

Natural Natural languages are high level languages.

Languages
Text Data Program used to generate data from the database.
Generator

Operator & Maintenance personals

o Persons who are responsible for actual running and maintenance of
hardware and software resources of database systems.

DBMS system designers

a Person who designs the DBMS modules

14

1.8 Implication of Database Approaches
(or)

Changes occurred when DBMS is introduced

1. Potential for enforcing standards.

o DBA enforce applicable standards for normal running and maintenance
of system. This facilitates communication and co-operation among
various departments, projects, users within the organization.

2. Reduces application time.
o Application development time is reduced by 1/6™ to 1/4™ due to the
usage of forms, wizards, prototypes, simulation and natural languages.

4. Data retrieval and representation is efficient due to reporting.
5 Flexibility.
o DBMS is flexibility due to data independence (easy to change structure
of database objects).
6 Reliability.
o Database is available always i.e., lost data can be recovered by
recovery sub system.

7 Economy of sale.

(a) Project development cost will be reduced by using DBMS since
software and hardware resources can be shared.

(b) Operation and maintenance cost can be reduced by adopting advanced
software and hardware technologies.

1.9 DBMS languages and Interfaces VVIMP

DDL (Data Definition Language)

o Language used to create database objects.
o Used to create & alter the database objects.
E.g. Create, Alter commands.

E.g. Create table emp
(empno number(10),
ename varchar2(15));

E.g. Alter table emp
modify (empno number(15));

15

SDL (Data Definition Language)

o SDL (Storage Definition Language): Used to specify the internal

schema of database objects.

E.g. STORED-EMP LENGTH = 20
PREFIX TYPE = BYTE(6),
EMP# TYPE = BYTE(6),
DEPT# TYPE = BYTE(4),

OFFSET =0
OFFSET = 6, INDEX = EMP
OFFSET =12

PAY# TYPE = FULLWORD, OFFSET = 16

DML (Data Manipulation Language)

o DML (Data Manipulation Language): Used to access database objects.
E.g. Insert, Delete, Update commands

E.g. Insert into emp
values(&empno,’&ename’);

E.g. Update emp
set ename=’john’
where empno=1,;

E.g. Delete from emp;

DCL (Data Control Language)

o Used to provide persistency and recovery to database objects.

E.g.
Commit; Commits the transaction.
Rollback; Database items acquires previous state.

Savepoint <savepoint_name>;

Creates savepoint in a transaction.

Rollback to <savepoint_name>;

Databse item acquires savepoint status.

TCL (Transaction Control Language)

(@ Grant option assign privileges to the users.

(b) Revoke option cancel access privileges from the users.

E.g. GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO AZ2;

E.g. GRANT SELECT ON ASEMPLOYEE TO A3 WITH GRANT OPTION;

E.g. REVOKE SELECT ON EMPLOYEE FROM A3;

16

1.10 DBMS Interfaces

1. Forms For front-end design using GUI”.
2. Menu’® (@) Menu’® are command interpreters.
gb) By choosing menu options user can execute commands.
©) Menu’® are classified into Pull-down menu’® ,Pop-up menu’®.
3. Natural RDBMS provides support to multiple programming languages.
Languages
4. Wizards Windows used to perform automated tasks.
5. Prototypes Resembling model for actual model.
6. Simulation Transformation of one object into another object.
7. Interfaces to DBA creates user accounts and provide security restrictions
DBA over the assets of DBMS.
8. Interfaces to User defined packages.
Parametric
users

1.11 Database system utilities

Loading

o The process of storing data files into database.
o Datafile is represented in internal schema when it is stored physically

in the database.

Conversion tool

o Data base objects are represented in physical format (flat files) when
they are stored persistently in the database.

o Data base objects are represented in logical format (tables) when they
are retrieved into primary memory.

o Conversion tool converts source format to desired format and vice

versa.

Back up

o The process of taking duplicates for the actual data.

o Entire database is dumped into magnetic tape.

o Incremental backup: Notes the change since previous backup are

recorded.

17

File reorganization

o Reorganizing the data files after they are stored.
E.g. Indexing, Garbage collection

Performance monitor's

o Performance monitors are programs to determine the performance of
software , hardware, data, & users and provide statistics to the DBA.

1.12 Tools , Application environment , Communication facilities

Tools

1. CASE (Computer Aided | Used in the design phase.
Software Engineering)

2. Data dictionary Stores the entire description of the
database.
3. Contains (@) Information about designs.

(b) Application program description.
(c) User information.
(d) Usage standards.

Application environment

o Provide

(a) Application programs
E.g. Host language

(b) Queries
E.g. DSL (Data sub language)

Communication facilities

(@) Access the data in distributed database environment using
communication software.

(b) Integration of DBMS & Data communication system is also called DB/DC
systems.

18

Chapter -3
ER Model

3.1 Main phases of database design

1. Requirements
collection and
analysis

Database designers interview prospective database users
to understand their requirements.

2. Conceptual
design

Data requirements are formulated into entities, relationships
and constraints.

3. Logical design

Database schema formulated using data models.

4. Physical model

Internal storage structures, access paths, and file
organizations for database files are specified.

Functonal Requirements

:

FUNCTIONALANALYSIS

¢

High-level Transaction
il

Sl
"""" (DATAMODEL MAPPING)

APPLICATION PROGRAM
DESIGN

TRANSACTION
IMPLEMENTATION

Application Programs

Miniwaorid

REGQUIREMENTS
COLLECTION AND
ANALYSIS

l

Database Requirements

:

CONCEPTUAL DESIGN

¢

Conceptual Schema
(I a high-level data modei)

l

LOGICAL DESIGN

:

Logical m?mm)smam
(lnthedatansode! aspecific oams)

"us1sop aseqejep jo saseyd utew ay)

arensn|[l 01 weadeip payrjduwis y

|

-
O

'€ 9an

3.2 Entity types, Entity sets, Attributes & Keys IMP

o Entity: An object in the real world with an independent existence.
o Attribute: Property that describes an aspect of the entity.

o Attribute types:

(a) Simple: Attribute that is not divisible

E.g. Age

(b) Composite: Attribute that can be divided into smaller parts.
E.g. Address

Figure 3.4 A hierarchy of composite attributes; the
StreetAddress component of an Address is further composed
of Number, Street, and ApartmentNumber.

Address

StreetAddress City State Zip

Mumber Street ApartmentNumber

(c) Single-valued: Attribute containing single value.
E.g. Age, City

(d) Multi-valued: Attribute containing set of values.
E.g. Locations for DEPARTMENT
E.g. College degree

(e) Stored: Attribute having fixed value.
E.g. Date Of Birth

(f) Derived: Attribute derived from the value of the existing attribute.
E.g. NumberOfEmployees for DEPARTMENT
E.g. Age

(g) Complex attribute: Composite and multivalued attributes can be nested
in an arbitrary way.

Figure 3.5 A complex attribute AddressPhone with
multivalued and composite components.

{AddressPhone({Phone(AreaCode,PhoneNumber)},
Address(StreetAddress(Number,Street, ApartmentNumber),
City,State,Zip)) }

Figure 3.7 The CAR entity type. with two key attributes Registration and
VehicleID, Multivalued attributes are shown between set braces {}.
Components of a composite atfribute are shown between parentheses ().

CAR
Registration(RegistrationNumber, State), VehiclelD, Make, Model, Year, {Color}

can e
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 1998, {red, black})

car; ®

((ABC 123, NEW YORK), WP8872, Nissan Maxima, 4-door, 1999, (blue})
car; ®
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 1895, (white, blue})

o Entity sets : The collection of all entities of a particular entity type in the
database at any point of time.

Figure 3.6 Two entity types named EMPLOYEE and COMPANY.
and some of the member entities in the collection of entities

ENTITY TYPE NAME:

ENTITY SET:
(EXTENSION)

EMPLOYEE
Name, Age, Salary

(or entity set) of each type.

COMPANY
Name, Headquarters, President

e,.

(John Smiith, 55, 80k)

92.

(Fred Brown, 40, 30K)

e
‘e

(Judy Clark, 25, 20K)

2

C1.

(Sunco Ol Houston, John Smith)

Cz.

(Fast Computer, Dalias, Bob King)

\

Figure 3.3

&

Two entities, an employee e and a company c,,
and their attribute values.

Name = John Smith

Address = 2311 Kirby,

Age

HomePhone = 713-749-2630

Houston, Texas 77001

=55

SECOND
STATUS CITY
20 LONDON
10 PARIS
10 PARIS
20 LONDON
30 ATHENS

Domain

Name = Sunco Oil

Headquarters = Houslon

President = John Smith

A: E— P(V)

A : Attribute
E : Entity set
V : Value set
V = P(V1) x ... x P(Vn) for composite attributes
A(e) denotes the value of attribute A for entity e

o Relationship: The reference between two tables.

o Relationship type: Set of associations between n entities .

Note: Relationship type R among n entity types E1, ..., En defines a set of
associations among entities from these types. Each association will be

denoted as (el, ..., en) where ei belongs to Ei, 1 <=i <=n.

o Relationship degree: The number of entity types participates in a
relationship type.

o Binary Relationship degree: When two entity types participates in a
relationship type.

o Ternary Relationship degree: When three entity types participates in a
relationship type.

Figure 3.9 Some instances of the WorRkS FOR
relationship between EMPLOYEE and DEPARTMENT.

EMPLOYEE WORKS_FOR

e, @o— /
e\

WY

2%

DEPARTMENT

-
V

d,
d
4

Figure 3.10 Some relationship instances
of a ternary relationship suppLy.

SUPPLIER SUPPLY

o Role: Each entity participating in a relationship has a role.
E.g. Employee plays the role of worker and department plays the role of
employer in the WORKS_FOR relationship.
Note: Role names are more important in recursive relationships.

o Recursive relationship: If one entity plays two roles then the
relationship is called recursive relation.

Figure 3.11 The recursive relationship sUPERVISION. Where the EMP]
entity type plays the two roles of supervisor (1) and supervisee (2

SUPERVISION
EMPLOYEE

10

o Structural constraints on relationships: We have two relationship
constraints.

(a) Cardinality ratio constraint (1-1, 1-N, M-N)

(b) Participation constraint
1. Total participation (existence ependency):All the tuples of the participating

entity relates with the tuples of related entity represented with double line.

2. Partial participation : Some tuples of the participating entity relates with all the
tuples of related entity represented with single line.

o Note: Participation constraint is represented by (min,max) pair.
If min value = 0 then the is patial paticipation.
If min value >= 0 then the is total paticipation.

Figure 3.12 The 1:1 relationship MaNaGes. with partial
participation of employee and tofal participation of DEPARTMENT.

EMPLOYEE

MANAGES DEPARTMENT

11

Figure 3.13 The M:N relationship WORKS ON
between EMPLOYEE and PROJECT.

| WORKS_ON
EMPLOYEE

e 2 PROJECT
e -

t
/ c
e! - ﬁs

: "/ .

P

12

o Attributes of relationships:

1.

Note: Relationship types can have attributes, similar to entity types.

E.g. Hours attribute for WORKS_ON relationship

2.

If relationship is 1-N or 1-1, these attributes can be be migrated to the
entity sets involved in the relationship.

a) 1-N: migrate to N side

b) 1-1: migrate to either side

3.3 Weak Entity types IMP

o Weak entity: Entity that do not have key attribute.
E.g. DEPENDENT

Weak entity types: Entity Types that do not have key attributes.

Weak entities are identified by being related to other entity sets called
identifying owner. This relationship is called identifying relationship.

Partial key: Attributes that uniquely identify entities within the
identifying relationship.
(or)

A partial key is a key used to distinguish one record with another record
but not guarentted to be a key when new records are inserted.

A weak entity type always has TOTAL participation.

13

3.4 ER schema constructs (or) Symbols to write ER diagrams IMP

Symbal

& —<o—

1 // N
£ —— R
N
N\

< : (MIN, MAX)

Meaning

ENTITY TYPE

WEAK ENTITY TYFE

RELATIONSHIP TYPE

IDENTIFYING RELATIONSHIP TYPE

ATTRIBUTE

KEY ATTRIBUTE

MULTIVALUED ATTRIBUTE

COMPOSITE ATTRIBUTE

DERIVED ATTRIBUTE

TOTAL PARTICIPATION OF ESINR

CARDINALITY RATIO 1:NFOR E{/E2 INR

STRUCTURAL CONSTRAINT (niin, max)

ON PARTICIPATIOCNOF EIN R

14

‘UONLIOU WERISeIP ¥4 J0 AIpWwing £1°¢ 2ansi g

EMPLOYEE | FNAME | 83NT | LNAME 584 BOSTE ADDRESS SEX | S8ALARY | SUPERSSH |DMO
Jodn Simgh 1256788 18001408 731 Forcren, Houshon, TX Tyl LR ARG =
Frarhdn Wong 333445555 {ahs-{2408 B30 Woss, Mousmon. TX Bl AGED BAABHEHES 5
Alicia Zolaya SROBRrTTY 10880118 3321 Caslle, Sprirgy, TX = 2 B4 A
Jennier Walace DRSS 1041 {520 291 Beny, Bellaie, TX = A3HE) BREGERSSD A
Feresh MNegmyen HEEEEAM44 20015 Grh Fre Oak, Hanbls, TX bl 3E0E 33345555 5
S Erggsh A53453453 187240731 5531 Bios, Housion, TR = Palt it 3334455655 5
Ahrrad ek LRIBNTBEY 180328 o8 Cadlas, Houston, TH Tl HEE) SR A
Jares Borg BEBGHSENS 19371310 45 Sone, Houston, Tx Bl SA0E) i i
— = ~ h H\'-
EMPLOYEE s 2
» X
l FIAME MR LWAME | 55N EWTE ADDRAESS | BEK | BALAFY SUPFERSSN. | BNO |
= I e ’ =
____.-' --__\—__ . L et
EPARTMENT » ""ﬂ.
| CMAME | DINLRIEER KEEASEN | MERSTARTTIATE |
a Constraints:
1. An employee work for one department.
2. Department may have any number of employees.
3. Adepartment can be located any number of locations.
Crrame D Cwt) (rarte) ¢ dadoss D N (dmer
‘-\- : > '\ a _-/‘ ‘-‘\- F:-_F: .\.’\ TS '_/’ ‘/ \\- _ 7-__-" == e
—— ey == - / — e /.'um ~ _\\ (&N P \‘. ",;‘_'—— — "—::-.‘-.
ST ey, i S R e Qe) NChoton D)
- < \' / i t — N — — ——
_[\.w_q'i/ ' _‘f_‘_// _-‘jff - St S depatment \.\\ N \.\
= N A A e e = !
280 e BoeE: [-~ NumberOEmpioyess | DEPARTMENT |
o _= B,
{ Bdate >

15

Constraints:

An employee who is manager is supervisor.
Manager supervise any number of employees.
A manager is supervised by another manager.

WwMhEDO

COCR CORETN

=/

—— EMPLOYEE

>l B

(D.N) (©.1)
supervisor supervisee

16

o —

‘-._'_,_,—l"-'_'-.- oy
EMPLOYEE 4"""'# \\
| FRARE | MBI]umc/lsm | BONTE].*DGHEEE[E-E!| SALAETY [mrsw [uﬂnl

= —
..f"’# =

OMUMEER | aasiss| MERSTARTOATE

v \.ﬂ_x

E --\—

| BLocsmion

SBER | RLOCATICN | Rt |

W

EEPENDIENT

ESHH _ DEFENDENT NANE sEx | EoatE RELATKMISHIE

o Constraints
1. An employee may not have dependents.

2. An employee may have any number of dependents.
3. Every dependent must belongs to an employee.

17

Figure 3.15 ER ciagram for the COMPANY schema, with all role
names included and with structural constraints on relationships
specified using the alternate notation (min, max).

DEPENDENT

o Relationship attribute: Attribute derived from the relationship.
E.g. Hours, StratDate

19

Chapter-4
Enhanced Entity-Relationship & Object Modeling

o Super class: A parent class is super class.
o Sub class: A child class is called sub class.

o Inheritance: The mechanism of applying the properties of super class to
sub class is called inheritance.

4.1 Specialization IMP

o Specialization: The process of defining a set of subclasses of an entity

type.
E.g. Top-down hierarchy.

i

| EMPLOYEE |

| HOURLY_EMPLOYEE |

SALARIED _EMPLOYEE

| SECRETARY | | TECHNICIAN | | ENGINEER | MANAGER

Thrae specializations of EMPLOYEE:
{SECRETARY, TECHMICIAN, ENGINEER]}
{MANAGER}

FROJECT TRADE_UNION

4.2 Generalization IMP

o Generalization: The process of inheriting the features of super class
from the subclass is called generalization.
E.g. Bottom_up hierachy.

(@ NoOfPassengers NoOfAxles

TRUCK
g >
LicensePlateNo

(b)

LicensePlateMNo

VEHICLE

NoOfPassengers
MaxSpeed
CAR TRUCK

4.3 Constraints on Specialization and Generalization IMP

(a) Disjointness constraint: Subclasses of the specialization must be disjoint.

Fioure 4.4 An attribute-defined specialization
on the JobType attribute of EMPLOYEE.

CFame. Fmaﬁ(’ Mirit i(rmm

\\?’Nﬁuo @)%CM\ ’
TN /f

EMPLOYEE
Job Type
YoN
Secrstany” Enginesr
e NN
Y
TypingSpeec / L TiErade)\ x’m

/ Techniciar’ ‘a—:,_-f \ “*—~—7_-/

SECRETARY | | TECHNICIAN | | ENGNEER |

(b) Completeness constraint: Specifies every entity in the super class must be a
member of some subclass or not.

o Completeness constraint may be total or partial.

1. Total specialization: Every entity in the super class must be a member
of some sub class.

E.g. EMPLOYEE must be either a HOURLY_EMPLOYEE or a
SALARIED_EMPPLOYEE.

2. Partial specialization: An entity not belonging to any of the subclass.

E.g. Some EMPLOYEE entities do not belong to any of subclasses
{ SECRETARY,ENGINEER, TECHNICIAN }.

(kN:lma lf Mlnll J('...Nﬁ'l‘E

\
EM’-"LDYEE '
& Ny
N
. 4 \Y\
, // l’“' | :{%N

fv_/ (// *\\] . \‘D\

(’T;ﬁn:lsasen T d ("a odc) \ (FnoTyp;\) &z A%
7 3 ' 7 \ Cf.‘fiu@
yse«::E'ARv || TECHMCIAN | IENGINEEQ | MANAGER r’ Z Sduy) B ——
; 7 i S HULH.\ _EMFLOYEE |
P | SALARIED_EMPLOVEE | L
S : P A
e // o
<_’fi‘f_“"f'x> <__BELONGS *0\/
Threa speasizations of EMPLOYES S //
(SECRETARY, TESHNIC AN ENGINEER} T
{tAANSSER)

| TRADE LNION |

(c) Overlap constraint: Same entity may be member of more than one sub class of the
specialization.

Overlapping (nondisjoint) subclasses
(ElmasriMavaihe fig, 4.5)

f:_ Prthlz :" { mmwf“;.
L e
PART |
-\I
0
s
__..hl En—
: . SupplsrNams
%, T
I L GinlPrice
; \"'k { \H_»_“’_ 8
| MANUFATURED PART | | PURCHASED PART |

o We have four possible constraints on specialization
(a) Disjoint , total

(b) Disjoint, partial

(c) Overlapping, total

(d) Overlapping, partial

o Insertion and deletion rules apply to specialization

1. Deleting an entity from super class implies that it is automatically
deleted from all the subclasses.

2. Inserting an entity in a super class imply that the entity mandatory
inserted in all the subclasses.

3. Inserting an entity in a super class of a total specialization implies that
the entity is mandatory inserted in at least one of the subclasses of the
specialization.

4.4 Specialization and Generalization Lattice

o |If a subclass itself may have further subclasses specified on it, forming
a hierarchy called lattice of specialization.

Figure 4.6 A specialization lattice with the
shared subclass ENGINEERING_ MANAGER.

eMPLOVEE |

&
2

AN

v

SECRETARY | | TECHNIGAN ENGINEER | MANAGER /& :
: =N ' / HOURLY. EMPLOYEE |

Y\
DY, w1/
N\ A

p 2

EMGINEERING MANAGER

Figure 4.7 A specialization lattice (with multiple inheritance)
for a UNIVERSITY database.

ASSISTANT
| RESEAMCH ASSSIANT | | TEACHING ASSSTANT |

/
| srarr | | racury |
G G

A UML conceptual schema
(Elmasri/Navathe fig. 4.11)

EMPLOYEES DEPARTMENT Multiplicity Notation in OMT:
4. WORKS_FCR 1.1 11
Name: MamaDom Name 2
Fqnaftne- 1.4 5 ¢ | Number — @ 0°
Mini < L
T add_employee ol
- r';”ﬂme ! number_of_employess =
Badte:Date MAMGES change manager 0
Sex {M.F) StartDate . o
Address o 11
Salary - : . 1.0
ago : -
change department |* WORKS ON S LOCATION
change. projects supervisee | | Hours Narme -
1 . w 11
Dependent Name | [0 1 '
& supervisor PROJECT 0
I Name K
v Numoes <>
DEFENRENT awl_snployes
Sex (M F) acd_project Aggragation Notation In UML :
BirthDate: Date changa_manager
Relatiorship WHOLE K2 PART

Chapter -5
Record storage & Primary File Organizations

5.1 Memory Hierarchies

Priority | Device

1 High speed registers

2 Cache (or) Static RAM

3 Main memory (or) DRAM
4 Optical disk (or) CDROM
5

6

Magnetic disk
Magnetic tap

5.2 Secondary Storage Devices

1. Magnetic Disk

o Magnetic disk is a circular plate constructed of metal or plastic coated with magnetized
material

o Both sides of the disk are used

o Several disks may be stacked on one spindle with Read/Write heads available on each
surface

o All disks rotate together at high speed and not stopped or started for access purpose

o Used to store large amount of data .

o Basic unit of storage is BIT .

o BITis 1 by magnetizing area on disk .

o Character: Group of bits.

o Capacity: Number of bytes it can store.

o Number of tracks: ranges from few hundred to few thousand.

o Capacity of each track: ranges from tens of Kbytes to 150 Kbytes.

o Formatting: Tracks are divided into equal sized disk blocks called sectors.

o Sector size is fixed range from 512 to 4096 bytes.

sector (arc of a track)

three sectors
- two sectors
—— one sector

Read/Write head is classified into

1. Fixed head system.

2. Moving head system.

Rotate disk pack of cylinders ranging from 3600 and 7200 rpm.

Access time: Time required to access the data.

ta = Access time

ta=ts+1L

Seek time: Time required to position the read/write head on the correct track & correct
surface.

{5 = Seek time

Latency time: Time required to locate the required disk block from the beginning.

f_ = Latency time

LH

2. Floppy Disk

A disk drive with removable disks are called a Floppy Disk

The disks used with a Floppy disk drive are small disks made of plastic coated with magnetic
recording material

There are two sizes commonly used, with diameters of 5.25 and 3.5 inches
The 3.5 inch disks are smaller and can store more data than 5.25 inch disks

Floppy disks extensively used in personal computer as a medium for distributing software to
computer users

Basic unit of storage is BIT .

BIT is 1 by magnetizing area on disk .

a Character: Group of bits.

o Capacity: Number of bytes it can store.

o Density : Single density and Double density
o Data stored in: Tracks & Sectors

o Track: Data is placed in concentric magnetic circles called tracks
o Sector :Each track is divided into storage units called sectors
» FAT uses 512 byte sectors exclusively

» The number of Sectors per Track vary depending on the media and format

» Physical Sector Numbering starts with the number 1at the beginning of each track and
side

o Number of Tracks: 80 in 3.5 inch floppy disk

Disk Formats - 3.5”

Low Density High Density
Tracks 80 80
Sectors per track 9 18
Bytes per sector 512 512
Total capacity 720K 1.44M

__ sector (arc of a track)
track ——

o Formatting: Tracks are divided into equal sized disk blocks called sectors.

o Access time: Time required to access the data.

fa = Access time

tA:ts+t|_

Seek time: Time required to position the read/write head on the correct track & correct
surface.

{5 = Seek time

Latency time: Time required to locate the required disk block from the beginning.

t_ = Latency time

3. Magnetic Tape

Magnetic tape transport consists of the electrical, mechanical and electronic components
provide the parts and control mechanism for magnetic tape unit

The tape is a strip of plastic coated with magnetic recording media
Bits are recorded as magnetic spots on the tape along with several tracks

Usually, seven or nine bits are recorded simultaneously to form a character together with a
parity bit.

The information is recorded in blocks referred to as records

Each record on tape has an identification bit pattern at the beginning and end. By recording
the bit pattern at the beginning, the tape control identifies the record number.

By reading the bit pattern at the end of the record, the control recognizes the beginning of a
gap

A tape unit is addressed by specifying the record number and number of characters in the
record

Record may be fixed length or variable length
Sequential access.

Read/Write head: Reads or writes data on tape.
Strorage: 1600 to 6250 bytes per inch.

Inter block gap: 0.6 inches.

Block Block Block Block Block Block

5.3 RAID VIMP

o Redundant Array Independent Disk

RAID LEVEL 0 : Striped Disk Array without Fault Tolerance

RAID

Controller
Server

o RAID Level 0 requires a minimum of 2 drives to implement.

o Characteristics & Advantages:

1. RAID O implements a striped disk array, the data is broken down into blocks and each block
is written to a separate disk drive.

2. 1/0 performance is greatly improved by spreading the 1/0 load across many channels and
drives.

3. Best performance is achieved when data is striped across multiple controllers with only one
drive per controller.

4. No parity calculation overhead is involved.
5. Very simple design.

6. Easy to implement.

o Disadvantages

1. Not a"True" RAID because it is NOT fault-tolerant.

2. The failure of just one drive will result in all data in an array being lost.

3. Should never be used in mission critical environments.

RAID LEVEL 1 : Mirroring & Duplexing

RAID
Controller

Server

Mirroring # Mirroring

o For Highest performance, the controller must be able to perform two concurrent separate
reads per mirrored pair or two duplicate Writes per mirrored pair.

o RAID Level 1 requires a minimum of 2 drives to implement.

o Characteristics & Advantages:

1. One Write or two Reads possible per mirrored pair.

2. Twice the Read transaction rate of single disks, same Write transaction rate as single disks.

3. 100% redundancy of data means no rebuild is necessary in case of a disk failure, just a copy
to the replacement disk.

4. Transfer rate per block is equal to that of a single disk.

5. Under certain circumstances, RAID 1 can sustain multiple simultaneous drive failures.

o Disadvantages:

1. Highest disk overhead of all RAID types (100%) — inefficient

2. Typically the RAID function is done by system software, loading the CPU/Server and possibly
degrading throughput at high activity levels. Hardware implementation is strongly
recommended

3.

w N R

O

N

May not support hot swap of failed disk when implemented in "software"

RAID LEVEL 2 : Hamming Code ECC

ECC/Ax ECC/Az
ECC/Bx ECC/Bz
ECC/Cx ECC/Cz
ECC / Dx ECC/Dz
A0to A3=Word A BO to B3 = Word B ECC/Ax to Az = Word A ECC ECC/Bx to Bz = Word B ECC
COto C3=WordC DOtoD3 =Word D ECC/Cx to Cz = Word C ECC ECC/Dx to Bz = Ward D ECC

Characteristics & Advantages:

Each bit of data word is written to a data disk drive (4 in this example: 0 to 3).
Each data word has its Hamming Code ECC word recorded on the ECC disks.
On Read, the ECC code verifies correct data or corrects single disk errors.

Disadvantages:

Very high ratio of ECC disks to data disks with smaller word sizes — inefficient.
Entry level cost very high - requires very high transfer rate requirement to justify
Transaction rate is equal to that of a single disk at best (with spindle synchronization)

No commercial implementations exist / not commercially viable.

RAID LEVEL 3 : Parallel Transfer with Parity

Parity
Generation

_h PARITY

B pamty

C parimy

D earity

Stripe 0 Stripe 1 Stripe 2 Stripe 3 Stripes 0, 1,2, 3 Parity

The data block is subdivided ("striped"”) and written on the data disks. Stripe parity is
generated on Writes, recorded on the parity disk and checked on Reads.

RAID Level 3 requires a minimum of 3 drives to implement.

Characteristics & Advantages:
. Very high Read data transfer rate.
. Very high Write data transfer rate.

. Disk failure has an insignificant impact on throughput.

Low ratio of ECC (Parity) disks to data disks means high efficiency.

Disadvantages:

. Transaction rate equal to that of a single disk drive at best (if spindles are synchronized).
. Controller design is fairly complex.

. Very difficult and resource intensive to do as a "software" RAID.

RAID LEVEL 4 :Independent Data Disks with Shared Parity Disk

Parity
Generation

h PARITY

B pamity

C rarimy

D rariTy

Block 0 Block 1 Block 2 Block 3 Blocks 0,1, 2, 3 Parity
Each entire block is written onto a data disk. Parity for same rank blocks is generated on
Writes, recorded on the parity disk and checked on Reads.
RAID Level 4 requires a minimum of 3 drives to implement.
Characteristics & Advantages:
. Very high Read data transaction rate.
Low ratio of ECC (Parity) disks to data disks means high efficiency.

High aggregate Read transfer rate.

Disadvantages:

. Quite complex controller design.
. Worst Write transaction rate and Write aggregate transfer rate.
Difficult and inefficient data rebuild in the event of disk failure.

Block Read transfer rate equal to that of a single disk.

10

H w0 D PRF

RAID LEVEL 5 : Independent Data Disks with Distributed Parity Blocks

AOD Cﬁ . Do 0 PARITY

Server A1 ' § 1 1 PARITY R E1l

A2 i 2 PARITY R D2 E2
A3 3 PARITY f c3 lE! E3
4 pARITY | . 3 . Da ' E4
A Blocks B Blocks C Blocks D Blocks E Blocks

Each entire data block is written on a data disk; parity for blocks in the same rank is
generated on Writes, recorded in a distributed location and checked on Reads.

RAID Level 5 requires a minimum of 3 drives to implement.
Characteristics & Advantages:

Highest Read data transaction rate.
Medium Write data transaction rate.

Low ratio of ECC (Parity) disks to data disks means high efficiency.

Good aggregate transfer rate.

Disadvantages:

Disk failure has a medium impact on throughput.
Most complex controller design.
Difficult to rebuild in the event of a disk failure (as compared to RAID level 1).

Individual block data transfer rate same as single disk.

11

RAID LEVEL 6 : Independent Data Disks with Two Independent Distributed Parity Schemes

) >ey)>

XOR Parity | Reed-Solomon
Generation (P) | ECC Code =
Generation (Q) Y . BO

Al Q1 pagmy

Server

Q2 papmy P2 pagpmy

P3 papmy E B3
. efc... efc...

A Blocks B Blocks C Blocks D Blocks

Two independent parity computations must be used in order to provide protection against
double disk failure. Two different algorithms are employed to achieve this purpose.

RAID Level 6 requires a minimum of 4 drives to implement
Characteristics & Advantages:

. RAID 6 is essentially an extension of RAID level 5 which allows for additional fault tolerance
by using a second independent distributed parity scheme (dual parity).

. Data is striped on a block level across a set of drives, just like in RAID 5, and a second set of
parity is calculated and written across all the drives; RAID 6 provides for an extremely high
data fault tolerance and can sustain multiple simultaneous drive failures.

RAID 6 prodects against a single bad block failure while operating in a degraded mode.

Perfect solution for mission critical applications.

Disadvantages:

More complex controller design.

2. Controller overhead to compute parity addresses is extremely high.

. Write performance can be brought on par with RAID Level 5 by using a custom ASIC for

computing Reed-Solomon parity.
12

4. Requires N+2 drives to implement because of dual parity scheme.

5.4 Buffering of Blocks

o Buffering: The process of employing buffers in main memory to speed up the execution.

a There are three processors in the architecture of computer to speed up the execution

1. Processor

2. Mathematical co processor

3. I/0 Processor

o Parallel processing
(a) The process of employing several buffers in main memory to speedup the execution is
called double buffering.
(b) While one buffer is being read (or) written handled by the 1/O processor the CPU can

process data in the other buffer.

Figure 5.5 Interleaved concurrency versus parallel execution.

J
|

Interleaved concurmency Parallel execution of
of operations A and B. operations C and D.
I I I I ! ' '
| | | | ! ! !
| | | | ! ! !
A | A | ! ! !
] ! | |
| 1 1 : : :
| | | ! | |
| | | ! | |
| B | 1 B i i
I I
1 1
1 1
[]
| |
[]
: 1
A A P

Time

13

a Double buffering: VIMP
(a) Data processing using the CPU and I/O PROCESSOR in multiprocessing system.

(b) The CPU can start processing a block once its transfer to main memory is completed, at
the same time the disk I/O PROCESSOR can be reading and transfer the next block into a

different buffer.

Figure 5.6 Use of two buffers, A and B, for reading from disk.

| | | | |

disk block: i i+ I i+2 I i+3 I i+4 I
fill A filB o fillA I filB | filA |

[1Cx - | = |- 3 ||

| | | | |

| | | | |

[. [. [_ [[.
disk block: | i | i+1 I i+2 | i+3 | i+4

| processA | process B | process A | processB | process A
PROCESSING: O e B . (O SEEEE— S o

| | | | |

| | | | |

| | | | |

| | | | |

1 1 1 1 1

—h.

5.4 Placing File Records on Disk

o Data usually stored in the form of records.

o Record: Collection of related data items.

o Record type: Collection of attributes and their corresponding data types constitutes a

record type (or) record format.
E.g. RECORD TYPE using the C programming language.

struct employee {
char name[30];
char ssn[9];

int salary;

int jobcode;

char department[20];
}

14

o File: Sequence of records.
o Records are classified into two types
(a) Fixed length record: Field length is fixed.
Note: Assign NULL values if no values exists for that field.

(b) Variable length record: Field length may vary.

Figure 5.7 Three record storage formats. (a) A fixed-length
record with six fields and size of 71 bytes. (b) A record with two
variable-length fields and three fixed-length fields. (¢) A variable-field
record with three types of separator characters.

JO?CDDE
(a) NAME S3N SALARY [DEPARTMENT HIHE—IDATE
/
| ¥ |
LT E T T T T T ety
1 31 40 44 48 =]
JOBCODE
(b) SALARY
NAME S5N ¢ DEPARTMENT I
|Smith,.}0hn I12345E-TBEI' |xx>o¢ |>¢:-c:-<>< |Cnmputer I iﬁgiﬂgﬁs
1 12 21 25 29
Separator Characters
(c) — separates field name

from field value

[NaME=Smith, John | ssn=1234s6789 || pEPaRTMENT=Computer ||

I separates fields

@ terminates record

o Block: Group of records.

15

o When Block Size > Record Size, each block contain numerous records.

o Blocking factor(bfr) : Number of records per block.

o Let B is block size in bytes, R is fixed length record in bytes with condition B >= R, we can
fitrecords bfr=L B/R] per block.
o Unused space in block equal to B —(bfr * R) Bytes

o Number of blocks needed to store r records B =[(r/bfr) |Blocks

Figure 5.8 Types of record organization. (a) Unspanned. (b) Spanned.
(@)

; BRI

block i record 1 record 2 record 3 \‘\:\"{\. S
R h W
block i + 1 record 4 record 5 record 6 e
% L

(b)]
block i record 1 record 2 record 3 record4 | P iy
block i + 1 record 4 (rest) record 5 record 6 record 7 P

o There are several standard techniques are available for allocating disk blocks

Contiguous allocation Disk blocks are allocated contiguously.
Advantage: Fast reading using double buffering.

Disadvantage: Difficult to expand.

Linked allocation Each file blocks contains pointer to next file block.
Advantage: Easy to expand.

Disadvantage: Slow to read the whole file.

Cluster (or) File segments (or) | o Group of consecutive disk blocks.

Extents o Cluster are linked.

16

Advantage: Fast reading .

Indexed allocation Index block contain pointer to actual block.

Advantage: Fast accessing.

o File header (or) File descriptor
o File header : Table that contains information about blocks that is needed by the system
program.

a Includes information of

(a) Disk addresses of blocks.

(b) Record format descriptions of block i.e. fixed length (or) variable length (or) spanned (or) un

spanned.

5.5 Operations on Files

Open Prepares the file for reading (or) writing.

Reset Sets file pointer to the beginning of the file.

Find (or) Locate Searches the first record that satisfies the search condition.

Read (or) Get Reads the content of the file.

Find Next Searches for next record into the file that satisfies the search condition.

Delete Deletes the current record.

Modify Modifies field value for current record.

Close Completes the file access.

Scan If the file has just been opened (or) reset, scan returns the first record,
otherwise it returns the next record.

Record at a time operations

Reset Sets the file pointer to the beginning of the file.

Insert Insert new record in the file

Set at a time operations

Find All Locates all the records in the file that satisfy a search condition.

17

Find Ordered Retrieves all the records in the file in some specified order.

Reorganize Starts the reorganize process i.e. organization of data file into blocks, records.

5.6 Heap File (or) Pile File

o Heap File: File which stores the record in the order in which they are inserted.

o New records are inserted at the end of file.

o The last disk block of the file is copied into buffer, the new records are added and the block is
re written back to disk.

o The address of last file block is kept in the file header.

o The deletion of record leaves unused space in the disk block. Deleting a large number of
records in this way result in wasted storage space.

o Periodic reorganization is needed to reclaim the unused space of deleted records.

5.7 Sorted Files (or) Files of Ordered Records
o Blocks are allocated contiguously in the file.

o Records are ordered based on key field (or) ordering field.
o Advantages:
(a) Reading become efficient because no sorting is required.
(b) Searching based on key field is faster.
o A Binary search for disk files can be done on the blocks rather than on the records.

18

| «1; u «Db; (* bis the nunber of file blocks *)

while (u >=1) do

begi n

i «< (I +u) div 2

read block i of the file into the buffer;

if k < (ordering key field value of the first record in the block i) then
u<«i -1

el se

if k > (ordering key field value of the first record in the block i) then
| «i +1

el se

if the record with ordering key field value = k is in the buffer then goto
f ound

el se goto notfound;

end,

got o not f ound;

Disk Block

10 1

20 2

30 3

a0 | 4

50 5
I u u>=1 [k k<wval(i) k>wval(i) k=val(i)
1 5 5>=1 i = (1+5) div 2=3 40 40<30 F 40>30T 40=40T
4 5>=4 | |=(4+5) div2=4 40< 40 F 40>40F

19

Figure 5.9 Some blocks of an ordered (sequential) file of EMPLOYEE
records with NAME as the ordering key field.

NAME SSN BIRTHDATE JOB SALARY SEX

block 1 Aaron. Ed
Abbott, Diane

v I |]

block 2 Adams. John
Adams, Robin

Akers, Jan | | | |

block 3 Alexander, Ed
Alfred, Bob

Allen, Sam | | | |

block 4 Allen, Troy
Anders, Keith

Anderson, Rob | | | |

block 5 Anderson, Zach
Angedi, Joe

Archer Sue | | | |

block & Amold, Mack
Amold, Steven

Atiins, Timothy | | | |

block n -1 Wong, James
Wood, Donald

Woods, Manny | | | |

block n Wright, Pam
Wyatt, Charles

Zimmer, Byron | | | |

5.9 Hashing VIMP

o Hashing : Technique used to provide address to records stored in disk.
o Hash file (or) Direct file : File that implement hashing.
o Hash field (or) Hash key : Single field that hold hash address.

Internal Hashing

o Internal Hashing: The process of allocating disk addresses in a hash table is called internal

hashing.
o Hash Table: Hash table is array of records where as array index ranges from 0 to M-1.

o Hash Function: Function that transforms the hash field value into integer between 0 to M-1.

21

Figure 5.10

Internal hashing data structures. (a) Array of M positions

for use in internal hashing. (b) Collision resolution by chaining records.

(@)

R LT I o T |

M-2
M—1

M+ 1
M+2

M+0-2
M+O-1

MNAME SSN JOB SALARY

0
1
2
3
M-2
M—1
data fields overflow pointer
1
M
-1
-1
M+2 address
space
M+1
1
M+5
M+ 4
. overflow
* space
= null pointer = -1.

= overflow pointer refers fo position of next record in linked list.

22

o Two sinple hash algorithns

(a) Applying the nod hash function to character

tenmp « 1,

for i «1 to 20 do

tenp <« tenp * code(Kli]) nmod M
hash_address <« tenp nod M

Note : code returns ASCII val ue of the key.

(b) Collision resolution by open addressing
I <« hash_address(k); a «i;
if location i is occupied then
begi n
i <« (i+l) nod m
while (i !'= a) and location i is occupied
do i « (i+l1) nod m
if (i=a) then all position are full

el se new _hash_address <« i;

string k

end;
m k [a loc(i)= i'= a && loc(i) =occupied
occupied
10 40 7 7 True
(7+1) 8!=7 && loc(i) =occupied True
mod 10
=8
(8+1)
mod 10
=9
False

9!=7 && loc(i) =occupied

© 0o N OO 0o~ W N+, O

10

20

40

23

CONCURRENCY CONTROL

Concurrency: A problem situation as a single data item is required by the multiple
transactions simultaneously.

Topic 1: Two Phase Locking Techniques for Concurrency Control

Lock: A lock is a variable that prescribe the state of database items.

1.1 Binary Locks

1.
2.

A binary lock can have two states or values locked and unlocked (or) 1 and 0.

States:
Lock(x)=0 indicates that the database item is available.
Lock(x)=1 indicates that the database item is not available.

Operations:
Lock_item(x);
Unlock_item(x):

Note: x is a database item.

= Algorithm:
lock itemi(X):
B: i LOCK(X)=0 (* tem 1 unlonkad *)
then LOCK) «-1 (* lock the item *)
else
begin

wa {uritl LOCKX) = O
and the lock manage: wekes up the transaction);
aoto B
end
unlock itemiX);
LOCK(X) «10: {* unlock the tam *)

il any transactions are wating

then wakeup one of the waiting transactions;

Rules for Binary Locking:

T

reanl locklY)
read_item(Y);
unlaskiY);
writa_louk (X)),
read nem(X,
K=X+Y,
write iemiX);
unlack{X);

The read/write operation is preceded by lock operation.

A transaction must be unlocked if it is locked.

A transaction must not issue lock operation once it is locked.
A transaction will not issue unlock if it is not locked.

Ll A

1.2 Shared/Exclusive Lock (or) Read/Write Lock

= Multiple transactions can simultaneously read the data but single transaction exclusively
updates the data while remaining transactions are waiting.

= Operations:
1. read_lock(x): Multiple transactions are allowed simultaneously to read the data base
item.

read_lock(x) read_lock(x)

T1 > <€ T4
T read_lock(x) > x < read_lock(x)

T5

T3 read_lock(x) read_lock(x)

> € T6

2. write_lock(x): A single transaction exclusively holds lock on the database item.

ite_lock
- write_lock(x) L x

N—"

Waiting Transactions T2 T3 T4 T5 T6

3. unlock(x): Release of lock on data base item after completion of transaction.

= Algorithm:

read lock(X):
B: if LOCK(X) = "unlocked"
than begin LOCK(X) ¢ "read-lockad”;
no_of readsiX) <1
end
etseif LOCK(X) = “read-locked”
then no_ ol reads{X} < no_of resds{X) + 1
aise begin
waill (unhif LOCK(X) = "uniocked"
and the look manager wakas up the transacton);
gotoB
end:

write_lock(X):
B: LOCK(X]) = “uniocked"
then LOCK(X] «— “write-lockpd®
atas begin
wall {until LOCKIX) = “unlocked”
and the lock manager wakas up the transaction),
gotoB
end,

unlack (X
it LOCKLX) » “whita:-locked”
thien begin LOCK (X} «— "unlocked”,
wokoup vne of the whaiting transactions, il any
end
gize it LOCKUAT = “read-locked"
then begin
no_of rpadelX) & na ol readsiX) -1,
dno_ot_reads{X) =0
thanbegin LOCK(X) = "unlocad"”;
wakeap ane of the wailing ransactions, i any
end
end,

vk wWwN e

Rules for Shared/Exclusive Locking

T

rear) lock{Y')
read_itlem(Y),
unlaek{Y);
writa_lock(X),
read nem(X],
£=X+Y,
write iemiX);
unlock{X);

The read/write operation is preceded by lock operation.

A transaction must issue write lock before write operation.
A transaction must be unlocked if it is locked.

A transaction must not issue lock operation once it is locked.
A transaction will not issue unlock if it is not locked.

Topic 2: Guaranteeing Serializability by Two-Phase Locking

Objective: Concurrency Control.

= read_lock(x): Multiple transactions are allowed simultaneously to read the data base
item.

read_lock(x) read_lock(x)

T1 > <€ T4
) read_lock(x) S x < read_lock(x)

T5

T3 read=lock(x) read_lock(x)

> <€ T6

= write_lock(x): A single transaction exclusively holds lock on the database item.

<
N

write_lock(x)
T1 D X
Waiting Transactions | T2 T3 T4 T5 T6

= Rule:

Ty

aur) locklY)
read_teml()Y)
unlaekiY);
write louk (X)),
read nem(Xx!
=X+
write iemiX),
unlockX);

All the locking operations are preceded by the un lock operation.

= Growing Phase:

1. Anew lock on data base item can be acquired but none can be released.
2. Up gradation of lock is possible (Changing read lock to write lock)

= Shrinking Phase:

3. Existing locks can be released but no new locks can be acquired.

4. Down gradation of lock is possible (Changing write lock to read lock)

.1 Static 2PL (or) Conservative 2PL:

All the locking operations are preceded by the un lock operation.
Read Set & Write Set for the transactions are formulated.

Read Set: Set of all the data items that the transaction reads.
Write Set: Set of all the data items that the transaction writes.

Example: Find Read Set & Write Set for the following Transaction.

Ty

rean Jock{Y)
read_ltem()),
unlazkiY):
writa_lock(X),
read nem(X),
£=X+Y
write_temiX);
unlock(X);

Read Set

X,Y

Write Set

X

PROBLEMS

Problem 1: Find Read Set & Write Set for the following Transactions.

(cy

Timo

T

roaa_locklY)
read lemty)
unieckl ¥):

wils - (Gch X
et e X

resd lockix),
raad smiX),
unlockiX],
writs: lock(Y)
mad iteml));
=X+ T
writse el Y)
unlock(Y')

Xz X & Y,
wrilo: flemiX);
uehockiXN);
Read Set Write Set
X,Y X,Y

Problem 2: Verify whether the following transaction ensures 2PL.

Ta

read lock(X);
read item(X);
unlock(X);
write_ lock(Y);
read item{Y):
Yr=X+Y
write item(Y);
unlock{Y);

Result: The Transaction T, ensure 2PL since all locking operations precedes un lock
operations.

Problem 3: Verify whether the following transactions ensures 2PL.

(cy 1 T, T,

rmaa_lock(Y)

read [lemly],

uniteck(¥);
resd lockix),
raad smiX),
unlockiX],
wiite: lock(Y)

Tim

mad item()');
Y=X+T.
writa dami YY),
unlock(yY']

Wil ek X

et tem(X)

X=X % Y,

' wiillo: flemiX);
unlockiX),

Result: The Transaction T, and T, ensure 2PL since all locking operations precedes un lock
operations.

CONCURRENCY CONTROL BASED ON TIME STAMP ORDERING

(i) Time Stamp Ordering Algorithm (TO): The Timestap ordering protocol is a protocol used to
sequence the transactions based on their Timestamps.

= Each transaction must have time stamp when it gets started.

= Time Stamp: The unique identification number assigned for transaction.

= The time stamp of T is also called as TS (T).

Operations:
= read_TS(X): The read timestamp of item X is the largest timestamp among all the timestamps of

transactions that have successfully read item X.
= write_TS(X): The write timestamp of item X is the largest of all the timestamps of transactions that

have successfully written item X.

read_TS(x): write_TS(x): X:
100 100 10
101 101 11
102 102 12
TS(T1)=100 TS(T2)=101 TS(T3)=102
T1 T2 T3
read_item(x); 10 read_item(x); 11 read_item(x); 12
X:=X+1; 11 X:=X+1; 12 X:=x+1; 13
write_item(x); 11 write_item(x); 12 write_item(x); 13

transaction is nothing but the

(ii) Basic Time Stamp Ordering Algorithm: The order of

ascending order of the transaction creation.
= Every transaction is issued a timestamp based on when it enters the system. Suppose, if an old

transaction T; has timestamp TS(T;), a new transaction T;is assigned timestamp TS(T;) such

that TS(T;) < TS(T;).
read_TS(x): write_TS(x): X:
100 100 10
101 101 1
99 12
101 11
TS(T1)=100 TS(T2)=101 TS(T3)=99
T1 T2 T3
read_item(x); 10 read_item(x); 11 read_item(x); 12
X:=x+1; 11 X:=x+1; 12 X:=x+1; 13
write_item(x); 11 write_item(x); 12 write_item(x);
aborted;

Condition 1:
= Whenever a transaction T issues a write_item(X) operation, the following is checked:

99 > 101 101 > 99
a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and reject the
operation.
b. If the condition in part (a) does not occur, then execute the write_item(X) operation of T and
set write_TS(X) to TS(T).
Condition 2:
Whenever a transaction T issues a read_item(X) operation, the following is checked:

101 > 99
a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation.

101 <=99
b. If write_TS(X) <= TS(T), then execute the read_item(X) operation of T and set read_TS(X) to the

larger of TS(T) and the current read_TS(X).

Condition 3:
Cascading Rollback: If transaction T is aborted and rolled back, any transaction T; that may have used a

value written by T must also be rolled back.

X:

read_TS(x): write_TS(x): 10

100 100 e

101 101 L

102 102 13

TS(T1)=100 TS(T2)=101 TS(T3)=102
T1 T2 T3
read_item(x); 10 read_item(x); 11 read_item(x); 12
X:=x+1; 11 X:=x+1; 12 X:=x+1; 13
write_item(x); 11 write_item(x); 12 write_item(x); 13
Failed Failed Failed;

(iii) Strict Time Stamp Ordering Algorithm (TO): Every transaction must commit when it exits.

read_TS(x): write_TS(x): X:

100 100 10-

101 101 11

102 102 12

13

TS(T1)=100 TS(T2)=101 TS(T3)=102
T1 T2 T3
read_item(x); 10 read_item(x); 11 read_item(x); 12
X:=X+1; 11 X:=x+1; 12 X:=x+1; 13
write_item(x); 11 write_item(x); 12 write_item(x); 13
commit; commit; commit;

A transaction T that issues a read_item(X) or write_item(X) such that TS(T) > write_TS(X) has its
read or write operation delayed until the transaction T that wrote the value of X has committed

or aborted.

Thomas’s Write Rule: This is modification of the basic TO algorithm. When the current transaction

102 >101

(TS(T)) fails then continue the read operation and abort write operation.

102 > 102

1. |If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

102 > 102

2. If write_TS(X) > TS(T), then do not execute the write operation but continue processing.

read_TS(x): write_TS(x): X

100 100 10

101 101 11

102 102 12

101
TS(T1)=100 TS(T2)=101 TS(T3)=102
T1 T2 T3

read_item(x); 10 read_item(x); 11 read_item(x); 12
X:=x+1; 11 X:=x+1; 12 X:=x+1; 13
write_item(x); 11 write_item(x); 12 write_item(x); 13
commit; commit; Failed;

1.4 Multiversion Concurrency Control Techniques

= Version: State of database item after successful updation.

read_TS(x): write_TS(x): X:
100 100 10
101 101 11 xi First Version
102 102 12 xi+1 Second Version
43 xi+2 Third Version
TS(T1)=100
(T!l TS(T2)=101 TS(T3)=102
read_item(x); 10 T2 T3
= ! read_item(xi); 11 read_item (xi+1); 12
X:=x+1; 11 .- .
L Xi:=xi+1; 12 x:=(xi+1)+1; 13
write_item(x); 11 . . o ’
. write_item(xi); 12 write_item((xi+1)+1); 13
commit; . R
commit; commit;

= Temporal Database: Database keeps track of multiple versions of database items.
E.g. xi, xi+1, xi+2, xi+3 etc.

= Advantage: Multiple versions of database items are maintained so that concurrency is avoided to
certain extent.

= Operations:
1. read_TS(Xi): The read timestamp of Xi is the largest of all the timestamps of transactions that have
successfully read version Xi.

2. write_TS(Xi): The write timestamp of Xi is the timestamp of the transaction that wrote the value of
version Xi.

= Serializability in Multiversion Concurrency Control:

To ensure the serializability the follow rules are used

1. If transaction T issues a write_item(X) operation, and version i of X has the highest write_TS(Xi) of
all versions of X that is also less than or equal to TS(T), and read_TS(Xi) > TS(T), then abort and roll
back transaction T; otherwise, create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has the highest
write_TS(Xi) of all versions of X that is also less than or equal to TS(T); then return the value of Xi
to transaction T, and set the value of read_TS(Xi) to the larger of TS(T) and the current
read_TS(Xi).

= Multiversion Two-Phase Locking Using Certify Locks:

1. Compatability table for read/write locks:

Read Write
Read Yes No
Wirite No No
Case 1: Case 2:
read_lock(xi)
Tl > : 71 Leadtockix) -
read_lock(xi) X Xi
T2
T2 Cannot impose write_lock(x)
Case 3: Case4:
write_lock(xi) . ite_lock(xi
n S| i T2 write_lock(xi) S| i
T2 Cannot impose read_lock(x) T1 Cannot impose read_lock(x)

2. Compatability table for read/write/certify locks:

Certify Lock (or) Notify Lock: Certify lock has highest priority. It is the monarch lock where other locks

can not be done.

Head Write Certily N\ J/
write_lock(xi) | .
Raad Yoz Yes No T2 >| xi
Wiite Yes Na No T1 write_lock(xi+1) >| Xi+1
C“’r”ﬁ’l [\j 0 f\j(_| h‘o T3 write_lock(xi+2) > Xi+2

DISTRIBUTED DATABASES

TOPIC 1: DISTRIBUTED DATABASE CONCEPTS VVIMP

Centralized database: Centralized database is a software system that creates

& access data base at central site

Disadvantage of central site: If central site fails, database is not available for

other sites in the network

— Central Site
DB, . DB,
(Chiocago)

Site 1

(San Francisco) [T~

Site 3
— | (Dallas)

Communication

Network

Site 2
(Texas)

\ Site 4

(NewYork)

Figure 1. Centralized Database Architecture.

Distributed Database Management System (DDBMS): Distributed database

management system is a software system that creates & access the

distributed database over a computer network.

1.1 DIFFERENCES BETWEEN DDB AND MULTIPROCESSOR SYSTEMS

Connection of database nodes over a computer network: There are multiple

computers, called sites or nodes. These sites must be connected by an

underlying communication o transmit data and commands among sites.

Logical interrelation of the connected databases: It is essential that the

information in the databases be logically related.

Absence of homogeneity constraint among connected nodes: It is not

necessary that all nodes be identical in terms of data, hardware, and software.

1.2 TRANSPARENCY

Network

(a) Data Organization
Transparency (or) | =

Distribution or

Transparency "

This refers the user can access any site across the network.

Location Transparency: The commands used to perform a
task is independent of the location of data and location of
system across the network.

Naming Transparency: The name of the objects can be

accessed unambiguously without additional specifications.

(b) Replication

Transparency

Copies of data may be stored at multiple sites for better

availability, performance, & reliability.

(c) Fragmentation

Transparency 1.

Two types of fragmentation are possible

Horizontal Fragmentation: Distributes the relation into set of
tuples (rows).

Vertical Fragmentation: Distributes the relation into sub
relations where each sub relation is defined by a subset of

the columns of the original relation.

Data distribltion and mepicanon
umung distniuted databases

EMPLOYEES San Francitco

PROJECTS
WORKS DN

EMPLOYEES Los Angelea

PROIECTS

WORKS_ON

EMPLOYEES Al

employses

PROIECTS Al
and Lo= Angeles WORKS ON All EMPLOYEES New York
San Frannisco 7 PROJECTS Al
Chicago
San Francmes tdesdauarizr) WORKS ON Naw York
smplayées = : smployees
| SR S ;
| San Francioco | New York |
¢ Communications Y
= Netwark ,L’__ >
| Lo Angeles [AN i S L Atlarita l
EMPLOYEES Alants
Loz Angeles and PROIECTS Atlanta
apid i WORKS ON Atianta
Los Angeles amployeas

Figure 2. A Truly Distributed Database Architecture

1.3 AUTONOMY

Autonomy determines the extent to which individual nodes or databases in a
connected Distribute Data Base can operate independently.

A high degree of autonomy is desirable for increased flexibility and
customized maintenance of an individual node.

Autonomy can be applied to design, communication, and execution.

Design Autonomy: Design autonomy refers to independence of data model
usage and transaction management techniques among nodes.

Communication Autonomy: Communication autonomy determines the extent
to which each node can decide on sharing of information with other nodes.
Execution Autonomy: Execution autonomy refers to independence of users to

act as they please.

1.4 RELIABILITY & AVALIABILITY

Reliability: Reliability is broadly defined as the probability that a system is

running (not down) at a certain time point.

Availability: The probability that the system is continuously available during a

time interval.

1.5 ADVANTAGES OF DISTRIBUTED DATABASE

1.

Improved ease and flexibility of application development.

Increased reliability and availability

Improved performance

Data localization reduces the contention for CPU and I/O services and reduce
access delay.

Local queries & transactions accessing data at a single site have better
performance because of the smaller local databases.

Inter query & Intra query parallelism can be achieved by executing multiple
gueries at different queries at different sites or by breaking up query into a
number of sub queries that execute in parallel.

4.

Easier expansion.

1.6 FUNCTIONS OF DDBMS

1.

Keeping Track of Data Distribution: The ability to keep track of the data

distribution, fragmentation, and replication by expanding the DDBMS catalog.

Distributed Query Processing: The ability to access remote sites and transmit

gueries and data among the various sites via a communication network.

Distributed Transaction Management: The ability to access remote sites and
transmit queries and data among the various sites via a communication

network.

Replicated Data Management: The ability to decide which copy of a replicated

data item to access.

Distributed Database Recovery: The ability to recover from individual site
crashes and from new types of failures, such as the failure of communication

links.

Security: Distributed transactions must be executed with the proper
management of the security of the data and the authorization/access

privileges of users.

Distributed Directory (Catalog) Management: A directory contains information
(metadata) about data in the database. The directory may be global for the

entire DDB, or local for each site.

TOPIC 2: TYPES OF DISTRIBUTED DATABASE SYSTEMS

2.

1 FEDERATED DATABASE MANAGEMENT SYSTEMS

» A Federated Database System (FDBS) is a collection of cooperating database

systems that are autonomous and possibly heterogeneous.

= The type of heterogeneity present in FDBSs may arise from several sources.
TYPES OF HETEROGENEITY:
1. Differences in Data Models:

= Data is represented using different data models. (Hierarchical, Relational,
Network & Object Oriented data models).

2. Differences in Constraints:

= The global schema must also deal with different constraints. (Not null,
Unique, Primary Key, Foreign Key, Check)

» ER models are represented as referential integrity constraints in the relational
model.

= Triggers may have to be used to implement certain constraints in the
relational model.

3. Differences in Query Languages:

= Even with the same data model, the languages and their versions vary. For
example, SQL has multiple versions like SQL-89, SQL-92, SQL-99, and SQL.:
2008, and each system has its own set of data types, comparison operators,

string manipulation features, and so on.

2.1.2 SEMANTIC HETEROGENEITY.

= Semantic heterogeneity occurs when there are differences in the meaning,

interpretation, and intended use of the same or related data.

1. The universe of discourse from which the data is drawn.

= For example, for two customer accounts, databases in the federation may be
from the United States and Japan and have entirely different sets of attributes
about customer accounts required by the accounting practices. Currency rate

fluctuations would also present a problem. Hence, relations in these two

databases that have identical names-CUSTOMER or ACCOUNT-may have

some common and some entirely distinct information.

2. Representation and Naming.

» The representation and naming of data elements and the structure of the data
model may be pre specified for each local database.

3. The understanding, meaning, and subjective interpretation of data.
» This is a chief contributor to semantic heterogeneity.
4. Transaction and Policy Constraints.

» These deal with serializability criteria, compensating transactions, and other
transaction policies.

5. Derivation of Summaries.

= Aggregation, summarization, and other data processing features and

operations supported by the system.

TOPIC 3: DISTRIBUTED DATABASE ARCHITECTURES

3.1 PARALLEL VERSUS DISTRIBUTED ARCHITECTURES

There are two main types of multiprocessor system architectures that are

commonplace:

= Shared Memory (tightly coupled) Architecture: Multiple processors share
secondary (disk) storage and also share primary memory.
= Shared Disk (loosely coupled) Architecture: Multiple processors share

secondary (disk) storage but each has their own primary memory.

(b)

Cimplibas Syatam 2

o

-

Caimputior Syetem 1

e

Sits
(San Francisco)

Site
(Los Angales)

(Gt on || | [E0
~| | [omam] ~—
| [
Swilizh

Camputar Syxtem i
—
j-"\—_o-"
Ry] o8

[Wamony | —

Fig 1. Shared nothing architecture.

—~ - Caniral Site -
DB, (Ghicago) DB,
e Site
o~ (New York)
=% Communications T"jl
4 Natwork —
sl V) s Site
= 2 (Attanta)

Fig 2. A networked architecture with a centralized database at one of the sites.

(c) >
Site 5 —-[v
S 3
e = A=
Sile 4 = 7z N =
e I’ Communicaticns T
— Netwark
= A Nk g
Sife 3 N S

P i N

S
Site 1

N~

r'—‘\
Site 2

Fig 3. A truly distributed database architecture

3.2 GENERAL ARCHITECTURE OF PURE DISTRIBUTED DATABASES
= In this section we discuss both the logical and component architectural

models of a DDB.
3.2.1 SCHEMA ARCHITECTURE OF DISTRIBUTED DATABASES.

User User Figure 25.4
Schame grehiecies of
distributod databpcss

External Extamal

Viaw \\ / Virw

N D

Glohal Conceptugl Schama (GCS)

P4 =
7 \
7 4
Local Concoptual Sshana (LOS) [ssvervianinns Local Concoptusl Schama (LCS)
A I
4
Lossl Intemal Schemia (18) Jesvesniininns Locsl itema! Sphema (LIS)
I Y
|
e T
B =
Stored Stoeed
Outn AT ~addie 20 bamal Data
-"Q-“ /__,—-—%
D .
Sits Sites 2 o n-1 Site n

Fig 4. Schema Architecture of Distributed Database.

» Logical Internal Schema (LIS) specifies physical organization details at that
particular site.

» Logical Conceptual Schema (LCS) specifies the logical organization of data at
each site is specified by the local conceptual schema

= The Global Conceptual Scheme (GCS) specifies provides network

transparency.

3.2.2 COMPONENT ARCHITECTURE OF DISTRIBUTED DATABASES.

Figure 25.5
Component archifecture

of distributed databases.

= Query Compiler: Inspects the process of query compilation.

User

:

Interactive Global Query

'

Global Query Compiler

Y

Global Query Optimizer

'

Global Transaction Manager

Y

Y

Local Transaction Manager

Y

Lacal

System
Catalog

-

Local Query
Translation
and Execution

Fig 5. Component architecture of distributed database.

Stored
Data

CHAAREIRARRAARRARARERARNENAARNAARS

l

Local Transaction Manager

Y

Local
System
Catalog

Local Query
Translation
and Execution

Stored
Data

= Query Optimizer: The optimizer selects the minimum cost for execution.

= Transaction Manager: Coordinates and executes the transactions.

= System Catalog:
schemas of the databases.

The system catalogue stores

meta-data

3.2.3 FEDERATED DATABASE SCHEMA ARCHITECTURE

*» Federated Schema is an integration of multiple export schemas.

including

Exlemal Extinal Extarral
schama schema sohama
| b
Federstad Federated ’
schemd sChema
| i
y . o l E "
Expor Export Expart
schema getbama schama
S , ~ l - - o’
» l -
Component. | Component
Sehand _ sahema
— —
Local Local
schems schsima:
\ 7 L ‘
Companant Componant
DBS DBS

Fig 6. The five-level schema architecture in a federated database system (FDBS).

= Component DBS: Database control system.
= Local schema: Conceptual schema.
= Component schema: Translates the local schema into common data model.

= Export schema: Subset of component schema.

is the result of integrating all the shareable export schemas.

the

Federated schema: The federated schema is the global schema or view, which

10

External schema: External schemas define the schema for a user group or an

application.

3.2.4 THREE-TIER CLIENT-SERVER ARCHITECTURE
In the three-tier client-server architecture, the following three layers exist:

Client
User interface or presantation ter
(Wab browser, HTML. JavaScnpt, Visual Basig, . .)

l

HTTP Protocal

;

Application server
Apphoation (business) kogio tier
(Application program;, JAVA, GIG++, G2)

T

ODEC, JBBC, SQL/CLL SOL)

¢

Database server

Cluary and transaction processing ties
(Database access, SOL -PSM, XML, ..)

Fig 7. The three tire client server architecture.

1. Presentation Layer (Client):

This provides the user interface and interacts with the user.
The programs at this layer present web interfaces or forms to the client in

order to interact with the application.
Web browsers are often utilize the languages like HTML, XHTML, CSS, Java,

JavaScript and others to perform client side validations.

11

2

. Application Layer (Business Logic):

Application logic is written in this phase.

Queries can be formulated based on user input from the client.

Query results can be formatted and sent to the client for presentation.
Additional application functionality can be handled such as security checks,
identity verification, and other functions.

The application layer can interact with one or more databases or data sources
as needed by connecting to the database using ODBC, JDBC, SQL/CLI, or

other database access techniques.

3. Database server.

This layer handles query and update requests from the application layer,
processes the requests, and sends the results.

Usually SQL is used to access the database if it is relational or object-
relational and stored database procedures may also be invoked.

Query results (and queries) may be formatted into XML when transmitted
between the application server and the database server.

TOPIC 4: DATA FRAGMENTATION, REPLICATION, AND ALLOCATION TECHNIQUES
FOR DISTRIBUTED DATABASE DESIGN

Fragment: Subset of table.

3.1 DATA FRAGMENTATION

Fragmentation is the task of dividing a table into a set of smaller tables.
The subsets of the table are called fragments.

Fragmentation can be of three types: horizontal, vertical, and hybrid.

12

EMPLOYEE
EMPNO ENAME SALARY
1 JOHN 3400
2 MARTIN 4300
3 ELICA 4500
4 MILLER 3400

3.1.1 Horizontal Fragmentation: A horizontal fragment of a relation is a subset of
the tuples in that relation. The tuples that belong to the horizontal fragment are

specified by a condition on one or more attributes of the relation.

EMPLOYEE

EMPNO ENAME SALARY
1 JOHN 3400
2 MARTIN 4300

3.1.2 Vertical Fragmentation: Vertical fragmentation divides a relation “vertically”

by columns. A vertical fragment of a relation keeps only certain attributes of the

relation.
EMPLOYEE
EMPNO ENAME
1 JOHN
2 MARTIN
3 ELICA
4 MILLER

3.1.3 Mixed Fragmentation: We can intermix the two types of fragmentation, yielding a

mixed fragmentation.

13

EMPLOYEE

EMPNO ENAME
1 JOHN
2 MARTIN

3.2 DATA REPLICATION AND ALLOCATION

Data Replication is the process of storing data in more than one site or node.

It is useful in improving the availability of data.

*» |tis simply copying data from a database from one server to another server so
that all the users can share the same data without any inconsistency.

» The most extreme case is replication of the whole database at every site in the
distributed system, thus creating a fully replicated distributed database.

= The other extreme from full replication involves having no replication that is,

each fragment is stored at exactly one site. This is also called non redundant

allocation.

14

CHAPTER 6
INDEXING STRUCTURES FOR FILES

6.1 SINGLE LEVEL ORDERD INDEXES

6.1.1 PRIMARY INDEXES

= A Primary index is an ordered file whose records are of fixed length with two
fields

Figure 18.1 (Primay
Pritrary iridax on the mdating key feld of iy raid)
t= flle shown in Fgue 177, Nurz Ser | B dats | Job | Saluey | Sen
" Awon, Ed
Abbot. Diang
!
Aocetz:Mare | | | | |
— | Adams, Johs
Addmz, Rotm
]
Ak, Jan i | |
Index fiis
(<K(h, PL)> sniries) " | ARcmdss o
e Atr=d. Hob
Soox mchor :
prenaty hay Block Afen, Sam || [| I
n!up ot
Aaron. Ed —— | Alieny, Troy
Agdams. Joha E Ancisrs. Ksin
Asxander, E4 i
Aleri, Trivy . Ancersan Rob | | | {
,Andersarn, 230 —
Amoid, Mack - —|_> Andoman. Zoch
¢ Angel, Joo
i
Amber Sue | | | | |
- Amold, Mack |
Amold, Srevan |
1
Alkine Timnthy | | [| |
' —— | Wong, Jurmis
' Weed Oonald
Vg, Jamas »- ¢
Vinght, Pam . Woods Manny || | |
| Whphit, Pam
Wiatl. Ghares

Anchor record: The first record in each block

Dense index: Index entry for every search key value in the data file.

Sparce index: Index entry for some search key value in the data file.

6.1.2 CLUSTERING INDEXES

A clustered index defines the order in which data is physically stored in a

table.

Clustering field: Field that orders the records physically.

DATAFILE
TALSENING
FEL)
CEPTNUMBER NANE 85N Ml BISTHOATE SALARY
) S TR T T O g
/I’_.’ 1
/ 1
/4l ! [
/,z 2
’4
A
INDEX FILE /7 2 a
(¥, Pl rditem) ,':, r
4 ' 4
7 <
e B
FIELD VAL GE £y .
T A3
[L7 3
- ' s o G —
i m— Sl =
P '/ 4
% ——|
(= | =
o b ..'\\- &
.
] -1
\-
\ ~N &
f
\\\ 5
\\ d
Y

@ |wlcam

Figure 163

Chistermy noex wiih &
sanarets biock clsterfor
sech grodp of recoms
st zram the same velon
I the Cliestering Jigid

incex e
PEKL), 2 enirias)

Clusianng Biock
fEd EuE poimins

_l.'h!l'.lLL poirer

O | | N | e | LD | D}

| WULL painsor

1 NULL goiar

_:I_HULL oo
T

j', NULL goidar

L
L ULt poinsar

D ruirbesr | Nome | Gen | Job [Heth dete
T | [|
i i {1
1 I | 1
Biliox pomisr
- E | U]
2 I | 1
Bl pairize
- 2 | P
3 | | |
3 i | 1
a I |1
Bloox pomiss
e I TR I
Tk r
- & | | 1
£ | | 1
Hiosk poariec
— e]
4] 1 1 1
D |
n |
Biiock, paoiriee
- g | 1
& | ||
g | 1
& 1 1
Bladk paimied
b T T T 1
Binox pomisr
. :
-
8 |
Biatk pairtas

__l_ NUILL gasintar

6.1.3 SECONDARY INDEXES WITH BLOCK POINTERS (A dense secondary index)

= A secondary index provides a secondary means of accessing a file for which
some primary access already exists.

= The index file has two fields
(a) The first field is Index field value
(b) The second field is Block pointer

DATA FILE
INDEXING
FIELD
(SECONDARY
KEY FIELD)
g
INDEX FILE 5
(<K(), P(ij> anlras) 13
INDEX ' 8
FIELD BLOCK
VALUE POINTER - 6
1 . A 15
2 .. / 4 3
3 o 17
4 o
5 o 21
B o 11
7 16
8 2
N\
9 R 24
10 = - 10
" L 20
12 ./ 1
13 o _
14 - _ - a
15 o / / J
16 P / 3
/ 4
17. ;
18 o 12
18 b 78 - 7
20 v 19
21 22
22 o
23 o
24 o

6.1.4 SECONDARY INDEXES WITH RECORD POINTER

CATA FILE

[IRDEMING
FILO)
DEFTRUMBER NAME B8N JOB BIFTHDATE SALARY

C
| &1 |0

!
|
|

ML . s
(A P o | 74

| B Tad | B

" Ca

= [
AELD BL = :
WALLIE

5]
i d /'//' L\ B
] :
3 H_ﬁ___.d_rﬁ- 1
Bl L
5 h_\-‘_‘_‘—\—%___‘_"—"f- i | 5
| .F e 1 ; 5
¥ - o NN 2
-~ 5

Lt |—= b

o oo (el

6.2 MULTI LEVEL INDEXES

= Multilevel indexing is a two-level primary index resembling ISAM (Indexed
Sequential Access Method) organization.

TWELEVEL INCEES LIATEELE
PRMATY
KEY
FED
FIRST [ASE) 12
LEVEL /./'] 0
3R | t"’r:._'_'_'_'_,_,_,—'-"' 1}
/ 8 - 12
F =il ¥ T
a4 | ‘\ 2
A
it
SEOOND [TOF /’/,f"" 35
[=WEL 3

AiYA

G

b =
'-.

¥ 55

=8

‘.‘-\. 55 l“"'F#__F__,_.a—FI"' B

1 m - 2518
\ n S 7 il

'-,‘Il. an ."“H-..._h_khh T4

B
E}
2z

6.3 DYNAMIC MULTI LEVEL INDEXES

= B Trees

= B+ Trees

B-Trees

= B-Tree: B-Tree is a specialized multi way tree designated especially for the use on disk.

Properties:
1. The root node has at least two children.
2. All the nodes other than root node not have at least |E/z_| child.
3. Allfailure nodes at the same level.
4. When a key value is to be inserted in a node which already has the maximum number of
key values, the following steps are to be adopted
a) Insert the value, say ‘X’ into the list of values in the node in ascending order.
b) Split the list of values into three parts P1,P2 and P3
= P1contains first F\/2—| -1 keyvalues. E.g{3/2|-1=2-1=1
= P3contains |ﬁ/2_| +1,..,m"values Eg|3/2|+1=2+1=3
= P2 contains F/?lvalue E.gl| 3/2| =2

Note: P1,P2 & P3 must be in ascending order.

2

10RO

1

] : = —— — —
(@ 1gF [P | OD . | Koy |4Pres| ¢ [{_|le e ‘L“L!gf’:‘t? il
[r ' ‘: [Troo | y [Trem |\
* ‘ Y pointer | i L ;wmtpr\
Tree A Uata Data '\ Datn Data n
nmm&{/ pointet * pointas /7 \ paintar Dointst /O
, l‘\ /" \- ’ 5
,'/ X N\ Tree 0¥ \ £
/ Y pointer / \ S
X< K, K < X<K K_ <X

(b}

- |?]T| |T | i |n| |-i : ® | Tree node poniar
T e |
‘ D | mql:ﬂ.ljrblnhrl
v ' ' i Mull trae poinies
[(EE[[EE] [[EE[[EE]] (TR [=E
Figure 18,10
B-kee druchires (=) % soden = B-res with ¢ — | search values: (b)) A Btas

of ordér p = AThe ¥alues Werm nmserad nthes oedarB B, 03 10008

Problem 1: Construct B-Tree for the following values 10, 20, 30, 40, 50, 60, 70, 80, 90 of order

3.

Step1l: Insert 10

Step2: Insert 20

Step3: Insert 30

10,20,30

10

10 20

Insert 30 (Bursting)

!

10 20

o 2 @

10

30

Step4: Insert 40

ZENCR

10

30

40

Step5: Insert 50

20
ZEACN
/ wser:l(50 (Bursting)
10 30 40
30,40,50
20 40
CEICN
/ \ \
10 30 ‘ ‘ ‘ ‘ 50
Step 6: Insert 60
20 40
/ S
10 30 ‘ ‘ ‘ ‘ 50 60

Step 7: Insert 70

" 20 (@ 40 |@{Bursting

™ Insert 70 (Bursting)
N WV

10 30 ‘ ‘ ‘ ’ 50 60

50,60,70

20,40,60

ol e / o [a]
v N N

10 30 50 70

Step 8: Insert 80

/ .‘ °

\
L © &
v N / N

10 30 50 70 80

Step 9: Insert 90

o
_— N\

" 20 1Q 0 & Insert 90 (Bursting)
\ NV
10 30 50 70 80

70,80, 90

80 @

20 4 60 Q
\2-\ % e N

10 30 50 70 90

B-Trees
Construct B-Tree for the following values 10, 20, 30, 40, 50, 60, 70, 80, 90 of order 3.

Stepl: Insert 10

10

Step2: Insert 20

10 20

Step3: Insert 30

Insert 30 (Bursting)

y

10,20,30
10 20
20
1/ " .\\
10 30
Step4: Insert 40
" 20 (\
10 30 40
Step5: Insert 50
o 2 o]
/ wsert 50 (Bursting)
X i
10 30 40

30,40,50

" 20 .\40
/

10 30 50

Step 7: Insert 60

Insert 60 (Bursting)

" 20 l 40

N
20,40,60 / \

10 30 50

40 |@|
N

/ N

" 20 ‘ 50 60
v

10 30

Step 8: Insert 70

o © |a

/ ‘\ Insert 70 (Bursting)
A 4

,‘ 20 ‘ 50 60
v

10 30

50,60,70

Step 9: Inset 80

" 40 60 |@|

<—9

" 20 ‘ 50 70 80
v

10 30

Step 10: Insert 90

/" 40 I o0 .\\I‘nsertQO(Bursting)
- \4

P‘ 20 ‘ 50 70 80
v

10 30

70,80,90
40,60,80

Insert 80 (Bursting)

" 40 ’ 60 1@ |nsert90 Bursting)

Sl N\

P‘ 20 R 50 70 80
v

10 30

A
v

SN

p
J

Date: 27/05/2020 Subject: MCA Il Semester Time: 11A.M to 12.15 A.M
Subject: DBMS Topic: B Trees Examples Total No Students: 21 No of Students Participated: 15

Faculty: Dr.T.S.Ravi Kiran

Problem 2: Construct B-Tree for the following values 10, 15, 20, 25, 30, 35, 40, 45, 50 of order
3.

Stepl: Insert 10

10

Step2: Insert 15

10 15

Step3: Insert 30

Insert 20 (Bursting)

\

10,15,20
10 15
15
/-\ «
10 20
Step4: Insert 25
15
/ﬂ\ o
10 20 25
Step5: Insert 30
15
gl o

/ Insert 30 (Bursting)
\ \l,

10 20 25

20,25,30

Step 6: Insert 35

20,30,35

15,25,30

Step 7: Insert 40

Step 8: Insert 45

" 15 .\ 25

10

20

30

(Bursting)

" 15

L1

Insert 35 (Bursting)

25
\\
20

¥y

10

25 , 30

10 15 20 35
25 , 30

10 15 20 35 40
Bursting
25 1

" Insert 45 (Bursting)

,30
v

10

15

20

35

40

35,40,45

25,30,40

@ 25
'/I
.‘ 20
‘/l
10 15
Step 9: Insert 50
@ 25
/
® 20
J
10 15

.‘ 30
35
40
45
@ 30
40

a5

50

B + TREES

= B+ Tree: AB + Treeis a balanced tree in which every path from the root to leaf must have the
same length.

= All the values must present in the leaf nodes in ascending order.

= B+ Tree allow redundant storage of key values.

Example 1: Construct B+ Tree for the following sequence 8, 5, 1, 7, 3, 12, 9 of order 3.

Step 1: Insert 8

Step 2: Insert5

Step 3: Insert 1
Insert 1 (Bursting)

5 8
1,5,8
5 .\
1 5 | > | 8
Step 4: Insert 7
5 ‘\
1 5 |@ > Z 8
Step 5: Insert 3
5
Insert 3 (Bursting) ‘ R\\‘
1 5 |@ > | 7 8

1,3,5

/" 3 5 |@
1 3 |@ > 5
Step 6: Insert 12
o : (a5 |e

7,8,12

3,5,8

\ 4

Insert 12 (Bursting)

ZEN FIER
/ e |)
1 3 |@>| 5 % 7 8 |@—> | 12 a3
Step 7: Insert 9
/ “ 5
CENC o e
/ ﬁ; Pt | -
1 3 |@»| 5 7 8 |@—> | 9 12
Step 8: Insert 6
/,.‘ 5 5
#: e 5 |e
‘ \ ‘ e
1 8 5 6 s JId 8 >® 9
$ ‘3 VvV V \T’ \ ‘T’ ‘T’ \T/ ‘T’
F F F F F F F F F F

Example 2: Construct B+ Tree for the following sequence 10,15,20,25,30,35,40,45,50 of order 3.

Step 1: Insert 10

10

Step 2: Insert 15

10 15

Step 3: Insert 20
Insert 20 (Bursting)

10 15
10,15,20
15 |
N,
10 15 |@ > 20
Step 4: Insert 25
15
b
10 15 (@& S 20 25
7
Step 5: Insert 30
15
‘ .\\ Insert 30 (Bursting)
10 15 | @ > 20 25
20, 25, 30
‘ 15 .\ 25 .
\\ Insert 30 (Bursting)
10 15 |@ > | 20 25

Step 6: Insert 35

Vo~

30 35

rt 40 (Bursting)

30 35

rt 40 (Bursting)
N

10 15 |@& > 20
Step 7: Insert 40
a.‘ 15 25 |4
/ ‘\l Nse
10 15 & —> | 20 s |@
15,25,35
30,35,40
».‘ 15 25 | @
/ \N Nse
10 15 & >| | 20 5 |@
/,.‘ 25 |
" 15 g

30 35

10 15

\ 4

40

Step 7: Insert 45

FEIC

10 15

20

25

40

45

Insert 50:

" 25 | g

" 15 ‘ /‘ 35 ‘\ Insert 50 (Bursting)
/ Y ¥

10 15 |@> | 20 25 .af 30 35 |@ 40 45

\ 4

40,45,50

/" 1 }, /\ 3s -\45\

@ 10 |@| 15 }.Eb ’
v v VAR Vv R v v v v v Vv v Vv
E F F F F F F F F F F F F F F

Functional Dependency: The functional dependency is a relationship that exists between two
attributes of relation.

NORMALIZATION

First Normal Form

o First Normal Form: A relation is said to be in first normal form if and only if it contains
atomic or scalar values.

SCP

S# STATUS CITY P# QTY

S1 { 20,20,20,20,20,20} |LONDON | {P1,P2,P3,P4,P5P6} |{200,200,400,200,100,100 }

S2 |{10,10} PARIS {P1,P2} { 300,400 }
S3 |10 PARIS P2 200
S4 |{20,20,20} LONDON | { P2,P4,P5} { 200,300,400 }

Note: The relation should not contain sets

DBMS Normalization

DBMS

FIRST

S# STATUS CITY P# QTY
S1 P1 200
S1 P2 200
S1 P3 400
S1 P4 200
S1 PS5 100
S1 P6 100
S2 P1 300
S2 P2 400
S3 P2 200
S4 P2 200
S4 P4 300
S4 PS5 400

o Therelation FIRST stated as

FIRST{ S#, STATUS, CITY, P#, QTY }

PRIMARY KEY { S#, P# }

o Functional Dependencies in relation FIRST are

QTY

S#

P#

{ S#, P#} - QTY

S# — CITY

CITY —» STATUS
By transitivity S# —» STATUS

Normalization

>

CITY

Y

STATUS

o UPDATE ANOMALIES

INSERT: We can not insert particular suppliers located in particular city until the supplier
supplies at least one part.

UPDATE: If supplier S1 moves from LONDON to AMSTERDAM, we need to change city as
AMSTERDAM for every supplier S1 otherwise the database contains inconsistent values
or data.

DELETE: If we delete first tuple of S1 among six tuples we lost the information of part P1.

Second Normal Form

o Therelation FIRST is projected into two relations SECOND, SP
o Therelation SECOND is stated as

SECOND
S# | STATUS CITY SECOND { S#, STATUS, CITY }
S1 20 LONDON PRIMARY KEY S#
S2 10 PARIS o Functional Dependencies in relation SECOND are
—>
s3 10 |PARIS i | CEY
S4 20 LONDON |
—_—— STATUS
S5 30 ATHENS
S# - CITY
CITY —» STATUS
By transitivity S# —» STATUS
DBMS Normalization 3

SP
S# P# | QTY o The relation SP is stated as

SP { S#, P#, QTY }
PRIMARY KEY { S#,P# }

S1 P1 | 200

S1 | P2 |200 _ . :
o Functional Dependencies in relation SP are

S1 | P3 |400

s1 | P4 | 200 i N

s1 | p5 | 100 P#

s1 | P6 | 100
{ S#, P#} —> QTY
s2 [P1 |300
s2 [P2 |400
s3 [P2 | 200
s4 P2 | 200

S4 | P4 | 300

S4 | P5 | 400

Second Normal Form: A relation is said to be in 2NF if and only if it is in 1INF and every non
key attribute is irreducibly (loss less) depend on key attribute (Primary key).

o UPDATE ANOMALIES

INSERT: We can not insert the fact that a particular city have particular status.

E.g. We can not state that any supplier in ROME must have status of 50 until we have
some suppliers actually located in that city.

UPDATE: If we need to change STATUS of LONDON from 20 to 40, we should change for

all the tuples otherwise the database consists inconsistent data.

DELETE: If we delete second tuple of city PARIS, the information of supplier S2 will be
lost.

DBMS Normalization 4

Third Normal Form

Third Normal Form: A relation is said to be in 3NF if and only if it is in 2NF and every non key
attribute non transitively depend upon the key attribute.

Decomposition - A

o Decompose the relation SECOND into two relations SS and CS

SS . .
S# | STATUS o Therelation SS is stated as
S1 20 SS{ S#, STATUS}
PRIMARY KEY S#
S2 10 _ o)
o Functional Dependencies in relation SECOND are

S>3 10 S# ——3 STATUS
Sk 20 S# - STATUS
S5 30
STATUS EITY o Therelation SC is stated as

20 LONDON SC { STATUS, CITY }

PRIMARY KEY STATUS
e sle o Functional Dependencies in relation SC are

STATUS — CITY

o This decomposition is not correct since the Functional Dependency | S# —» STATUS
produces transitivity.

DBMS Normalization 5

Decomposition - B

o Decompose the relation SECOND into two relations SC and CS

SC . .
SH CITY o Therelation SC is stated as
S1 | LONDON SC{S#, CITY}
PRIMARY KEY S#
S2 | PARIS _ o :
o Functional Dependencies in relation SC are
S3 | PARIS

SH# — CITY

S4 | LONDON S# s CITY

S5 | ATHENS

CS . .
CITY STATUS a Therelation CS is stated as

LONDON 20 SC{ CITY, STATUS }
PRIMARY KEY CITY

PARIS 10 o Functional Dependencies in relation CS are

ATHENS 30 CITY ——3 STATUS

CITY - STATUS

o This decomposition is correct .Therefore the relations SC and CS satisfies 3NF.
o UPDATE ANOMALIES
INSERT: We can not insert the fact that a particular city have particular status.

E.g. We can not state that any supplier in ROME must have status of 50 until we have some
suppliers actually located in that city.

UPDATE: If supplier S1 moves from LONDON to AMSTERDAM we need to change city as
AMSTERDAM for every supplier S1 otherwise database contains inconsistent data.

DELETE: If we delete second tuple of city PARIS the information of S2 will be lost.

DBMS Normalization 6

Dependency Preservation

o Consider the relation SECOND

SECOND
S# | STATUS CITY
S1 |20 LONDON
S2 10 PARIS
S3 10 PARIS
S4 |20 LONDON
S5 |30 ATHENS

o Therelation SECOND is stated as

SECOND { S#, STATUS, CITY }
PRIMARY KEY S#

o Functional Dependencies in relation SECOND are

S# — CITY
CITY —» STATUS
By transitivity S# — STATUS

o Decompose the relation SECOND into two relations SC and CS

CITY

v

STATUS

CITY

SC) .
SH CITY o Therelation SC is stated as
S1 LONDON SC{S#, CITY }
PRIMARY KEY S#
S2 PARIS _ L .
o Functional Dependencies in relation SC are
PARI
S3 S S 3
S4 LONDON S# _s CITY
S5 ATHENS
CS . .
CITY STATUS a Therelation CS is stated as
LONDON 20 SC{ CITY, STATUS }
PRIMARY KEY CITY
PARIS 10

ATHENS 30

o Dependency preservation: Functional dependencies of the projected tables are implied by

o Functional Dependencies in relation CS are

CITY

>

STATUS

CITY » STATUS

the dependencies of original table.

DBMS

Normalization

o From the above tables the FD’s of SC and CS are implied by the FD’s of SECOND. Therefore
dependencies are preserved.

BCNF (Boycee Code Normal Form)

BCNF: A relation is said to be in BCNF if and only if it is in 3NF and only determents are
candidate keys.

o Candidate key : An attribute (or) group of attributes which is used to distinguish one
record with another record.

a Consider the relation SECOND o Therelation SECOND is stated as
SECOND SECOND { S#, STATUS, CITY }
S# | STATUS CITY PRIMARY KEY S#
S1 |20 LONDON
o Functional Dependencies in relation SECOND are
S2 |10 PARIS
S# —>| CITY

S3 |10 PARIS ‘1,

S4 |20 LONDON I— — 2| STATUS

S5 |30 ATHENS S# _ CITY

CITY - STATUS
By transitivity S# — STATUS

a The above relation does not doesn’t satisfies 3NF and all the determinants are not the
candidate keys. Therefore the relation SECOND is not in BCNF.

DBMS Normalization 8

o Therelation SECOND is projected into two relations SC and CS

SC .
SH CITY o Therelation SC is stated as
S1 LONDON SC{S#, CITY}
PRIMARY KEY S#
S2 PARIS

o Functional Dependencies in relation SC are

S3 PARIS S N CITY
S4 | LONDON

S# —» CITY

S5 | ATHENS

o Intherelation SCis the only determinant S# is the primary key .

CS . .
CITY STATUS a Therelation CS is stated as

LONDON | 20 SC{ CITY, STATUS }
PRIMARY KEY CITY

PARIS 10 o Functional Dependencies in relation CS are

ATHENS 30 CITY ——3 STATUS

CITY —» STATUS
o Intherelation CS is the only determinant CITY is the primary key .

o There fore the relations SC and CS satisfies BCNF and all the determinants are candiadate
keys

ANF (Fourth Normal Form)

o Consider the relation UCTX (Un normalized relation)

UCTX

DBMS Normalization 9

COURSE TEACHER TEXT
PHYSICS | {Prof. GREEN, |{BASIC MECHANICS,
Prof. BROWN} | PRINCIPLES OF OPTICS}

MATHS {Prof.GREEN} | {BASIC MECHANICS,
VECTOR ANALYSIS,
TRIGNOMETRY}

o Constraints on table UCTX

1. A specified course can be taught by specified teacher and uses all the specified textbooks as
references.

2. Ateacher can teach any number of courses.

3. There are no functional dependencies for the table UCTX.

o Now we are normalizing UCTX table as CTX

CTX

COURSE TEACHER TEXT
PHYSICS | Prof. GREEN | BASIC MECHANICS
PHYSICS | Prof. GREEN | PRINCIPLES OF OPTICS
PHYSICS | Prof. BROWN | BASIC MECHANICS
PHYSICS | Prof. BROWN | PRINCIPLES OF OPTICS
MATHS Prof. GREEN | BASIC MECHANICS
MATHS Prof. GREEN | VECTOR ANALYSIS
MATHS Prof. GREEN | TRIGNOMETRY

o Therelation CTXis stated as

CTX {COURSE, TEACHER,TEXT }
CANDIDATE KEY {COURSE, TEACHER, TEXT}

o The above relation satisfies 1INF,2NF, 3NF and BCNF since the determinant itself is the
candidate key.

o Update anomalies:
To add information about a teacher who teaches a course PHYSICS, it is necessary to
create two tuples one for each of the text books BASIC MECHANICS and PRINCIPLES
OF OPTICS.

o MVD’S: Multi valued dependencies are general dependencies based on the attributes
and their domains.

o Let R bearelation and let A,B,&C be arbitrary subsets of R then we can say that
A—>>B if and only if the set B values matching with pair (A,C) dependents only
on A value independent of C value.

COURSE —>>TEXT
COURSE —>TEACHER

DBMS Normalization 10

The above MVD’s exits in CTX.
o Consider first two tuples from the relation CTX.

CTX

COURSE TEACHER TEXT

Tuplel ——{ PHYSICS | Prof. GREEN | BASIC MECHANICS
Tuple2 —» PHYSICS | Prof. GREEN | PRINCIPLES OF OPTICS

o Consider two subsets CT and CX from CTX

CT
COURSE TEACHER
Tuplel » PHYSICS | Prof. GREEN
Tuple2 — PHYSICS | Prof. GREEN

Tuplel = Tuple2

CX

COURSE TEXT
Tuplel —— PHYSICS | BASIC MECHANICS
Tuplez —» PHYSICS | PRINCIPLES OF OPTICS

Tuplel# Tuple2
o Therefore the relation CTX violating the condition of FD.

o Project the table CTX into CT and CX
CT
COURSE TEACHER
PHYSICS Prof. GREEN
PHYSICS | Prof. BROWN
MATHS Prof. GREEN

o Therelation CT is stated as

CT {COURSE, TEACHER}
CANDIDATE KEY {COURSE, TEACHER}

CX
COURSE TEXT o The relation CXis stated as
PHYSICS BASIC MECHANICS
PHYSICS | PRINCIPLES OF OPTICS CTX {COURSE, TEXT }
MATHS BASIC MECHANICS CANDIDATE KEY {COURSE, TEXT}
MATHS VECTOR ANALYSIS
MATHS TRIGNOMETRY

DBMS Normalization

o Therefore the relations CT and CX satisfies 1NF,2NF,3NF,BCNF and preserves MVD’s and
FD’s.

o Therefore the relations CT and CX satisfies 4NF.

ANF: The relation is said to be in 4NF if and only it is in BCNF and must have both MVD’s and
FD’s.

Fagin’s theorem: Let R=A,B,C be arelation where A,B,C are set of attributes the R = join of its
projection on {A,B} and {A,C} if and only if R satisfies A —>>B and A>>C

5NF (Fifth Normal Form)

Join Dependencies

o Consider the following relation

SPJ
S# |P# |J#
S:1 |P1 |2
S1 | P2 |J1
S |P1 |1
S: |P1 |1

a The relation SPJ is stated as

SPJ {S#,P#,J#}
CANDIDATE KEY { S#,P#,J#}

o Join Dependencies: Let R be a relation and let A,B,...,Z be arbitrary subsets of set of attributes
of R. Then we can say that R satisfies join dependency *(A,B,...,Z) if and only if R is equal to
join of its projections on A,B,...,Z

DBMS Normalization 12

Sp PJ JS
s |pP P | J# S | J#
S1 | P P11 J2 S1 | J2
S1 | P2 P | 1 S1 | 1
So | P: Pi1 | J1 So | 1

L) Join over P# <J
S

S P J# > Join over S#, J# <€——
Si1| P11 J2 \l/
Si| P11 U SP.J
S1] P2l A1 S P J#
Sprious tuple —{ | S2 | P1 | J2 || sl Pl 2s
So| P1] J1 s, | p. | os
Si1| P21 J1
S|l P I

o Constraint on the following table is

If the pair (S1, P1) appear in SP, the pair (P1,J1) appear in PJ the the pair (J1, S1) appear in JS
then the triple (S1, P1 J1) appear in SPJ

Table violating the specified constraint

SPJ SP] 1S
S# | P# | J# S P P J# S J#
S1 |P1|J2
S1 | P2 | J1 Si1 | P2 P1] J2 S1 | J2
S, [P |01 S1| P2 P | I1 S1 | d

So | P P11 31 So | 1

I—) Join over P# (J
e

S P J# > Join over S#, J# <€

Si| P1] J2 l
Si | P1] 1 pJ
Si1| P2 J1 S P | J#
Spurioustuple_.| S| P1] J2 | NN EE
Sz [P1] J1 [| Si| P1 | J1 | j€——Spurious tuple
Si1| P2l A1
S2| P1] 1

DBMS Normalization 13

Table satisfying the specified constraint

SPJ SP P.] 1S
S# | P# | J# S P P J# S J#
S1 | P1 | J2 s, | Py b | 3, s: | s
S1 | P2 | Ja Si | P2 P, | J; s, | u
S1 |P1 | Ja1 p. | 3.

Join over P# (J

SP ‘l’

s | P | J# |/ Joinover S#, J# €—
Si1| P1] J2 \L
S1| P1| J2 SPJ
S1| P2 | Jz s |lp |
Si1 | P1] J2
Si1 | P1| A1
Si1 | P2| A1

5NF: A relation R is in 5NF is also called PIJNF (Projection Join Normal From) if and only if
every join dependency in R is implied by the candidate key of R.

o Consider the relation SPJ
SPJ {S#,P#,J#}
CANDIDATE KEY { S#,P#,J#}

o SPJ is projected into SP,PJ and JS

SP {S#,P#}
CANDIDATE KEY { S#,P#}

PJ {S#,P#}
CANDIDATE KEY { P#,J#}

JS {I#,S#)
CANDIDATE KEY { J#,S#}

DBMS Normalization 14

o Candidate keys of SP, PJ and JS is not implied by the candidate key of SPJ. Therefore SP, PJ
and JS are not satisfies 5NF.

o Consider the relation
SUPPLIER

S# SNAME STATUS CITY

S1 SMITH 20 LONDON
S2 JOHN 20 PARIS

o Therelation SUPPLIER is stated as

SPJ {S#,SNAME,STAYUS,CITY}
CANDIDATE KEY S#

o FD’sin relation SUPPLIER
CITY

)

S# —>»| SNAME

v

STATUS

S# — CITY
S# — STATUS
S# - SNAME

o The above relation satisfies 1NF,2NF, 3NF, BCNF (No need to check 4NF since there are FD’S).
o Therelation SUPPLIER is projected into SS and SC.

SS

S# SNAME | STATUS
S1 SMITH 20

S2 JOHN 10

SS{ S#,SNAME,STATUS}
CANDIDATE KEY S#

FD’Sin SS
S# > SNAME

Y
STATUS

S# - SNAME

DBMS S#—> STATUS 15

SC

S# CITY SS{ S#,CITY}
S1 LONDON CANDIDATE KEY S#
S2 PARIS
FD’Sin SS
S# > CITY
S# — CITY

= The relations SS and SC satisfies 5NF since the candidate keys of SS and CS is implied

by candidate key of SUPPLIER.

Domain Key Normal Form

1. Thisis proposed by FAGIN and it is also called FAGIN NF.
2. ltis not defined in terms of FD’s ,MVD’s,JD’s .

A relation R is said to be in DKNF if and only if it should contain KEY CONSTRAINT
and DOMAIN CONSTRAINT.

= Key constraint : The relation must have primary key .

= Domain constraint : The set of values associated for an attribute must have finite values.

DBMS Normalization

16

RELATIONAL ALGEBRA & RELATIONAL CALCULUS
TOPIC 1: SELECT OPERATION (o) VIMP

= Used to select subset of tuples (rows) from relation (table) that satisfies a select condition.

Syantax: O cseiect condition>(R)

Syntax for Select Condition:

1. <attribute_name> <comparision_operation><constrant_value>
E.g. sal > 5000;

2.<attribute_name> <comparision_operation><attribute_name>
E.g. e.esal > d.esal

Note: e and d are table aliases
3.<selection_condition><boolean_operator><selection_condition>
E.g. Ename= ‘James’ and Salary>5000

= Comparison operators: There are normally one of the operations from the set {=, <, >, <, 2, #}

= Boolean operators: Boolean operation is normally one of the operations of the set {AND, OR,
NOT}

= Selection operations is commutative:
0<cond1>(0<cond2>(R)) = 0<cond2>(0<cond1>(R))

= We can always combine a cascade (or sequence) of SELECT operations into a single
SELECT operation with a conjunctive (AND) condition; that is,

0<cond1>(o<cond2>(---(o<condn>(R)) "-)) = O<cond1> AND<cond2> AND...AND <condn>(R)

Qeury 0: Select list of employees who work for department number 4

Sql query:

SELECT *

FROM EMPLOYEE

WHERE dno=4 AND salary>25000;

Select expression:
Obno=4 AND salary>25000 (EMPLOYEE)

TOPIC 2: PROJECT OPERATION (TT) VIMP
= Selects certain columns from a relation.

Syntax: n<attribute_list>(R)
= Degree of relation: Number of attributes in a relation.

= Duplicate elimination: Duplicate rows are eliminated when projection operation done.

= Super key: Key may have single attribute or group of attributes used to distinguish one record
with another record.

TM<ist1> (TT<iist2>(R)) = Tl<iista> (R) when listl and list2 is same.

Qeury 0: List each employee first name, last name and salary from the relation employee.

Sql query:

SELECT fhname,lname,salary .

FROM EMPLOYEE;

Project expression:

n<fname,lname,salary> (EMPLOYEE)

TOPIC 3: RENAME OPERATION (p)

= To rename relation and columns of the relation.

Syntax to rename relations and attributes: ps 81,82,83,....8n) (R)
Syntax to rename relation: p (R)

Qeury 0: Retrive the first name, last name and salary of employees who work for department 5.
Sql query:

SELECT fname,Iname,salary

FROM EMPLOYEE
WHERE dno=5.

Rename expression:
DEP5_EMPS € G ¢no-s (EMPLOYEE)
RESULT é nfname,lname,salary (DEPS_EMPS)

TOPIC 4: SET OPERATIONS VIMP

UNION: Include all the tuples in R and S by eliminating duplicate rows.
= The result of operation is represented by R U S.

R SSN S SSN
123456789 333445555
333445555 888665555
666884444
453453453

RUS RUS

123456789
333445555
666884444
453453453
888665555

INTERSECTION: Includes all the tuples that are common in both R and S.
= The result of operation is represented by R n S.

RNS RNS
888665555

DIFFERENCE: Includes all the tuples that are in ‘R’ but not in ‘S’.
= The result of operation is represented by R - S.

R-S R-S

123456789
666884444
453453453

TOPIC: JOIN OPERATION IN RELATIONAL ALGEBRA VIMP

Join Operation: It is used to combine tuples from multiple relations so that related information can be
presented.

= Itis denoted by join symbol .

Syntax: R ™. gin condition> S

Types of joins:

(a) Theta Join: A general join condition.

= Syntax: Ai 0 Bi

= 0 is one of the comparison operators of {=,>,>=,<,<=, #}

(b) Equi Join: Join based on the common columns in different relations.

Syntax: R M <column = column> S
E.g. DEPARTMENT X _ygrssn = ssn> EMPLOYEE

DEPT EMP
ENO | DEPTNO | DNAME ENO | ENAME
1 10 RESEARCH 1 KING
2 20 OPERATIONS 2 BLACK
DEPT
ENO | ENAME DEPTNO | DNAME
1 KING 10 RESEARCH
2 BLACK 20 OPERATIONS

(c) Non Equi Join: Join of two relations.

= Non equi join always return “Cartesian Product” or “Cross Product”
= |t is also known as natural join.

= |tis denoted by *

SyntaX: R >k(<list1> <Iistz>)s
E.g. DEPARTMENT < EMPLOYEE

EMP DEPT
ENO | ENAME DEPTNO DNAME
1 KING 10 RESEARCH
2 BLACK 20 OPERATIONS

EMP_CROSS_DEPT
ENO | ENAME | DEPTNO | DNAME

1 KING 10 RESEARCH
1 KING 10 OPERATIONS
2 BLACK 20 RESEARCH
2 BLACK 20 OPERATIONS

(d) Outer Join: Join condition that returns tuples with direct map.
(i) Left Outer Join: Returns the unmatched tuples in the left side relation.
= |tis denoted by the symbol ».

Syntax: R ><conditions S

Note: The tuple with DEPTNO 40 in EMP relation does not participate in the relation.

EMP DEPT
ENAME | DEPTNO DEPTNO | DNAME
KING 10 10 ACCOUNTING
BLAKE 30 20 SALES
CLARK 10 30 RESEARCH
JONES 20
JAMES 40

(ii) Right Outer Join: Join condition that returns tuples in the right side relation.

= Itis denoted by the symbol

Syntax: R»<S
EMP
ENAME | DEPTNO
KING 10
BLAKE 30
CLARK 10
JONES 20

DEPT
DEPTNO | DNAME
10 ACCOUNTING
20 SALES
30 RESEARCH
40 OPERATIONS

Note: The tuple with DEPTNO 40 in relation DEPT does not participates in relation.

(iii) Full Outer Join: Join condition that returns tuples in both the relations that participates relation.
= |tis denoted by the symbol < .

Syntax: RS
EMP DEPT

ENAME | DEPTNO DEPTNO | DNAME
KING 10 10 ACCOUNTING
BLAKE 30 20 SALES
CLARK 10 30 RESEARCH
JONES 20 40 OPERATIONS
JAMES 40

(e) Self Join: Joining a relation itself.

EMP
EMPNO | ENAME | MGR
7839 KING
7698 BLACK 7839
7782 CLARK 7839
7654 MARTIN | 7698
7499 ALLEN 7698

KING
I
W W
BLACK CLARK
|
W W
MARTIN ALLEN

DIVISION OPERATION

= Used to execute special kinds of queries.

Syntax: R+ S

= The division operation can be expressed as follows.

T1 < Ty (R)
T2 & Ty ((SxT1) -R)
T&¢T1-T2
R A |B S A
al | bl al
a2 | bl a2
a3 | bl a3
ad | bl
al | b2
a3 | b2
a2 | b3
a3 | b3
ad | b3
al | bd
a2 | ba
a3 | b4
Step 1: Let us assume that
X={A}
Y ={B}
Z = {A,B}
Step 2:
T1 < Ty (R)
T1 B
bl
b2
b3
b4

Step 3:

T2 < Ty ((SxT1) -R)

SxT1 A B
al | b3
a2 | b2

ny (S xTl- R) B

b3
b2

T2 | B

b3
b2

A B
al | blx
a2 | blx
a3 | blx
ad | bl
al | b2x
a3 | b2x
a2 | b3
a3 | b3 x
ad | b3
al | b4x
a2 | b4x
a3 | bd4x

T2 B
b3
b2

SxT1 A B
al | blx
al | b2 x
al | b3
al | b4 x
a2 | blx
a2 | b2
a2 | b3 x
a2 | b4 x
a3 | blx
a3 | b2 x
a3 | b3 x
a3 | b4 x
Step 4:
T&T1 -T2
T1 B
bl
b2 x
b3 x
b4
T| B
bl

b4

Topic 4. Memory Hierarchies

Priority Device
High speed registers
Cache (or) Static RAM \
Main memory (or) DRAM
Optical disk (or) CDROM
Magnetic disk

Magnetic tap

OO BW|IN| -

Aapdiary memory

Magnratic —— R i
inpes

110 processor Main

CPU Cache
e | memory

Topic 5:Secondary Storage Devices

1. Magnetic Disk

o Magnetic disk is a circular plate constructed of metal or plastic coated with magnetized
material

o Both sides of the disk are used

o Several disks may be stacked on one spindle with Read/Write heads available on each
surface

o All disks rotate together at high speed and not stopped or started for access purpose

o Used to store large amount of data .

o Basic unit of storage is BIT .

o BITis 1 by magnetizing area on disk .

Character: Group of bits.

Capacity: Number of bytes it can store.

Number of tracks: ranges from few hundred to few thousand.

Capacity of each track: ranges from tens of Kbytes to 150 Kbytes.
Formatting: Tracks are divided into equal sized disk blocks called sectors.

Sector size is fixed range from 512 to 4096 bytes.

sector (arc of a track)

/ — \\ three sectors

- two sectors
——— one sector

Read/Write head is classified into

1. Fixed head system.

2. Moving head system.

Rotate disk pack of cylinders ranging from 3600 and 7200 rpm.

Access time: Time required to access the data.

fa = Access time

fa=ls+ t,

Seek time: Time required to position the read/write head on the correct track & correct
surface.

{5 = Seek time

o Latency time: Time required to locate the required disk block from the beginning.

f_ = Latency time

(%)

(b}
~
N oyt
—— ' ol wickn
['ill'l'illﬂm‘l'l
|
i
o
-
s noni
2. Floppy Disk

o A disk drive with removable disks are called a Floppy Disk

o The disks used with a Floppy disk drive are small disks made of plastic coated with magnetic
recording material

o There are two sizes commonly used, with diameters of 5.25 and 3.5 inches
o The 3.5inch disks are smaller and can store more data than 5.25 inch disks

o Floppy disks extensively used in personal computer as a medium for distributing software to
computer users

o Basic unit of storage is BIT .

o BITis 1 by magnetizing area on disk .

o Character: Group of bits.

o Capacity: Number of bytes it can store.

o Density : Single density and Double density
o Data stored in: Tracks & Sectors

o Track: Data is placed in concentric magnetic circles called tracks
o Sector :Each track is divided into storage units called sectors
» FAT uses 512 byte sectors exclusively

» The number of Sectors per Track vary depending on the media and format

» Physical Sector Numbering starts with the number 1at the beginning of each track and
side

o Number of Tracks: 80 in 3.5 inch floppy disk

Disk Formats - 3.5”

Low Density High Density
Tracks 80 80
Sectors per track 9 18
Bytes per sector 512 512
Total capacity 720K 1.44M

__ sector (arc of a track)
track ——

o Formatting: Tracks are divided into equal sized disk blocks called sectors.

o Access time: Time required to access the data.

fa = Access time

ta =ts+ 1

Seek time: Time required to position the read/write head on the correct track & correct
surface.

{5 = Seek time

Latency time: Time required to locate the required disk block from the beginning.

t_ = Latency time

3. Magnetic Tape

Magnetic tape transport consists of the electrical, mechanical and electronic components
provide the parts and control mechanism for magnetic tape unit

The tape is a strip of plastic coated with magnetic recording media
Bits are recorded as magnetic spots on the tape along with several tracks

Usually, seven or nine bits are recorded simultaneously to form a character together with a
parity bit.

The information is recorded in blocks referred to as records

Each record on tape has an identification bit pattern at the beginning and end. By recording
the bit pattern at the beginning, the tape control identifies the record number.

By reading the bit pattern at the end of the record, the control recognizes the beginning of a
gap

A tape unit is addressed by specifying the record number and number of characters in the
record

Record may be fixed length or variable length
Sequential access.

Read/Write head: Reads or writes data on tape.
Strorage: 1600 to 6250 bytes per inch.

Inter block gap: 0.6 inches.

Block Block Block Block Block Block

Transaction Processing

o Transaction : Logical unit of sequence of processing.

o Transaction operations: Insert, Delete, Update & Retrieve.

o Transaction boundaries: Begin, End.

o Begin transaction: Transaction begins when user enters into SQL plus environment.

o End transaction: Transaction ends when one of the following statements are executed.
(a) Exit

(b) Commit
(c) Rollback

Topic 1: Transaction read & write

read_item(x)

o Reads a database item into a program variable.

1. Find the address of the disk block that contain data item x.

2. Copy the disk block contain the data item x into primary memory.

3. Copy data item x to program variable named x.

write_item(x)

o Writes the value of program variable x into database.

1. Find the address of the disk block that contain data item x.

2. Copy the disk block contain the data item x into primary memory.

3. Copy data item x to program variable named x.

4. Store the updated data item contained in disk block to secondary memory.

Topic2: What are the problems in transaction processing (or) What are the
problems due to concurrency (or) Why concurrency control is needed [VIMP]

o Concurrency : When multiple transactions request single database item simultaneously,
the updations of transactions produce inconsistent data.

The lost update problem

o The updations of interleaving transactions produce inconsistent data.

T1 T2 X n m 'y
80 5 4 10
x=80 read_item(x) ; 84 15
x=80-1=79 X:=x — 1,
read_item(x); x=80
X=X+ m; x=80+4=84
x=84 write_item(x);
y=10 read_item(y);
write_item(x); x=84
y=10+5=15 y:=y+n;
y=15 write_item(y);
o Serial operations of transaction T1 is
T1 X n y
x=80 read_write(x);
80 5 10
x=80- 1=79 X:i=x -1 79 11
X=79 write_item(x);
Lo read_item(y);
y=10+1=11 yisy+1:
y=11

write_item(y);

o The final result of serial transaction is x=79 but the interleaving transaction operation
shows that x=84.

The temporary update problem (Dirty read)

o The problem occurs when one transaction update the database item and then fails

T1 T2 X n m y

x=80 read_item(x) ; 80 5 4 10
5
x=80-5=75 X=X =n; e

X=75 write_item(x);
read_item(x); X=75
X:=X +m; X=75+4=79
write_item(x); X=79
X=79 read_item(x);
FAIL

If transaction T1 fails the database item roll backs to its previous state, but transaction T2
has read the incorrect value of x.

a

The incorrect summary problem

o A transaction T receives different values for two reads on the same data item.

read_item(y);

y=20
y:=y+n;
y=20 +5=25
write_item(y);
y=25

y sum n a
20 0 4 5 5
25 5
T1 T2
sum:=0;
read_item(a); a=5
sum:=sum +a, sum=0+5=5
x=10 read_item(x);
x=10-5=5 X=X - n;
X = write_item(x);
read_item(x); X=5
SUM:=SUM+x; sum=0+5=5
read_item(y); y=20
sum:=sum-+y; sum=0+20=20

Topic3: Types of transaction failures (or) Why recovery is needed [IMP]

o Types of failures

(a) Physical (or) Catastrophic

(b) Disk failure

(c) Transaction failure

Physical (or) Catastrophic failure

A/C failure.

Theft.

Sabotage.

Mounting wrong tape.

Over riding disks (or) taps.
Giving same name to the file.

o g~ wWNE

Disk failure

| Read / write head malfunctioning. |

Transaction failure

1. Operations of transaction may fail due to logical errors.
E.g. Division by 0.
Integer over flow.
Error in parameters.
Error in control structures.
2. Transactions may fail due to concurrency.
3. Transaction may fail due to S/W, H/W errors during the execution of
transaction.
4. Transaction may fail if the data for the transaction may not be found or
insufficient.

Topic4: Transaction states

Begin_transaction This makes begin the transaction.
Read / Write Specifies either read operation or write operation.
End_transaction Specifies all the read & write operations are commited

(or) Specifies all the read & write operations are
partially commited and aborted.

Commit Indicates successful updation of transaction.

Rollback / Abort Indicates that the transaction ended unsuccessfully.

Read,
write

End
Transaction

Begin
Transaction

Commit

Partially
commited

Commited

Abort

Topich5: The system log [IMP]

o System log: System log is file keep track of all transaction operations on database items.

o Advantages

1. The log file entries used for recovery purpose.

2. The log file is periodically backed up into magnetic tape (Archival storage)

3. Log record: Entry of log file.

a Entries of log file

[start_transaction,T] Indicates that transaction T has
started execution
[write_item,T,X,old_value,new_value] Indicates that transaction T has

changed the value of database item X
from old value to new value.

read item,T,X Indicates the transaction T has read
[_
the value of database item X.
commit,T Indicates that transaction T has
[

completed successfully and effect of
transaction can be recorded
permanently in the database.

[abort, T] Indicates that transaction T has been
aborted.

]

Topic 6: Desirable properties of transaction (or) ACID properties of transaction [IMP]

Atomicity
he transaction is atomic unit of processing i.e. either performed entirely or none
performed at all.

Atomicity

Consistency

Transaction

Isolation

Durability

Consistency

A correct execution of transaction must take the database item from one consistent state
to another consistent state.

Isolation

A transaction is isolated from other transactions when multiple transactions are accessing
the same data item concurrently in a serial or interleaving fashion.

Durability

The changes applied to the database item by a commited transaction must persistent in the
database.

Topic 7: Schedules & Recoverability

Schedule (or) History: The order of execution of operations of serial or interleaving
transactions.

T1 T2

read_item(x)
X:=X-N;
read_item(x);
X:=X+N;
write_item(X);
read_item(y);
y:=y+n;

write_item(x);
write_item(y); Sa: r1(x); r2(x); wi(x); ri(y); w2(x); wi(y); 7

T1 T2

read_item(x)
X:=X-n;
write_item(x);
read_item(x);
X:=X+m;
write_item(x);

read_item(y);
Fails

Sg: ri(x); wa(x) ; ra(x); wa(x); ray); ai;

Topic8: Conflict operations

O

Two operations in a schedule are said to be conflict, if they satisfy all three of the following
conditions.

=

. They belongs to different transactions.

N

. They access the same data item.

w

. At least one of the operation is a write operation.

o Consider schedule Sa
Sa: r1(x); ra(x); wi(x); ru(y); wa(x); wi(y);

o Consider two operations from schedule

ri(x) & wa(x);

The above two operations are conflict since

The operations belongs to different transactions T1 &T2.

They access the same data item x.

One of the operation is write operation.

o Verify which of the operations are conflict

ra(x) & wi(x); Conflict
Wi(X) & wa(X); 0

ri(x) & ra(x); Not conflict
Wa(X) & wi(y); Not conflict

Topic 8: Complete schedule

o A sehedule ‘s’ of ‘n’ transactions T;, T, T, is said to be a complete schedule if the

following conditions hold.

1.The operations in ‘s’ are exactly those operations in T;, T, T, including a
commit or abort operation as the last operation for each transaction in the
schedule.

2. For any pair of operations from the same transaction T; their order of
appearance is ‘s’ is the same as their order of appearance in T;

3. For any two conflicting operations, one of the two must occur before the order
in the schedule.

Topic 9: Serial schedule

o Serial schedule: The order of execution of operations of serial transactions.

Tl T2

read_item(x) ;
X=X = n;
write_item(x);
read_item(y);
y:=y+n
write_item(y);
read_item(x);
X=X + m;
write_item(x);

Sa: ri(x); wa(x); ru(y); wa(y); ra(x); wa(x);

T1 T2

read_item(x) ;
X:=X +m;
write_item(x);
read_item(x);
X:=X - n;
write_item(x);
read_item(y);
y:=y +n;
write_item(y);

Sg: ra(x); wa(x); ra(x); wa(x); ra(y); wa(y);

Topic 10: Non serial schedule

o Non serial schedule: The order of execution of operations of interleaving transactions.

Tl T2

read_item(x) ;
X=X + n;
read_item(x);
X=X+ m;
write_item(x);
read_item(y);
write_item(x);
X:Zy +n;
write_item(y);

Sc: ri(x); ra(x); wi(x); ra(y); wa(x); wa(y);

T1 T2

read_item(x) ;
X=X - n;
write_item(x);
read_item(x);
X=X + m;
write_item(x);
read_item(y);
y:Ey +n;
write_item(y);

Sp: ri(x); wa(x); ra(x); wa(x); ra(y); wa(y);

10

Topic 11: Result equivalent schedule

o Two schedules are result equivalent if they produce the same final states of the database

item.
T1 T2 y X n m
x=90 read_item(x) ; 90- 96 3 2
93 8%
x=90-3=87 X=X = n; 89
x=87 write_item(x);
y=90 read_item(y);
y=90+3=93 y:=y +n;
y=93 write_item(y);
read_item(x); x=87
X:=X +m; x=87+2=89
write_item(x); x=89
Schedule A
T1 T2 y X Nn m
x=90 read_item(x) ; 99 90 3 2
93 89
x=90-3=87 X:=X —n,
x=87 write_item(x);
read_item(x); x=87
write_item(x); x=89
y=90 read_item(y);
y=90+3=93 YTy +n;
y=93 write_item(y);

Schedule C

11

Topic 12 : Serializable schedule VIMP

o Serializability: A schedule ‘s’ of ‘n’ transactions is serializable if it equal to some serial
schedule of same ‘n’ transactions.

T1 T2 y x.n
: . _ 96 90 3
read_item(x) ; x=90 93 92
X=X +m; x=90+2=92 89
write_item(x); x=92
X=92 read_item(x);
x=92-3=89 X=X -n;
x=89 write_item(x);
y=90 read_item(y);
y=90+3=93 y:=y +n;
y=93 write_item(y);
Schedule B
T1 T2 y X n m
96 96 3 2
Xx=90 read_item(x) ; 93 89

X=90 -3=87 X=X - N;

x=87 write-item(x);

read_item(x); x=87
X=X+ m, X=87 +2=89
write_item(x); x=89

y=90 read_item(y);

y=90 +3=93 || y:=y+n;

y=93 [| write_item(y);

Schedule C

o A non serial schedule, schedule D is serializable to serial schedule schedule B , since they
are equivalent.

Topicl4: Conflict Equivalent Schedule [IMP]

= Two schedules are said to be conflict equivalent if the order of any two conflicting
operations is the same in both the schedules.

= Two operations in a schedule are said to be conflict, if they satisfy all three of the
following conditions.

1. They belongs to different transactions.

2. They access the same data item.

3. At least one of the operation is a write operation.

E.gl: Si: ri(x); wa(x)
S2: Wa(X); ra(x)

Both S;and S, contains conflict operations but they are NOT CONFLICT equivalent.
E.g2: Si: wi(x); wa(x)

S2: Wa(X); wi(X)
Both S;and S, contains conflict operations but they are NOT CONFLICT equivalent.

E.g3: Sa: wi(X); ra(x)
Sg: Wi(X); ra(x)
Both Spand Sg contains conflict operations but they are CONFLICT equivalent.

Topic 15: Uses Of Serializability

1. A Serializable schedule gives the benefits of concurrent execution

2. The interleaving of operations from concurrent transactions is typically determined by
OS SCHEDULER which allocates resources to all the processes

3. Enforces TWO PHASE LOCKING PROTOCOL (Concurrency control protocol)
4. Ensures TIME STAMP ORDERING PROTOL (Concurrency control protocol)
5. Ensures MULTIVERSION PROTOCOL (Maintains multiple versions of database item)

6. Ensures OPTIMISTIC (or) CERTIFICATION (or) VALIDATION protocol (Concurrency
control protocols)

13

Topicl16: Conflict Serializable Schedule [IMP]

Conflict Serializable: A schedule S is conflict serializable if it is conflict equivalent to some
serial schedule S'

Consider the schedules S, and Sp

Sarra(x); WalX; ra(y); waly); Laxd; wa(x);
So: ri(X); WaX): ra(X); wa(x); ri(y); wa(y);

= Consider | wi(x);ra(x)in Sa

w1(X) ;r2(X) in Sp

1. In both the schedules Transaction 2 reads the values after Transaction 1 writes
2. The operations wi(x) ;ra(x) is conflicting operations
3. Last operations are write operation in both the schedules

= Therefore Sp is conflict serializable to Sa

Topic 17: View Equivalence [IMP]

Consider two schedules S and Sq

S:ri(x); wi(x); ru(y); wa(x); wa(x);

Sy ri(x); wa(x); wi(x); wa(X); Ci; Ca; Cs;

= Two schedules S and S, are said to be view equivalent

1. Bothe schedules have same transactions and same operations

S Sq
T1,T2,T3 T1,T2,T3
read_item(x) read_item(x)
write_item(x) write_item(x)

14

The first operation of first schedule should be same as the first operation of second
schedule

The last operation of first schedule should be same as the last operation of second
schedule

4. Both the schedules enforce conflict equivalence

Topic 18: View Serializability [IMP]

A Schedule Sy is view serializable if it is view equivalent to some serial schedule S

S:ri(x); wi(X); ra(y); wa(Xx); wa(x);

Sg: ri(x); wa(x); wi(x); ws(x); Ci; Ca; Cs;

Non serial schedule Syis view serializable to serial schedule S

CONSTRAIND WRITE ASSUMPTION :

Any write operation w;j(x) in T;is preceded by a read operation ri(x).

Sy: ri(x); wa(x); wi(x); ws(X); Ci; Ca; Cs;

Note : Read value for data item before writing it.
Note : wy(x) preceded by the ry(x)
Note: In the above schedule w;(x) is preceded by ri(x)
= UN CONSTRAIND WRITE ASSUMPTION (OR) BLIND WRITES
The read operation ri(x) is not preceded by write operation w;(x)
Note: Data item value can’t be read before writing it

Note: w,(x) and ws(x) is not preceded by the read operations ry(x) and rz(x)
15

Topic 19: Transaction Support In SQL IMP

» Transaction: Sequence of statements that performs specified task.
» A ssingle SQL statement always considered to be atomic.

= Characteristics :

(a) Access Mode

Access Mode specified as READ ONLY (or) READ WRITE

READ ONLY: Read the data from database (SELECT)
READ WRITE: INSERT, UPDATE, DELETE

(b) Diagnostics Area Size

DIAGNOSTIC SIZE N
The integer value N indicating the number of error conditions or exceptions.

These conditions supply feedback information to the users on the most recently
executed SQL statements.

EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION

READ WRITE

DIAGNOSTICS SIZE 5

ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE(Fname,Lname,SSN,Dno,Salary)
VALUES(‘Robert’,’Smith’,’991004321°,2,35000);

EXEC SQL UPDATE EMPLOYEE
SET Salary = Salary * 1.1 WHERE Dno = 2;

EXEC SQL COMMIT,;

UNDO: EXEC SQL ROLLBACK;
THE_END: ...;

(c) ISOLATION LEVEL

16

Isolation level specified with option

ISOLATION LEVEL < ISOLATION>

PonNPE

ISOLATION:

READ UNCOMMITED
READ COMMITED
REPEATABLE READ
SERIALIZABLE

There may be three of the following violations in SQL TRANSACTIONS

1. Dirty read :

= The problem occurs when one transaction update the database item and then

fails

T1

T2

x=80

x=80-5=75

X=75

X=79

» |f transaction T1 fails the database item roll backs to its previous state, but
transaction T2 has read the incorrect value of x.

read_item(x) ;
X=X = n;

write_item(x);

read_item(x);
FAIL

read_item(x);
X=X + m;

write_item(x);

X n m vy

80 5

79

4 10

X=75

X=75+4=79

X=79

17

2. Nonrepeatable read

A transaction T; may read a given value from a table. If another transaction T later
updates that value and T, reads that value again, T, will see a different values.

3. Phontoms

1. A transaction T; may read the rows from table based on the where condition.

2. A transaction T, inserts a new record that satisfy where condition used in Ty,

3. If T, is repeated, then T, will see a PHONTOM, a row that previously did not exist.

Read by

Read by T,

T,

Read by T,

Possible violations Based on isolation levels as defined in SQL

TYPE OF VIOLATION

Isolation Level Dirty Read | Non repeatable Read | Phantom
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

18

Testing Serializability (or) Confilct Serializability

Problem 1: Verify whether the following Transactions ensures serializablity.

L T, Ty
taad item(X}:
X=XK-N, .
raael ramyy).
X=X+ M
Tine write :!‘.T'l'.l';.:‘..vl.

r2ad _taml)),

s writa 'l‘:‘n“‘:’
Y=r+N

write stemi)’);

Schedule C

Sc: ri(x) ; r2(x); wa(x); ri(y); wa(x); waly);

X y
T1- T2 T1-> T2
ri (x) wy(x) 0y} waiy
wy (x) ra (x) wily) #i
wi (x) wy(x) wi(y) waly)
X y
25T T25>T1
r; (x) wi(x) a4y wi iy
wz(x) ri(x) wafy) ffy
wz (x) wiy(x) wafy) waly

O m—)

= Since the Precedence Graph has Cycle, the schedule Sc is not Serializable or
Conflict Serializable.

Problem 2: Verify whether the following Transactions ensures
serializablity.

T T,

raad itam{X):
Xi=X—=N,

write _ilem(X)

Time readl itemiX)
X=X+M
wiile: temiX)

read itemi{¥):
f=r+
write itam(Y):

Schedule D

So: r1(x); wa(x); ra(x); wa(x); rai(y); waly);

X y
T1->T2 T1->T2
r1 (x) w; (x) 04y waiy
wi(x) ra(x) wilyd faiy
wi (x) wa(x) wily) waly)
X Yy
T2 T1 T2>T1
¢ w (X} 2ty w4 {y)
wax} £ b9 waly) sy
wof wabd woty) wuly)

X N

Since the Precedence Graph has No Cycle, the schedule Sp is Serializable
or Conflict Serializable.

Problem 3: Verify whether the following schedule enforces conflict serializability.

{
Transaction T,

Transaction T;

Transaction T,

reanl emiA
wrtte (lemiX):

regd (temly)
wte tamy i

read (tem(ZF)
read emly);
wertes ikemly]

raad dem(X)

wriile WsmlX)

Sehedula E

jaad _iteml¥):

o ¥ P
reanl jlemtd)

write _dem| ¥
wrile femlL]

Se: r2(2); ra(y); waly); raly); ra(z); ra(x); wa(x); wa(y); wa(z); ra(x); ra(y); way); wa(x);

X
T1-> T2
ri(x) wa(x)
wi(x) ra(x)
wi (x) wy(x)

Yy
T1->T2

a4y} waiy)
wity) faby
wity) wWely)

y 4
T1> T2
a4z} wa(z)
wifz) w{)
wyi{z} wefz)

X
T1->T3
£} w; ()
wibg 04
wy-bg wi(d

y
T1->T3
-y} waily)
wily} iy
wi-ly} waly)

y 4
T1->T3
-z} waiz)
wi(z) &
wi(z}) wsfz)

X Yy y
T35T1 T3-5T1 T3>T1
£3-04 wy (¢ rs (y) wily) {2} wiH{z)
wa{x) 00 ws(y) ri(y) ws(z) Fulz)
wa-0d wilg ws(y) wi(y) we(z) wi(z)
X Yy z
T3>T2 T3> T2 T3> T2
00 wa g By waly Bz} wo{z)
w3} Rk wity} fiy wsiz} f{3)
w0 wa(e waly} waly) we(z}) wa(z)
X Y Z
T2->T1 T2 T1 T2->T1
04 wibg rp (y) wal(y) 2z w3
wa g Rbd wa(y) ri(y) wafz} fi{z)
wobd wibd wy (y) wa(y) wa{z} wi{z)
X Yy y
T2->T3 T2->T3 T2-> T3
£ w3 (¢ r (y) waly) rp (z) ws(z)
wo 0 (4 wa(y) rs(y) wy(z) ri(z)
wa0d wahg wa (y) ws(y) wy(z) ws(z)

Y,z

= Since the precedence has cycles , the schedule S¢ is not conflict
serializable or serializable.

P/LSsQL

1. TRIGGER VVIMP

= Atrigger is a pl/sqgl block structure which is fired when a DML statements like
Insert, Delete, Update is executed on a database table.

= Atrigger is triggered automatically when an associated DML statement is
executed.

Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF col_name]
ON table_name
[REFERENCING OLD AS o NEW AS n]
[FOR EACH ROW]
WHEN (condition)
DECLARE
Declaration-statements
BEGIN
Executable-statements
EXCEPTION
Exception-handling-statements

END;

Example:

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 9)

DECLARE
sal_diff number;

BEGIN
sal_diff := :NEW.salary - :0LD.salary;
dbms_output.put_line('0ld salary: ' || :0LD.salary);
dbms_output.put_line('New salary: ' || :NEW.salary);
dbms_output.put_line('Salary difference: ' || sal_diff);

END;

2. CURSORS VVIMP

A cursor is a pointer to this context area. PL/SQL controls the context
area through a cursor.

A cursor holds the rows (one or more) returned by a SQL statement. The
set of rows the cursor holds is referred to as the active set.

There are two types of cursors
1. Implicit cursors
2. Explicit cursors

1. ImplicitCursors

Implicit cursors are automatically created by Oracle whenever an SQL statement is
executed, when there is no explicit cursor for the statement. Programmers cannot
control the implicit cursors and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is
associated with this statement. For INSERT operations, the cursor holds the data that
needs to be inserted. For UPDATE and DELETE operations, the cursor identifies the rows
that would be affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which
always has attributes such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The
SQL cursor has additional attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS,
designed for use with the FORALL statement.

DECLARE

total_rows number(2);

BEGIN

UPDATE customers
SET salary = salary + 500;
IF sql%notfound THEN
dbms_output.put_line('no customers selected');
ELSIF sql%found THEN
total_rows := sql%rowcount;

dbms_output.put_line(total rows || ' customers

selected ');

END IF;

END;

2. ExplicitCursors

® Explicit cursors are programmer-defined cursors for gaining more control over
the context area. An explicit cursor should be defined in the declaration section of the

PL/SQL Block. It is created on a SELECT Statement which returns more than one row.

DECLARE
c_id customers.id’%type;
c_name customers.nameX%type;
c_addr customers.addressitype;
CURSOR c_customers is
SELECT id, name, address FROM customers;
BEGIN
OPEN c_customers;
LOOP
FETCH c_customers into c_id, c_name, c_addr;
EXIT WHEN c_customers¥%notfound;

dbms_output.put_line(c_id || ' ' || c_name || ' ' ||
c_addr);

END LOOP;
CLOSE c_customers;

END;
/

3. VIEW VVIMP

= |n SQL, aview is a virtual table based on the result-set of an SQL statement.

= A view contains rows and columns, just like a real table. The fields in a view are fields from
one or more real tables in the database.

= You can add SQL functions, WHERE, and JOIN statements to a view and present the data as
if the data were coming from one single table.

Syntax:

CREATE VIEW view_name AS
SELECT columnl, column2, ...
FROM table_name

WHERE condition;

Example:

CREATE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName
FROM Customers

WHERE Country = 'Brazil’;

4. RELATIONAL CONSTRAINTS VVIMP

= Constraint: A rule at column level or table level.

= Relational constraints
. Not null (Defined at either column level or table level)
. Unique (Defined at either column level or table level)

1
2
3. Primary key (Defined at either column level or table level)
4. Foreign key (Defined at either column level or table level)
6

. Check (Defined at either column level or table level)

1. Not null: Specifies that may not contain null value.
E.g.
SQL> create table emp

(empno number(4),

ename varchar2(10) not null);
2. Unique: Every value in a column or set of columns be unique.
E.g.
SQL> create table dept

(deptno number(2),

dname varchar2(14),

constraint dept_dname_uk unique(dname));

3. Primary key: Creates primary key for the table.
= The value assigned for an attribute must satisfy the constraints unique and not null.
E.g.
SQL> create table dept
(deptno number(2),
dname varchar2(14),
constraint dept_dname_pk primary key(dname));

4. Foreign key: The foreign key is defined in the child table, and the table containing the
reference column is in the parent table.

E.g.
SQL> create table emp
(empno number(2),
ename varchar2(14) not null,
deptno number(2),
constraint emp_dept_fk foreign key(deptno) references dept (deptno));

5. Check: Defines the condition that the each row must satisfy.
E.g.
SQL> create table dept
(deptno number(2),
dname varchar2(14),
constraint emp_dept_ck check (deptno between 10 and 99));

LECTURE NOTES PREPARED BY

Dr.T.S.RAVI KIRAN, ASSISTANT PROFESSOR & HOD

DEPARTMENT OF COMPUTER SCIENECE

P.B.SIDDHARHA COLLEE OF ARTS & SCIENECE, VJAYAWADA, AP, INDIA PIN:
520010

Email: tsravikiran@pbsiddhartha.ac.in

Mobile: 9441176980

COURESE: OPERATING SYSATEMS

CONTENTS:

Introduction

OS Structure

Process

Threads
Synchronization

CPU Scheduling
Deadlocks

Memory Management

. Virtual Memory

10. Mass Storage Structure
11. File Systems Interface
12. File System Implementation

RN RWNER

CHAPTER 1
INTRODUCTION

1. 1 WHAT OPERATING SYSTEMS DO (OR) FUNCTIONS OF OS

= Operating system: An operating system is a program that acts as an interface between the user
and the computer hardware and controls the execution of all kinds of programs.

User 1 User 1 User 1 C User n
\L \L y \L
System Application
Soft wares Soft wares
SOFEWARE

Operating System

!

HARDWARE CPU RAM I/O

Fig 1.1: Abstract View of OS.

Following are some of important functions of an Operating System.
Memory Management.

Processor Management.

Device Management.

File Management.

Security.

Control over system performance.

Job accounting.

Error detecting aids.

Coordination between other software and users.

W oo Nk WwWNRE

Memory Management:
= Memory management refers to management of primary memory. An operating system
performs the following activities for memory management.

Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part are not
in use.

In multiprogramming, the operating system decides which process will get memory when
and how much.

Allocates the memory when a process requests it to do so.

De-allocates the memory when a process no longer needs it or has been terminated.

Processor Management:

In multiprogramming environment, the OS decides which process gets the processor when
and for how much time. This function is called process scheduling. An Operating System
does the following activities for processor management.

Keeps tracks of processor and status of process. The program responsible for this task is
known as traffic controller.

Allocates the processor (CPU) to a process.

De-allocates processor when a process is no longer required.

Device Management:

Ll A

An Operating System manages device communication via their respective drivers. It does
the following activities for device management.

Keeps tracks of all devices. Program responsible for this task is known as the 1/O controller.
Decides which process gets the device when and for how much time.

Allocates the device in the efficient way.

De-allocates devices.

File Management:

A file system is normally organized into directories for easy navigation and usage. These
directories may contain files and other directions.

An Operating System does the following activities for file management

Keeps track of information, location, uses, status etc. The collective facilities are often
known as file system.

Decides who gets the resources.

Allocates the resources.

De-allocates the resources.

Other Important Activities:

Following are some of the important activities that an Operating System performs -
Security: By means of password and similar other techniques, it prevents unauthorized
access to programs and data.

Control over system performance: Recording delays between request for a service and
response from the system.

Job accounting: Keeping track of time and resources used by various jobs and users.

Error detecting aids: Production of dumps, traces, error messages, and other debugging
and error detecting aids.

Coordination between other softwares and users: Coordination and assignment of
compilers, interpreters, assemblers and other software to the various users of the
computer systems.

1.2 COMPUTER-SYSTEM ORGANIZATION

Computer Organization: Computer organization concerned with the way the hardware
components operate and the way they are connected to and from the computer.

1.2.1 Computer-System Operation

A modern general-purpose computer system consists of one or more CPUs and a number of
device controllers connected through a common bus that provides access to shared
memory.

Each device controller is incharge of a specific type of device (for example, disk drives, audio
devices,or video displays).

The CPU and the device controllers can execute in parallel, competing for memory cycles. A
memory controller synchronizes access to the memory.

(AaTal B fery st arinisr monEDi
EsCE : = - i
— e sl L] AT K&
= =1 g *M'E:L" i i ‘ . \

_ | 4

itk . || amiphles:
oL ‘ el LB controlle ‘ |

My \

Fig 1.2: A modern computer system.

Bootstrap: A bootstrap is the program that initializes the operating system (OS) during startup.

When power is on, the bootstrap program loads the operating-system kernel in to memory. Once
the kernel is loaded and executing, it can start providing services to the system and its users.

On UNIX, the first system process is “init,” and it starts many other back ground processes. The
process invoked by hardware or software request the service of CPU by passing an interrupt (system

3

call). When CPU is interrupted, it stops execution of current process temporarily and immediately
provides service to the requested process and CPU resumes the stopped process later.

CPU usar
Process
exaouing

17O Interrupl U

procassing

e idle {
tdayice

transfamng

Vo franster 12 transiar
request done raques! done
Figl.3: Interrupt timeline for a single process doing

= When the CPU is interrupted, it stops what it is doing and immediately transfers the control to
interrupt vector. The interrupt vector is an array that contains address of unique device numbers
that request service.

1.2.2 Storage Structure

= The CPU can load instructions only from memory, so any programs to run must be stored there.

= RAM: RAM (Random Access Memory) is the internal memory of the CPU for storing data, program,
and program result. It is a read/write memory which stores data until the machine is working. As
soon as the machine is switched off, data is erased.

= Dynamic random access memory (DRAM) is a type of semiconductor memory that is typically used
for the data or program code needed by a computer processor to function. DRAM is a common type

of RAM that is used in personal computers (PCs), workstations and servers.

= Memory hierarchy: Incomputer architecture, the memory hierarchy separates computer
storage into a hierarchy based on response time.

%]
£ 9
’ olid-state disk l :
‘ g natic ik l

A |
L= : 'Y —

‘ opticnl drik ’ |

& |

,1}]

‘ RNt tapee

Fig 1.4: Storage Device Hierarchy.

1.2.3 1/0 Structure

A general-purpose computer system consists of CPUs and multiple device controllers that are
connected through a common bus. Each device controller is in charge of a specific type of device.
For instance, seven or more devices can be attached to the small computer-systems interface (SCSI)
controller.

The device controller is responsible for moving the data between the peripheral devices that it
controls and its local buffer storage. Typically, operating systems have a device driver for each
device controller. This device driver understands the device controller and provides the rest of the
operating system with a uniform interface to the device.

DMA (Direct Memory Access): Direct memory access (DMA) is a method that allows an
input/output (1/0) device to send or receive data directly to or from the main memory, bypassing
the CPU to speed up memory operations. The process is managed by a chip known as a DMA
controller (DMAC).

1.3 COMPUTER-SYSTEM ARCHITECTURE

= Computer System Architecture: Computer System Architecture refers to how a computer system is
designed and what technologies it is compatible with.

> w— instruction execution =
. S E cycle insfructions
fhread of execation | § and
e ({315 TOVETTIEN] s dists
_CPU(NY
||
9 & -;"2’ OMaA
@ : =
L F 4 -}
= - -
?,- = memory
davice
{*M)

Fig 1.5: Storage Device Hierarchy.

= A computer system can be organized in a number of different ways, which we can
categorize roughly according to the number of general-purpose processors used.

1.3.1 Single Processor System:

= Asingle processor system contains only one processor. So only one process can be executed at a
time and then the process is selected from the ready queue. Even if there are multiple applications
need to be executed, since the system contains a single processor and only one process can be

executed at a time.

User 1 User 2 User 3 C. User n

Operating System

CPU

Fig 1.6: Single Processor System.

1.3.2 Multi Processor System

A Multiprocessor is a computer system with two or more central processing units (CPUs) share full
access to a common RAM. The main objective of using a multiprocessor is to boost the system’s
execution speed, with other objectives being fault tolerance and application matching.

Multiprocessor systems have three main advantages:

1.

Increased throughput: By increasing the number of processors, we expect to get more work done in less
time.

Economy of scale: Multiprocessor systems can cost less than equivalent multiple single-processor
systems, because they can share peripherals, mass storage, and power supplies.

Increased reliability: The failure of one processor will not halt the system, only slow it down since the
functions are distributed to multiple processes. If we have ten processors and one fails, then each of the
remaining nine processors can pick up a share of the work of the failed processor. Thus, the entire
system runs only 10 percent slower, rather than failing altogether.

Increased reliability of a computer system is crucial in many applications. Graceful degradation is
the ability of a computer to maintain limited functionality even when a large portion of it has been
destroyed or rendered inoperative. Some systems go beyond graceful degradation and are called
fault tolerant, because they can suffer a failure of any single component and still continue
operation.

There are two main types of multiprocessor operating systems. The first one is Asymmetric
Multiprocessing System (AMP or ASMP) and second one is Symmetric Multiprocessing (SMP).

Asymmetric Multiprocessing system: Asymmetric Multiprocessing has the master-slave relationship
among the processors. There is one master processor that controls remaining slave processor.
The master processor allots processes to slave processor, or they may have some predefined task to
perform. The master processor runs the tasks of the operating system.

Symmetric Multiprocessing Asymmetric Multiprocessing

CPU 1 P1 Slavel —>| P1
CPU2 P2 Master —>| P2
cuUP3 P3 Slave2 —>| P3
CPU4 P4 Slave3 > P4
(No Shared Memory)

(Shared Memory)

Fig 1.7: Symmetric and Asymmetric Multiprocessing.

= Symmetric Multiprocessing system: In symmetric multiprocessing, all the processors are treated
equally. All processors communicate with another processor by a shared memory.

CPUy CPUy CPU;.
registars ragisters registers
cache caohe cache
mamaory

Fig 1.8: Symmetric multiprocessing architecture.

= A recent trend in CPU design is to include multiple computing cores on a single chip. Such
multiprocessor systems are termed multicore.

CPU cors, CPU cors,
regisieis regisiars
ciche TN

T [

| meniory 8

Fig 1.9: A dual-core design with two cores placed on the same chip.

1.3.3 Clustered Systems

= Cluster Systems: Cluster systems refer to a group or cluster of computers working together. This can
be considered as a single system. The computer cluster can be lightly or loosely connected. The
cluster systems are divided into nodes and each node have a specific task to accomplish. The task to
be performed is assigned using the specially designed software.

Fterconnest { irtarcannect |
compitar compller (—————— computer

l

storage area
Peliwork

“—

Fig 1.10: General Structure of Clustered System.

= Clustering can be structured asymmetrically or symmetrically.

= Asymmetric Cluster System:

In asymmetric clustering, one machine is in hot-standby mode while the other is running the
applications. The hot-standby host machine does nothing but monitor the active server. If that server
fails, the hot-standby host becomes the active server.

= Symmetric Clustering System

In symmetric clustering system two or more nodes all run applications as well as monitor each other.
This is more efficient than asymmetric system as it uses all the hardware and doesn't keep a node
merely as a hot standby.

1.3.3.1 Attributes of Clustered Systems

= There are many different purposes that a clustered system can be used for. Some of these can be
scientific calculations, web support etc. The clustering systems that embody some major attributes
are

* Load Balancing Clusters

In this type of clusters, the nodes in the system share the workload to provide a better performance. For
example: A web based cluster may assign different web queries to different nodes so that the system
performance is optimized. Some clustered systems use a round robin mechanism to assign requests to
different nodes in the system.

High Availability Clusters

These clusters improve the availability of the clustered system. They have extra nodes which are only
used if some of the system components fail. So, high availability clusters remove single points of failure
i.e. nodes whose failure leads to the failure of the system. These types of clusters are also known as
failover clusters or HA clusters.

Advantages of clustered system:

The difference benefits of clustered systems are as follows

Performance: Clustered systems result in high performance as they contain two or more individual
computer systems merged together. These work as a parallel unit and result in much better
performance for the system.

Fault Tolerance: Clustered systems are quite fault tolerant and the loss of one node does not result
in the loss of the system. They may even contain one or more nodes in hot standby mode which
allows them to take the place of failed nodes.

Scalability: Clustered systems are quite scalable as it is easy to add a new node to the system. There
is no need to take the entire cluster down to add a new node.

1.4 OPERATING-SYSTEM STRUCTURE VVIMP

Operating system can be implemented with the help of various structures.

The structure of the OS depends mainly on how the various common components of the
operating system are interconnected and melded into the kernel. Depending on this we have
following structures of the operating system.

1.4.1 Simple Structure:

Operating systems do not have well defined structure and offers limited features.
MS-DOS is an example of such operating system. In MS-DOS application programs are able to
access the basic I/0 routines. These types of operating system cause the entire system to crash if

one of the user programs fails.

Diagram of the structure of MS-DOS is shown below.

Application Program

N

Resident System Programs

v

MS-DOS Device Drivers

v

ROM BIOS Device Drivers

Fig 1.11: Simple structure of MS DOS Operating System.
10

Advantages:

= |t delivers better application performance because of the few interfaces between the application
program and the hardware.

= Easy for kernel developers to develop such an operating system.

Disadvantages:
= The structure is very complicated as no clear boundaries exist between modules.
*= |t does not enforce data hiding in the operating system.

1.4.2 Layered Structure:

= |n this structure operating system is broken into number of layers (levels). The bottom layer (layer
0) is the hardware and the topmost layer (layer N) is the user interface.

= These layers are so designed that each layer uses the functions of the lower level layers only. This
simplifies the debugging process since the error occurs in the higher level does not affect the
lower level as the lower level layers have already been debugged.

layor N
Us@r inlessacs

ippor 3

loyer U
Hardwiie

Fig 1.12: Layers of Operating System .

Advantages:
= Layering makes it easier to enhance the operating system as implementation of a layer can be
changed easily without affecting the other layers.

= |tisvery easy to perform debugging and system verification.

Disadvantage:
= |n this structure the application performance is degraded as compared to simple structure.

= |t requires careful planning for designing the layers as higher layers use the functionalities of only
the lower layers.

11

1.4.3 Micro-kernel:

Microkernel is the minimum amount of software that can provide the mechanisms needed to
implement services of an operating system (OS).

These mechanisms include low-level address space management, thread management, and inter-
process communication (IPC).

Advantages:

It makes the operating system portable to various platforms.
As micro kernels are small so these can be tested effectively.

Disadvantages:

Increased level of inter module communication degrades system performance.

1.4.4 Modular Structure:

A modular operating system is built with its various functions broken up into distinct processes,
each with its own interface. The main elements of a modular operating system are a kernel and a
set of dynamically loadable applications with their own discrete memory spaces.

Device & Bus Scheduling Executable
Drivers Classes Formats

Miscellaneous

Core Solaris File Systems
Modules Kernel
STREAMS Loadable
Modules System Calls

Fig 1.13: Solaris modular Structure.

Features of Modular Operating System:

Multiprogramming: Several programs are run at the same time.

Time Sharing: Time Sharing is a technique which enables many people, located at various terminals,
to use a particular computer system at the same time. Time-sharing or multitasking is a logical
extension of multiprogramming. Processor's time which is shared among multiple users
simultaneously is termed as time-sharing.

Job Scheduling: Job Scheduling is the process of allocating system resources to many different tasks by
an operating system (OS). The system handles prioritized job queues that are awaiting CPU time and it
should determine which job to be taken from which queue and the amount of time to be allocated for
the job.

12

= Swapping: Swappingis a mechanism in which a process can be swapped temporarily out of main
memory (or move) to secondary storage (disk) and make that memory available to other processes. At
some later time, the system swaps back the process from the secondary storage to main memory.

1.5 OPERARING SYSTEM OPERATIONS

1.5.1 Dual-Mode and Multimode Operation

= |n order to ensure the proper execution of the operating system, we must be able to distinguish
between the execution of operating-system code and user defined code.

= There are two separate modes of operation the first one is user mode and the second one is kernel
mode (also called supervisor mode, system mode, or privileged mode).

usar procsss
: . S Mol
] i (imode it = 1)
Uget process sxaculing | oalls systam cal petsarny fresm systiam call
\ Z
1 /-
trap rEtum
Wamal mods bit = () mods bit= 1
Kernes mods
(Mo DIl =
exmcute sygtam call (moge Bit =)

Fig 1.14 Transition from user to kernel mode.

= A bit, called the mode bit, is added to the hardware of the computer to indicate the current mode. If
mode bit is 0 then the operating system is in kernel mode. If the mode bit is 1 then operation system
is in user mode.

= When the computer system is executing on behalf of a user application, the system is in user mode.
However, when a user application requests a service from the operating system (via a system call),
the system must transition from user to kernel mode to fulfill the request.

1.5.2 Timer
= We must ensure that the operating system maintains control over the CPU.

= We cannot allow a user program to get stuck in an infinite loop or to fail to call system services
and never return control to the operating system. To accomplish this goal, we can use a timer.

= Atimer can be set to interrupt the computer after a specified period. The period may be fixed (for
example, 1/60 second) or variable (for example, from 1 millisecond to 1 second).

13

1.6 PROCESS MANAGEMENT

= Process: A process is a program in execution.

A process needs certain resources including CPU time, memory, files, and I/O devices to
accomplish its task.

= The operating system is responsible for the following activities in connection with process
management.

Allocation of Process to Processor to perform its execution.
Deallocation of Process from Processor after its job is over.
Scheduling processes and threads on the CPUs.

Creating and deleting both user and system processes.
Suspending and resuming processes.

Providing mechanisms for process synchronization.
Providing mechanisms for process communication.

NouswnNe

1.7 MEMORY MANAGEMENT

The operating system is responsible for the following activities in connection with memory management.
1. Allocation of memory to Process.

2. Deallocaton of Process from Memory.

3. Keeping track of which parts of memory are currently being used and who is using them.

4. Allocating and deallocating memory space as needed.

1.8 STORAGE MANAGEMENT

= The basic storage unit is File.
1.8.1 File System Management

= The operating system is responsible for the following activities in connection with file management
1. Creating and deleting files.

2. Creating and deleting directories to organize files.

3. Supporting primitives for manipulating files and directories.

4. Mapping files onto secondary storage.

5. Backing up files on stable (nonvolatile) storage media.

1.8.2 Mass Storage Management

Most modern computer systems use disks as the principal online storage medium for both programs
and data.

Hence, the proper management of disk storage is of central importance to a computer system.

The operating system is responsible for the following activities in connection with disk management.

1. Free-space Management

14

2.
3.

1.8.3

Storage Allocation
Disk Scheduling

Caching

The process of storing and accessing data from the cache is known as Caching.
A cache is a type of memory that is used to increase the speed of data access. In other words, a
cache is a region of fast memory that holds copies of data.

Access to the cached copy is more efficient than access to the original.

magnetic
disk

Fig 1.15: Migration of integer A from disk to register.

Processor 1

Caches

Bus

Bus Update

main
memory

cache

hardware
reqgister

The Cache Coherence Problem: In a multiprocessor system, data inconsistency may occur among
adjacent levels or within the same level of the memory hierarchy. For example, the cache and the
main memory may have inconsistent copies of the same object.

As multiple processors operate in parallel, and independently multiple caches may possess different
copies of the same memory block, this creates cache coherence problem. Cache coherence
schemes help to avoid this problem by maintaining a uniform state for each cached block of data.

P1

P2

X

Before Update

Fig 1.16: Illustration of Cache Coherence Problem.

Processor 1

Caches

Bus

Bus Update

P1

P2

X1

Write-through

Processor 1

Caches

Bus

Bus Update

P1 P2

X1 X
X

Write-back

15

Let X be an element of shared data which has been referenced by two processors, P1 and P2. In the
beginning, three copies of X are consistent. If the processor P1 writes a new data X1 into the cache,
by using write-through policy, the same copy will be written immediately into the shared memory.
In this case, inconsistency occurs between cache memory and the main memory. When a write-back
policy is used, the main memory will be updated when the modified data in the cache is replaced or
invalidated.

1.8.4 1/O Systems

wnN e

One of the purposes of an operating system is to hide the peculiarities of specific hardware devices
from the user.

The 1/0 subsystem consists of several components

A memory-management component that includes buffering, caching, and spooling.

A general device-driver interface.

Drivers for specific hardware devices.

1.9 PROTECTION & SECURITY

When the data is shared by multiple users simultaneously, it must be regulated.

Protection: Protection refers to a mechanism which controls the access of programs, processes, or users
to the resources defined by a computer system.

Security: Operating system security is the process of ensuring operating system integrity,
confidentiality and availability.

Most operating systems maintain a list of user names and associated user identifiers (user IDs)
Group functionality can be implemented as a system-wide list of group names and group identifiers.

A user can be in one or more groups, depending on operating-system design decisions. The user’s
groups IDs are also included in every associated process and thread.

However, a user sometimes needs to escalate privileges to gain extra permissions for an activity.

The process runs with this effective UID until it turns off the extra privileges or terminates.

16

1.10 KERNEL DATA STRUCTURES
1.10.1 Lists, Stacks, and Queues

= The most common method for implementing this structure is a linked list, in which items are linked
to one another.
= |nasingly linked list, each item points to its successor

data data data Rull

Fig 1.17: Singly Linked Lists.
= |nadoubly linked list, a given item can refer either to its predecessor or to its successor.

! | S | ! |
data null dzes dats datk B i

e e I e e e e e e
L1+ % ¥

Fig 1.18: Doubly Linked Lists.

= |nacircularly linked list, the last element in the list refers to the first element, rather than to null.

gdalks dets data dsba

Fig 1.19 Circular Linked List.

1.10.2 Trees

= Atreeis a data structure that can be used to represent data hierarchically.

= Datavaluesin a tree structure are linked through parent-child relationships.

= Inageneral tree, a parent may have an unlimited number of children.

= |n a binary tree, a parent may have at most two children, which we term the left child and the right
child.

= A binary search tree additionally requires an ordering between the parent’s two children in which le
ft child <= right child.

17

(.17'5]

- -

(12) (85
{ a'] L F) i '.m‘
L gl S 17_.-'
(42)

Fig 1.20 Binary Search Tree.

1.10.3 Hash Functions and Maps

®= A hash function takes data as its input, performs a numeric operation on this data, and returns a numeric
value.

= This numeric value can then be used as an index into a table (typically an array) to quickly retrieve the
data.

= Whereas searching for a data item through a list of size n can require up to O(n) comparisons in the
worst case, using a hash function for retrieving data from table can be as good as O(1) in the best case,
depending on implementation details. Because of this performance, hash functions are used extensively
in operating systems.

hash_functionikeay)

; hash map

value

Fig 1.21 Hash map.

= One potential difficulty with hash functions is that two inputs can result in the same output value that is,
they can link to the same table location. We can accommodate this hash collision by having a linked list
at that table location that contains all of the items with the same hash value. Of course, the more
collisions there are, the less efficient the hash function is.

18

1.10.4 Bitmaps

A bitmap is a string of n binary digits that can be used to represent the status of n items. For
example, suppose we have several resources, and the availability of each resource is indicated by
the value of a binary digit: 0 means that the resource is available,while 1 indicates that it is
unavailable (or vice-versa).

The value of the ith position in the bitmap is associated with the ith resource. As an example,
consider the bitmap shown below:

0 0 1 0 1 1 1 0 1

0 1 2 3 4 5 6 7 8

Resources 2, 4, 5, 6, and 8 are unavailable; resources 0, 1, 3, and 7 are available.

1.11 COMPUTING ENVIRNMENT

1.11.1 Traditional Computing

This environment consisted of PCs connected to a network, with servers providing file and print
services.

Terminals attached to mainframes were common at many companies.

Web Computing: Companies establish portals, which provide Web accessibility to their internal
servers. Network computers (or thin clients) access the web portals.

Mobile computers can also connect to wireless networks and cellular data networks to use the
company’s Web portal.

Firewalls are used to protect networks from security breaches.

1.11.2 Mobile Computing

wnN e

Mobile Computing is a technology that allows transmission of data, voice and video via a computer
or any other wireless enabled device without having to be connected to a fixed physical link.

The main concept involves
Mobile communication
Mobile hardware

Mobile software

Mobile communication:

The mobile communication in this case, refers to the infrastructure put in place to ensure that
seamless and reliable communication goes on.

19

= These would include devices such as protocols, services, bandwidth, and portals necessary to
facilitate and support the stated services.

= The data format is also defined at this stage. This ensures that there is no collision with other
existing systems which offer the same service.

= Since the media is unguided / unbounded, the overlaying infrastructure is basically radio wave-
oriented. That is, the signals are carried over the air to intended devices that are capable of
receiving and sending similar kinds of signals.

Mobile Hardware:

= Mobile Hardware includes mobile devices or device components that receive or access the service
of mobility.

E.g. Portable Laptops, Smartphones, Tablet Pc's, Personal Digital Assistants.

= Mobile Software: Mobile software is the actual program that runs on the mobile hardware.
E.g. Apple iOS, Google Android.

1.11.3 Distributed Systems

= A distributed system is a computing environment in which various resources are spread across
multiple computers (or other computing devices) on a network.

= Access to a shared resource increases computation speed, functionality, data availability, and
reliability.

= A network operating system allows file sharing across the networks.

1.11.4 Client-Server Computing

= (Client-server computing is a distributed computing model in which client applications request
services from server processes. Clients and servers typically run on different computers
interconnected by a computer network

= Server systems can be broadly categorized as compute servers and file servers.

Computer server system: The compute server system provides an interface to which a client can send a
request to perform an action (for example, read data). In response, the server executes the action and
sends the results to the client. A server running a database that responds to client requests for data is an
example of such a system.

File server system: The file-server system provides a file-system interface where clients can create,

update, read, and delete files. An example of such a system is a web server that delivers files to clients
running web browsers.

20

/- '\\l ,/
(. Sewar /,_..) Network
= _f- \
— AL '3
S — —

Fig 1.22 General structure of a client-server system.

1.11.5 Peer-to-Peer Computing

= |n peer-to-peer (P2P) networking, a group of computers are linked together with equal permissions
and responsibilities for processing data. Unlike traditional client-server networking, no devices in a
P2P network are designated solely to serve or to receive data. Each connected machine has the
same rights as its “peers”, and can be used for the same purposes.

Nl

Fig 1.23 Peer-to-peer system with no centralized service.

= Skype is an example of peer-to-peer computing. It allows clients to make voice calls and video calls
and to send text messages over the Internet using a technology known as voice over IP (VolIP).

1.11.6 Virtualization

= Virtualization is a technology that allows operating systems to run as applications within other
operating systems.

21

processes
processes
processes [frrocasses
IrOc ramming H ' g
/' : n-:e ol kel kermel kermel
e oYM | WMZ | VM3
erm
vittual machine
manager
hardware =
hatdware
(@) #)
1.25 VM Ware.

Windows was the host operating system, and the VMware application was the virtual machine
manager VMM. The VMM runs the guest operating systems, manages their resource use, and
protects each guest from the others.

1.11.7 Cloud Computing:

Cloud is a model of computing where servers, networks, storage, development tools, and even
applications (apps) are enabled through the internet. Instead of organizations having to make major
investments to buy equipment, train staff, and provide ongoing maintenance, some or all of these
needs are handled by a cloud service provider.

There are actually many types of cloud computing, including the following:

Public cloud: A cloud available via the Internet to anyone willing to pay for the services.

Private cloud: A cloud run by a company for that company’s own use.

Hybrid cloud: A cloud that includes both public and private cloud components.

Software as a service (SaaS): One or more applications (such as word processors or spreadsheets)
available via the Internet.

Platform as a service (PaaS): A software stack ready for application use via the Internet (for example,

a database server).

22

Infrastructure as a service (laaS): Servers or storage available over the Internet (for example, storage

available for making backup copies of production data).

{ Intarnat)
— A
T %, customey
s requessts
.
i clotd]
[firewal customet
Intefface |
Motiidhicecll
| load balancar | b cloud
AR | ' managameant
s ~—~. | ~— T _——l.commands
ol ~ Y BN\
/--1" I l l I ; ""——\\:
ya vidual virtual slarage ¢lotd "N
(machines! [mashines managmant
\ SENACES
N
[/
|| J
\. servers sefvers | &7
- -)\ A /'-‘
.\» //' .‘\‘ —/‘..“ //
B e o~ e

1.26 Cloud computing.-

1.11.7 Real-Time Embedded Systems

An embedded system is a combination of computer hardware and software designed for a specific
function.

Embedded systems may also function within a larger system.

The systems can be programmable or have a fixed functionality.

Industrial machines, consumer electronics, agricultural and processing industry devices,
automobiles, medical equipment, cameras, digital watches, household appliances, airplanes,
vending machines and toys, as well as mobile devices, are possible locations for an embedded
system.

A real-time system has well-defined, fixed time constraints. Processing must be done within the
defined constraints, or the system will fail. For instance, it would not do for a robot arm to be
instructed to halt after it had smashed into the car it was building.

23

1.12 OPEN-SOURCE OPERATING SYSTEMS

= Open source software is code that is designed to be publicly accessible-anyone can see, modify, and
distribute the code as they see fit.

1.12.1 Linux

= Linux is a free, open source operating system, released under the GNU General Public License (GPL).
Anyone can run, study, modify, and redistribute the source code, or even sell copies of their
modified code, as long as they do so under the same license.

Features:

= Portable

= QOpen Source

= Multi-User

= Multiprogramming Hierarchical File System
= Shell

= Security

= Major distributions include RedHat, SUSE, Fedora, Debian, Slackware, and Ubuntu.
1.12.2 BSD UNIX

= BSD UNIX stands for Berkeley Software Distribution UNIX, a version of UNIX that originated many
common UNIX features such as the vi editor, C shell, and TCP/IP networking.

Features:

= TCP/IP

= Virtual Memory,

= Berkeley Fast File System.

1.12.4 Solaris

= Solaris is the commercial UNIX-based operating system of Sun Microsystems.
Features:

= Hardware Support.

= |/O Management

= Provide Device Drivers.

= Process Scheduling.

= Process Management.

= Memory Management.

= File System Implementation.
= Provide I/O Services.

24

CHAPTER 2
OPERRATING SYSTEM STRUCTURE

2.1 OPERATING SYSTEM SERVICES VIMP

= QOperating system provides certain services to programs and to the users of those programs.

Liser and oihs) svslem gragrams

L1 Eatch gommand fine

LEBET MiErEcEs

sysiem colls

pradram
exscufinn

e
cperalions

fila
svstams

COmImITHEETicn

pE=i-TaiB Ijee =]
allocation

ECcounting

STar

protection

ard

datection s

BIVIGES

OpEraEing sysam

NErdwWare

2.1 Overview of OS Services.

2.1.1 User Interface

= Almost all operating systems have a user interface (Ul). This interface can take several
forms. The first one is a command-line interface (CLI), which uses text commands.

= The second one is a batch interface, in which commands and directives to control those commands
are entered into files, and those files are executed.

= The third one is a graphical user interface (GUI). Menus allow the user to execute commands by
selecting from a list of choices. Options are selected with a mouse or other pointing device within a
GUI. A keyboard may also be used. Menus are convenient because they show what commands are

available within the software.

2.1.2 Program execution

= The system must be able to load a program into memory and to run that program. The program
must be able to end its execution, either normally or abnormally (indicating error).

2.1.3 File-system manipulation

= File: Afile is a collection of related information that is recorded on secondary storage.

= File Directories: Collection of files is a file directory.

= The directory contains information about the files, including attributes, location and ownership.

= Much of this information, especially that is concerned with storage, is managed by the operating
system.

2.1.4 Communications

= |nter-process communication (IPC) is a mechanism that allows processes to communicate with each
other and synchronize their actions.

= Processes can communicate with each other through both:
Shared Memory

Message Passing

Process A Process A M
1
Shared Memory [€— ProcessB | m |«
2
Process B < 21

N

Kernel Kernel M <€

Message Passing
Communication

Shared Memory
Communication

2.1.5 Error detection

= The operating system needs to be detecting and correcting errors constantly.

= Errors may occur in the CPU and memory hardware (such as a memory error or a power failure), in 1/0
devices (such as a parity error on disk, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overflow, an attempt to access an illegal memory

location, or a too-great use of CPU time).

= For each type of error, the operating system should take the appropriate action to ensure correct and
consistent computing. Sometimes, it has no choice but to halt the system. At other times, it might
terminate an error-causing process or return an error code to a process for the process to detect and
possibly correct.

2.1.6. Resource allocation

= The Operating System allocates resources when a program needs them. When the program terminates,
the resources are de-allocated, and allocated to other programs that need them.

= There are two Resource allocation techniques:

(a) Resource Partitioning Approach: In this approach, the operating system decides beforehand, that what
resources should be allocated to which user program. It divides the resources in the system to
many resource partitions, where each partition may include various resources.

(b) Pool Based Approach: In this approach, there is a common pool of resources. The operating System
checks the allocation status in the resource table whenever a program makes a request for a resource. If
the resource is free, it allocates the resource to the program.

2.1.7 Accounting

= QOperating system keeps track of time and resources used by various tasks and users, this information can
be used to track resource usage for a particular user or group of user.

2.1.8 Protection & Security

= Protection involves ensuring that all access to system resources is controlled.
= Security of the system from outsiders is also important. Such security starts with requiring each

user to authenticate by means of a password, to gain access to system resources.
2.2 SYSTEMS CALLS VVIMP

= System Call: Asystem callis the programmatic way in which a computer program requests a
service from the kernel of the operating system it is executed on.

= A computer program makes a system call when it makes a request to the operating system’s
kernel.

= System call provides the services of the operating system to the user programs via Application
Program Interface (API).

2.2.1 Services Provided by System Calls:

1. Process Creation and Management

2. Main Memory Management

3. File Access, Directory and File System Management

4. Device Handling(l/0)
5. Protection
6. Networking, etc.

2.2.2 Types of System Calls
There are 5 different categories

Device Management
Information Maintenance
Communication

vk wn e

souroedile

of system calls:

Process Control: end, abort, create, terminate, allocate and free memory.
File Management: create, open, close, delete, read file etc.

L

=

[Example System Call Sequence

Acquiie input file mame
Wirite prompl to seresn
Acoept nput
Acquitis auiput fiie name
Wiite prompl 1o scraan
Agcapl Inpul
Oipen the input file
it file dosgn'y exist, abort
Create output file
if fite exists. abor
Loag
Head from Inpiut file
VWnte to output file
Until read fails
Ciose outpat file o
Wrile complefion message 1o scraen
Terminate aormally

=

2.2 Example of how system calls are used.

=

i
a*

usar application

open |)
Lisar
mode '
\ Setar call et k
kermel — —_—
mode A
I open ()
. Implementation
I | — - Gf E.'F:FJEH {]'
. aystern call
relurm
2.3 The handling of a user application invoking the open()
o x|
register
% parametars
lor call
—*| use parameters | | cade for
systern call 13— — cail 13
LSET Prograrm

oparating system

2.4 Passing of parameters as a table.

ginclude «stiio b
int main {)
{

-
L]

retum 0;
]

user

printf ("Graalings’); |-

mode =
standarc C library
errel
mode
write ().

(writs () R
Y systam call /I

e o

2.5 System call interface of C Standard Library.

2.3 SYSTEM PROGRAMS

= The system program serves as a part of the operating system.
= System programs can be divide into seven categories

File management. These programs create, delete, copy, rename, print,
dump, list, and generally manipulate files and directories.

2.4 TYPES OF SYSTEM CALLS VVIMP

= System calls can be grouped roughly into six major categories: Process Control, File Manipulation,
Device Manipulation, Information Maintenance, Communications, and Protection.

PROCESS CONTROL

= end, abort

= |oad, execute

= create process, terminate process

= get process attributes, set process attributes
= wait for time

= wait event, signal event

" allocate and free memory

FILE MANAGEMENT

= create file, delete file

= open, close

= read, write, reposition

= get file attributes, set file attributes
DEVICE MANAGEMENT

= request device, release device

= read, write, reposition

= get device attributes, set device attributes
= |ogically attach or detach devices
INFORMATION MAINTENANCE

= gettime or date, set time or date

= get system data, set system data

= get process, file, or device attributes

= set process, file, or device attributes
COMMUNICATIONS

= create, delete communication connection
= send, receive messages

= transfer status information

= attach or detach remote devices

CHAPTER 3
PROCESSES
3.1 PROCESS CONCEPT IMP

= Process: A process is basically a program in execution.

3.1.2 Process States

A process may be in one of the following states.

New: The process is being created.

Running: Instructions are being executed.

Waiting: The process is waiting for some event to occur.
Ready: The process is waiting to be assigned to a processor.
Terminated: The process has finished execution.

: N) admiitten Irifesrust kﬂ/—'. tarmanatad

L ready [mnoning

SENataT depakch

|FE ar avant aompiatiom]

[e TR]

- wiading

=

3.1 Process States.

3.1.3 Process Control Block
= Each process is represented in the operating system by a Process Control Block (PCB).

Hroc=Es wlaz=

FrcEss maEmhar

g thin commie
ooy
|'-|".m'|'|§;;'5; i
iyt 0! opan es |

LI |

3.2 Process Control Block.

Process State: The state may be new, ready, running, waiting, halted, and so on.

Program Counter: The counter indicates the address of next instruction to be executed for this
process.

CPU Registers: The registers may vary in number and type, depending on the computer architecture.
They include Accumulator, Index Registers, Stack Pointers and General Purpose Registers.

CPU Scheduling Information: This information includes a Process Priority.

Memory Management Information: Include the value of the base and limit registers and the page
tables.

Accounting Information: This information includes the amount of CPU time used, time limits,
account numbers, job or process numbers, and so on.

I/O Status Information: This information includes the list of 1/0 devices allocated to the process, a
list of open files, and so on.

3.1.4 Threads

A thread is a path of execution within a process.
A thread is also called a lightweight process.

3.2 PROCESS SCHEDULING VIMP

Process Scheduling: The act of determining which process is in the ready state, and should be
moved to the running state is known as Process Scheduling.

The prime aim of the process scheduling system is to keep the CPU busy all the time and to deliver
minimum response time for all programs.

Scheduling fell into one of the two general categories:

Non Pre-emptive Scheduling: The currently executing process releases the CPU voluntarily, after its
job is over.

Pre-emptive Scheduling: The operating system allocates process to the CPU by pre-empting the
currently executing process.

3.2.1 Scheduling Queues

A new process is initially put in the ready queue. It waits in the ready queue until it is selected for
execution. Once the process is assigned to the CPU and is executing, one of the following several
events can occur.

The process could issue an 1/0 request, and then be placed in the 1/0 queue.

The process could create a new sub process and wait for its termination.

The process could be removed forcibly from the CPU, as a result of an interrupt, and be put back in
the ready queue.

-

rasdy quaye {cRuT
rl'.d- I-\'. . - |
— [0 —— | WO queus VO reduelt
me ghice
e
< chile otk 3
waxecules - child
_I__.d_—_‘—h\.__ T
¢ lirviarupt warl lor an |
“,_QodlrE: miterri

3.3 Queueing-diagram representation of process scheduling.

The process scheduler selects an available process for program execution on the CPU.

ready
gueue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

3.4 The ready queue and various /O device queues.

queue headsr PCB- PCBs
head > > —=
tail registers registers
- | -
L]
head =
tail T
head +——
tail — PCB; PCB,. PCBg
/- | - B
head 4
tai! ‘_///
PCB;
head > =
i+

3.2.2 Schedulers
= A scheduler is a type of system software that allows you to handle process scheduling.

» There are three types of schedulers available
1. Long Term Scheduler
2. Short Term Scheduler
3. Medium Term Scheduler

Long Term Scheduler: Long term scheduler is also known as a job scheduler. This scheduler regulates the
program and select process from the queue and loads them into memory for execution. It also regulates the
degree of multi-programing.

Medium Term Scheduler: Medium term is also called swapping scheduler. It handle the swapped out-
processes. In this scheduler, a running process can become suspended, which makes an 1/0O request.

Short Term Scheduler: The primary aim of this scheduler is to enhance CPU performance and increase
process execution rate. Short term scheduling is also known as CPU scheduler. This helps you to select from
a group of processes that are ready to execute and allocates CPU to one of them. The dispatcher gives
control of the CPU to the process selected by the short term scheduler.

SWapP In partizlly executed SWap out
swapped-aut processas

ready quede

{: Py | » &

pa—

I.-'_""h__

l' e KO waiting
! :

el ;J (jueues

3.5 Addition of medium-term scheduling to the queueing diagram.

3.2.3 Context Switch

= In computing, a context switch is the process of storing the state of a process or thread, so that it can be
restored and resume execution at a later point. This allows multiple processes to share a single central
processing unit (CPU), and is an essential feature of a multitasking operating system.

piooEss By DOBAUNG Syslam plocss &

mitarmiph or ayatam ool

saautlng ||
1_—'F'=E‘:l| f} lﬂ +
1 | satve stats into POB |
3 | iddio
|naloat state from PCE,|
= dcfiea berupd o systam call l axpculing
=W state nie PTB,
: - ldle
Irekaad utsis from PCE,

axgciting L;‘—\‘L

3.6 Diagram showing CPU switch from Process to Process.

3.3 OPERATIONS ON PROCESSES IMP

Process: A process is an activity of executing a program. Basically, it is a program under execution. Every
process needs certain resources to complete its task.

Operation on a Process: The execution of a process is a complex activity. It involves various operations.
Following are the operations that are performed while execution of a process.

T

K naw

admitted Intarrup! axil

termina tei.iﬂj;

(e) & run‘nuE/)
IFO or avent wait

3.7 Diagram of Process State.

3.3.1 Process Creation

= This is the initial step of process execution activity.

= During the execution, a process may create several new processes.

= The creating process is called a parent process, and the new processes are called the children of that
process. Each of these new processes may in turn create other processes, forming a tree of
processes.

= Most operating systems (including UNIX, Linux, and Windows) identify processes according to a
unique process identifier (or pid), which is typically an integer number. The pid provides a unique

value for each process in the system, and it can be used as an index to access various attributes of a
process within the kernel.

r'-'- B
L
F 1nig LY
A
N il P,
r o -
. a3 = ‘xh .
.d.--"- e
o,
e
____f--"'-ﬂ b 5% =
= __'—_"d-_'—\. T T, r“--d_ - __\-"\-\..‘_
. - s
F Iodn i ErrrEeet ¥ |' L b L .
|.:|| sz ‘.II L o |of = § ' [Tl = 3 :I
i o L, = o d--"""l
—— —ﬁ; e
r __-"f]
___.-" - . ,
-
a ___.r'-.-.- by -] T
i — o = S
i — . il e, i S il -
o = P - . 1 = ot -H-H"-\.
At i Jifim £ o Pl il :l ! i :l
)
l il = e) l'u fri ’ l-, gzl = 1 B ' <Eid =1
% * = o = L - e
p o ! o S e
L
" E
-
g ‘-\-H“\-\.
-
-'-- -\-H-\‘\'
._|J--r Ty e —
i = T
E ey s == = .v‘-.-'-. F e 1"‘-,\.
1] 3
5 = &
38 () (o = same) I"_\' el
= e S —— e

——— -
— — ——

3.8 Atree of processes on a typical Linux

= When a process creates a new process, two possibilities for execution exist:
1. The parent continues to execute concurrently with its children.
2. The parent waits until some or all of its children have terminated.

Program: Process creation using fork() system call.

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main()

{
pid t pid;
/* fork a child process */
pid = fork();
if (pid < 0)
{
/* error occurred */
fprintf(stderr, "Fork Failed");
return 1;
}
else if (pid == 0)
{
/* child process */
execlp("/bin/1s","1s" ,NULL);
}
else
{
/* parent process */
/* parent will wait for the child to complete */
wait(NULL);
printf("Child Complete");
}
return 0;
}

Process Termination
= A process terminates when operating system executes exit() system call.

/* exit with status 1 */
exit(1);

= At that point, the process may return a status value (typically an integer) to its parent process (via
the wait() system call) if its process is not completed.

pid t pid;
int status;
pid = wait(&status);

All the resources are deallocated when process terminates.

A parent may terminate the execution of one of its children for a variety of reasons, such as these:
The child has exceeded its usage of some of the resources that it has been allocated.

The task assigned to the child is no longer required.

The parent is exiting, and the operating system does not allow a child to continue if its parent terminates.

7

W e

parent (pid =) = T,

—p Wil _,,'—" parenl fesumas
e s

f_,.n— -
patant —h-l’ [:-Il:i fr,lrk[x'l T

B o — e Y
. # i =4

e gxeal)) —» it}
chisd {pid =-0) e — ==

3.9 Process creation using the fork() system call.

3.4 INTERPROCESS COMMUNICATION VVIMP

= |nter process communicationis the mechanism provided by the operating system that allows
processes to communicate with each other.

Reasons for providing Inter Process Communication:

1. Information Sharing: Several processes may share the same information; we must provide an
environment to allow concurrent access to same information.

2. Computation Speedup: If we want a particular task to run faster, we must break it into subtasks,
each of which will be executing in parallel with the others.

3. Modularity: Dividing the system functions into separate processes or threads.

4. Convenience: Even an individual user may work on many tasks at the same time.

process A process A
process B shared memory P
process B
message queue
—F'mﬂ m" m_E. I"I"I;] ik m“q—
Kernel
kemel

(&) ()

3.10 Communications models. (a) Message passing. (b) Shared memory

3.4.1 Shared Memory Systems
= Shared memory is a memory shared between two or more processes.

PROCEDURE-CONSUMER PROBLEM

= A producer process produces information that is consumed by a consumer process.

ttdefine BUFFER SIZE 5
typedef struct {

}item;

item buffer[BUFFER SIZE];
int in = @;

int out = 0;

= The producer process using shared memory

item next produced;

while (true)

{

/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out);
/* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

m

O | o

}

in Buffer [in] (in + 1) % BUFFER SIZE == OUT next produced in (in+1) % BUFFER SIZE

0 Buffer [0] = A (0+1)%5 ==0 1 1 (1+1) % BUFFER SIZE
== 0 False 2%5=2

1 Buffer [1] =B (1+1)%5==0 2 2 (2+1) % BUFFER SIZE
== 0 False 3%5=3

2 Buffer [2] = C (2+1)%5 ==0 3 3 (3+1) % BUFFER SIZE
== 0 False 4%5=4

3 Buffer [3] =D (3+1)%5 ==0 4 4 (4+1) % BUFFER SIZE
== 0 False 5%5=0

9

4 Buffer [4] = E (4+1)%5 ==0

== 0 True

= The consumer process using shared memory

item next consumed;
E 4
while (true)
D 3
{
while (in == out); C 2
/* do nothing */ B 1
next consumed = buffer [out]; A 0
out = (out + 1) % BUFFER SIZE;
/* consume the item in next consumed */
}
in out while (in == out) Buffer [out] next (out+1)%BUFFER SIZE
consumed
4 0 4 ==0 False Buffer [0] =A 1 (0+1)%5 =1
1 4==1 False Buffer [1]=B 2 (1+1)%5 =2
2 4 ==2 False Buffer [2] =C 3 (2+1)%5 =3
3 4 ==3 False Buffer [3] =D 4 (3+1)%5=4
4 4==4 True Buffer [4] = E

3.4.2 Message-Passing Systems

= Message passing model allows multiple processes to read and write data to the message
gueue without being connected to each other.

= A message passing facility provides at least two operations:
1. send(message)
2. receive(message)

There are three methods for logically implementing a link and the send() / receive() operations:
Direct or indirect communication

Synchronous or asynchronous communication

Automatic or explicit buffering

SRS

10

3.4.2.1 Naming

Direct Communication:

= Under direct communication the send() and receive() primitives are defined as:
Send (P, message): Send a message to process P.
Receive (Q, message): Receive a message from process Q.
= This scheme exhibits symmetry in addressing.
= A communication link in this scheme has the following properties:
1. Alinkis established automatically between every pair of processes that want to communicate.
2. Alinkis associated with exactly two processes.
3. Between each pair of processes, there exists exactly one link.

= Avariant of this scheme employs asymmetry in addressing.
= Here, only the sender names the recipient; the recipient is not required to name the sender.
= |n this scheme, the send() and receive() primitives are defined as follows:

Send (P, message): Send a message to process P.

Receive (id, message): Receive a message from any process.

The variable id is set to the name of the process with which communication has taken place.

Indirect Communication:
= With indirect communication, the messages are sent to and received from mailboxes, or ports.
= The send() and receive() primitives are defined as follows:

Send (A, message): Send a message to mailbox A.

Receive (A, message): Receive a message from mailbox A.

3.4.2.2 Synchronization

= Communication between processes takes place through calls to send() and receive() primitives.

There are different design options for implementing each primitive.

= Message passing may be either blocking or nonblocking also known as synchronous and

asynchronous.

Blocking send: The sending process is blocked until the message is received by the receiving process

or by the mailbox.

Non blocking send: The sending process sends the message and resumes operation.
Blocking receive: The receiver blocks until a message is available.

Non blocking receive: The receiver retrieves either a valid message or a null.

3.4.2.3 Buffering

= Whether communication is direct or indirect, messages exchanged by communicating processes

reside in a temporary queue.

= Basically, such queues can be implemented in three ways:

1. Zero Capacity: The queue has a maximum length of zero; thus, the link cannot have any messages
waiting in it. In this case, the sender must block until the recipient receives the message.

2. Bounded Capacity: The queue has finite length n; thus, at most n messages can reside in it. If the
queue is not full when a new message is sent, the message is placed in the queue, and the sender
can continue execution without waiting. The link’s capacity is finite, however. If the link is full, the
sender must block until space is available in the queue.

3. Unbounded Capacity: The queue’s length is potentially infinite; thus, any number of messages can
wait in it. The sender never blocks.

3.5 COMMUNICATION IN CLIENT SERVER SYSTEMS

= (Client-server Architecture: Architecture of a computer network in which
many clients (remote processors) request and receive service from a
centralized server (host computer).

= In this section, we explore three other strategies for communication in client—server
systems: sockets, remote procedure calls (RPCs), and pipes.

3.5.1 Sockets:

= Asocket is one endpoint of atwo way communication link between two programs running
on the network.

= The socket mechanism provides a means of Inter-Process Communication (IPC) by
establishing named contact points between which the communication takes place.

= Asocket is identified by an IP Address concatenated with a Port Number.

= In general, sockets use client—server architecture. The server waits for incoming client
requests by listening to a specified port.

= Once a request is received, the server accepts a connection from the client socket to
complete the connection.

host X
(146.86.5.20)
P -_\-I__-"_""'-\.x
g A q'HL_\
f;l socked ".I
I\ (146.86.5.2001625) qll
L N web serivar
e W (161.25.19.8)
LY — o H‘H.__ —
"-._.. ."r e ".h.-'—-\.ll
ek =
Fal aOEHEL \"
[(161.25.10.8:80) 4
\ ,
-2 v
o o A

3.12 Communication using sockets.
Example: Data Server

12

import java.net.*;
import java.io.*;
public class DateServer

{

public static void main(String[] args)

{
Try

{

ServerSocket sock = new ServerSocket(6013);

/* now listen for connections */
while (true)
{

Socket client = sock.accept();
PrintWriter pout = new PrintWriter(client.getOutputStream(), true);

/* write the Date to the socket */
pout.println(new java.util.Date().toString());

/* close the socket and resume */
/* listening for connections */
client.close();

}
}

catch (IOException ioe)

{

System.err.println(ioe);

}
}

3.5.2 Remote Procedure Calls

= A remote procedure call is an inter process communication technique that is used for client-server
based applications.

= Aclient has a request message that the RPC translates and sends to the server. This request may be
a procedure or a function call to a remote server.

= When the server receives the request, it sends the required response back to the client. The client is

blocked while the server is processing the call and only resumed execution after the server is
finished.

13

client

user calls kernel
message fo
procedurs X

messages

receives

'message, looks

replies to client
with port P

listening to

port Preceives
i

L

‘daemon
il

kern sends ,
message to]
ﬁm:i@mmr 0. Re: address
pmt.“l.ﬂﬂ.!?’ﬂ'l ﬁar HFE x’
i) From: S‘ET‘.I'EI’
kernel places To: dlient
port #in user |« Port: kernel
RPC message Re: RPC X
- \. PortP
kernel sends To: server
RPC Port: port P |
=gonieniss>
F:ram: fPc
reply, passes
it to user

3.13 Execution of a remote procedure call (RPC).

request and

processes send
output

14

3.5.3 Pipes

Pipe: Pipe is a connection between two processes, such that the standard output from
one process becomes the standard input of the other process.

Pipe is one-way communication only i.e we can use a pipe such that one process write to
the pipe, and the other process reads from the pipe. It opens a pipe, which is an area of
main memory that is treated as a “virtual file”.

On UNIX systems, ordinary pipes are constructed using the function pipe(int fd[])

This function creates a pipe that is accessed through the int fd[] file descriptors: fd[0] is the read-end of
the pipe, and fd[1] is the write-end.

parant ahitd
Tl) (1) 1aid) fai1)

I '
L’ |f pips (r =

3.14 File descriptors for an ordinary pipe.

parent prcoess child process

fdl0] fdf1] fdl0] fdl1]

e

ipe
Pl e

Kernel

3.15 File Descriptor for parent-child processes.

15

CHAPTER 4
THREADS

4.1 THREAD OVER VIEW

Thread: A thread is a path of execution within a process.

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program counter, a register
set, and a stack.

It shares with other threads belonging to the same process its code section, data section, and
other operating-system resources, such as open files and signals.

A process can contain multiple threads.

4.1.1 Motivation

Most software applications that run on modern computers are multithreaded. An application
typically is implemented as a separate process with several threads of control.

A web browser might have one thread display images or text while another thread retrieves data
from the network, for example.

A word processor may have a thread for displaying graphics, another thread for responding to
keystrokes from the user, and a third thread for performing spelling and grammar checking in the
background.

code data files | coda daia higs
registars stack reglaters (|| realsters (|| registars
slack slack stack

g —

VAV
A __‘Tk_p

S | §

VRV

girpile-fhresdsd process rriutfithiraaded process
4.1 Single-threaded and multithreaded processes.

Finally, most operating-system kernels are now multithreaded. Several threads operate in the
kernel, and each thread performs a specific task, such as managing devices, managing memory, or
interrupt handling.

= {hraad

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four major categories

1. Responsiveness: If the process is divided into multiple threads, if one thread completes its
execution, then its output can be immediately returned.

2. Faster context switch: Context switch time between threads is lower compared to process
context switch. Process context switching requires more overhead from the CPU.

3. Effective utilization of multiprocessor system: If we have multiple threads in a single process,
then we can schedule multiple threads on multiple processor. This will make process execution

faster.

4. Resource sharing: Resources like code, data, and files can be shared among all threads within a
process.
Note: stack and registers can’t be shared among the threads. Each thread has its own stack and
registers.

5. Communication: Communication between multiple threads is easier, as the threads shares
common address space. While in process we have to follow some specific communication
technique for communication between two processes.

6. Economy: Because threads share the resources of the process to which they belong, it is more
economical to create and context-switch threads.

7. Scalability: Threads may be running in parallel on different processing cores.

4.2 MULTICORE PROGRAMMING

4.2.1 Single Core Systems

= Single Core System: A single core system contains only one processor. So only one process can be
executed at a time and then the process is selected from the ready queue. Most general purpose
computers contain the single processor systems as they are commonly in use.

single cora Ty ‘ Ta ‘ Ty ‘ IF ‘ T

TE ‘ T3 ‘ T_q ‘ T] ‘ =

gl

L 3

4.2 Concurrent execution on a single-core system.

4.2.2 Multicore Programming

= A processor that has more than one core is called Multicore Processor. Nowadays, most of systems
have four cores (Quad-core) or eight cores (Octa-core).

= These cores can individually read and execute program instructions, giving feel like computer system
has several processors but in reality, they are cores and not processors.

= |nstructions can be calculation, data transferring instruction, branch instruction, etc.
Processor can run instructions on separate cores at same time. This increases overall
speed of program execution in system. Thus heat generated by processor gets reduced
and increases overall speed of execution.

cora 1 T4 T T4 IE T4

Tag

L ? T'.- |_._|_ T;_' Tq T'.'- FEE

e

4.3 Parallel execution on a multicore system.

= Multicore systems support Multi Threading and Parallel Computing.

= Multicore processors are widely used across many application domains, including general-
purpose, embedded, network, digital signal processing (DSP), and graphics (GPU).

= Efficient software algorithms should be used for implementation of cores to achieve higher
performance. Software that can run parallelly is preferred because we want to achieve parallel
execution with the help of multiple cores.

Advantages:

= These cores are usually integrated into single IC (integrated circuit) die, or onto multiple dies but
in single chip package.Thus allowing higher Cache Coherency.

= These systems are energy efficient since they allow higher performance at lower energy.

= |t will have less traffic (cores integrated into single chip and will require less time).

4.2.3 Programming Challenges: In general, five areas present challenges in programming for multicore
systems:

= |dentifying tasks: Tasks are independent of one another and thus can run in parallel on individual
cores.

= Balance: While identifying tasks that can run in parallel, programmers must also ensure that the
tasks perform equal work of equal value.

= Data Splitting: Just as applications are divided into separate tasks, the data accessed and
manipulated by the tasks must be divided to run on separate cores.

= Data Dependency: The data accessed by the tasks must be examined for dependencies between
two or more tasks. When one task depends on data from another, programmers must ensure that
the execution of the tasks is synchronized to accommodate the data dependency.

= Testing and Debugging: Testing and debugging such concurrent programs is inherently more
difficult than testing and debugging single-threaded applications.

4.2.4 Types of Parallelism

= Data Parallelism: Data Parallelism means concurrent execution of the same task on each multiple
computing core.

= Consider, for example, summing the contents of an array of size N. On a single-core system, one thread
would simply sum the elements [0] ... [N - 1].

= On a single-core system, one thread would simply sum the elements [0] . . . [N - 1]. On a dual-core
system, however, thread A, running on core 0, could sum the elements [0] . .. [N/2 - 1] while thread B,
running on core 1, could sum the elements [N/2] . .. [N - 1]. The two threads would be running in

parallel on separate computing cores.

Data

Core 1 Core 2 Core 3 Core 4

= Task Parallelism: Task Parallelism means concurrent execution of the different task on multiple
computing cores.

= Consider again our example above, an example of task parallelism might involve two threads, each
performing a unique statistical operation on the array of elements. Again the threads are operating in
parallel on separate computing cores, but each is performing a unique operation.

Data

vV v

Core 1l Core 2 Core 3 Core 4

4.3 MULTITHREADING MODELS

= Multi Threading: It is a process of multiple threads executes at same time.
= Many operating systems support kernel thread and user thread in a combined way.

= Multi threading model are of three types.
Many to many model.
Many to one model.
One to one model.

4.3.1 Many-to-One Model

= The many to one model maps many of the user threads to a single kernel thread. This
model is quite efficient as the user space manages the thread management.

= A disadvantage of the many to one model is that a thread blocking system call blocks the
entire process. Also, multiple threads cannot run in parallel as only one thread can access
the kernel at a time.

" a—— s s

[k) = kameal thraad

4.4 Many to one thread model.
4.3.2 One-to-One Model

= The one to one model maps each of the user threads to a kernel thread. This means that many
threads can run in parallel on multiprocessors and other threads can run when one thread makes a
blocking system call.

= A disadvantage of the one to one model is that the creation of a user thread requires a
corresponding kernel thread. Since a lot of kernel threads burden the system, there is restriction on
the number of threads in the system.

— izt e

4.3.3 Many-to-Many Model / ‘) | J i] -

:i i e e e Eme| thread
* The many to many model P LI=Es L)

threads. The number of kermegmﬁgqgmgqhgémageappl|cat|on or machine.

asser kernel

= The many to many does not have the disadvantages of the one to one model or the many to
one model. There can be as many user threads as required and their corresponding kernel
threads can run in parallel on a multiprocessor.

— LsEr thresn

Ko k L = o] e

4.6 Many to Many Thread Model

4.4 THREAD LIBRARIES
= Athread library provides the programmer an API for creating and managing threads.

= There are two primary ways of implementing a thread library. The first approach is to
provide a library entirely in user space with no kernel support.

= All code and data structures for the library exist in user space. This means that invoking a
function in the library results in a local function call in user space and not a system call.

» The second approach is to implement a kernel-level library supported directly by the
operating system. In this case, code and data structures for the library exist in kernel space.

» Invoking a function in the API for the library typically results in a system call to the kernel.

= Three main thread libraries are in use today:
1. Pthreads
2. Windows Threads
3. Java Threads

Example of Pthread: A multithreaded program that calculates the summation of

a nonnegative integer in a separate thread.

#include <pthread.h>

#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

void *runner(void *param); /* threads call this function */
int main(int argc, char *argv [])

{

Pthread t tid; /* the thread identifier */

Pthread_attr_t attr; /* set of thread attributes */

if (argc != 2)

{

fprintf(stderr,"usage: a.out <integer value>\n");

return -1;

}

if (atoi(argv[1l]) < ©)

{

fprintf(stderr,"%d must be >= @\n",atoi(argv[1]));
return -1;

}

/* get the default attributes */
pthread_attr_init(&attr);

/* create the thread */
pthread_create(&tid,&attr,runner,argv[1]);
/* wait for the thread to exit */
pthread_join(tid,NULL);

printf("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);

sum = 0;

for (i = 1; i <= upper; i++)

sum += 1i;
pthread exit(0);
}

Example of Windows Thread: A multithreaded program that calculates the
summation of a nonnegative integer in a separate thread.

#include <windows.h>
#tinclude <stdio.h>

DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPI Summation(LPVOID Param)

{
DWORD Upper = *(DWORD*)Param;

for (DWORD i = @; i <= Upper; i++)

Sum += 1i;
return 9;
}

int main(int argc, char *argv[])

{

DWORD ThreadId;

HANDLE ThreadHandle;

int Param;

if (argc != 2) { fprintf(stderr,"An integer parameter is required\n");
return -1;

}

Param = atoi(argv[1]);

if (Param < 0)

{ fprintf(stderr,"An integer >= 0 is required\n");
return -1;

}

/* create the thread */

ThreadHandle = CreateThread(

NULL, /* default security attributes */

0, /* default stack size */

Summation, /* thread function */

&Param, /* parameter to thread function */

0, /* default creation flags */

&ThreadId); /* returns the thread identifier */

if (ThreadHandle != NULL)
{

/* now wait for the thread to finish */
WaitForSingleObject(ThreadHandle, INFINITE);

/* close the thread handle */
CloseHandle(ThreadHandle);
printf("sum = %d\n",Sum);

}

}

Example of Java Thread: A multithreaded program that calculates the

summation of a nonnegative integer in a separate thread.

class Sum

{

private int sum;

public int getSum() { return sum;

gublic void setSum(int sum) { this.sum = sum;
}

}

class Summation implements Runnable
{

private int upper;

private Sum sumValue;

public Summation(int upper, Sum sumValue)
{

this.upper = upper;

this.sumValue = sumValue;

}

public void run()
{
int sum = 9;

for (int i = @; 1 <= upper; i++)

sum += 1i;

sumValue.setSum(sum);

}

}

public class Driver

{

public static void main(String[] args)
{

if (args.length > 0)

{

if (Integer.parselnt(args[@]) < 0)
System.err.println(args[0] + " must be >= 0.");

Else

{

Sum sumObject = new Sum();

int upper = Integer.parselInt(args[0]);

Thread thrd = new Thread(new Summation(upper, sumObject));
thrd.start();

try

{

thrd.join();

System.out.println

("The sum of "+upper+" is "+sumObject.getSum());
} catch (InterruptedException ie) { }

}
}

else

System.err.println("Usage: Summation <integer value>");
}

}

10

CHAPTER 5
PROCESS
SYNCHRONIZATION

5.1 PROCESS SYNCHRONIZATION

= Process Synchronization: Process Synchronization is the task of coordinating the execution of
processes in a way that no two processes can have access to the same shared data and resources.

= |t is specially needed in a multi-process system when multiple processes are running together, and
more than one processes try to gain access to the same shared resource or data at the same time.

= This can lead to the inconsistency of shared data. So the change made by one process not
necessarily reflected when other processes accessed the same shared data. To avoid this type of
inconsistency of data, the processes need to be synchronized with each other.

5.1.1 How Process Synchronization Works?

= For Example, process A changing the data in a memory location while another process B is trying to
read the data from the same memory location. There is a high probability that data read by the
second process will be erroneous.

PROCESS A DATA ITEM PROCESS B
X=X+1 X=10 X=10
) WRITE READ
x=11 [
COMMITED

Example: Producer-Consumer Problem.

= A producer process produces information that is consumed by a consumer process.

#tdefine BUFFER SIZE 5
typedef struct {

}item;

item buffer[BUFFER SIZE];
int in = @;

int out = 0;

= The producer process using shared memory

while (tr‘ue) ltem Index
{ E
/* produce an item in next produced */ .
while (((in + 1) % BUFFER SIZE) == out);
C
/* do nothing */
buffer[in] = next produced; g
in = (in + 1) % BUFFER SIZE; A
}
in Buffer [in] (in + 1) % BUFFER SIZE == OUT next produced in (in+1) % BUFFER SIZE
0 Buffer [0] = A (0+1)%5==0 1 1 (1+1) % BUFFER SIZE
== 0 False 2%5=2
1 Buffer [1] = B (1+1)%5==0 2 2 (2+1) % BUFFER SIZE
== 0 False 3%5=3
2 Buffer [2] =C (2+1)%5==0 3 3 (3+1) % BUFFER SIZE
== 0 False 4%5=4
3 Buffer [3] = D (3+1)%5==0 4 4 (4+1) % BUFFER SIZE
== 0 False 5%5=0
4 Buffer [4] = E (4+1)%5==0
== 0 True

= The consumer process using shared memory

Item Index
while (true)
E 4
{
while (in == out); g .
/* do nothing */ C 2
next consumed = buffer [out]; B 1
out = (out + 1) % BUFFER SIZE; A 0
/* consume the item in next consumed */
}
in out while (in == out) Buffer [out] next (out+1)%BUFFER SIZE
consumed
4 0 4 ==0 False Buffer [0] =A 1 (0+1)%5 =1
1 4==1 False Buffer [1]=B 2 (1+1)%5 =2
2 4 ==2 False Buffer [2] =C 3 (2+1)%5 =3
3 4 ==3 False Buffer [3] =D 4 (3+1)%5=4
4 4==4 True Buffer [4] = E

= The statement “counter++” may be implemented follows:
registerl = counter
registerl = registerl + 1

counter = registerl

= Similarly, the statement “counter--" is implemented as follows:
register2 = counter
register2 =register2 -1

counter = register2

= The in interleaving of counter++ and counter-- produces data inconsistency:

TO: producer execute registerl = counter {registerl = 5} Counter Register 1
5 5
T1: producer execute registerl = registerl + 1 {registerl = 6} Register 1
6
T2: consumer execute register2 = counter {register2 = 5} Register 2
5
T3: consumer execute register2 = register2 — 1 {register2 = 4} Register 2
4
T4: producer execute counter = registerl {counter = 6} Counter
6
T5: consumer execute counter = register2 {counter = 4} Counter
4

= Finally producer process updates Register 1 as 6 and Counter as 6. Consumer process updates

Register 2 as 4 and Counter as 4.

= Race Condition: A race condition occurs when several processes access a shared variable at the

same time.

5.1.2 Process Synchronization using Critical Section

= Critical Section: Critical section is a segment of code that share common resources by more than

one process.

= Each process request permission to enter its Critical Section.
= The critical section has three components

1. Entry section: The section of code implementing process request to enter its critical section.

2. Exit section: The critical section may be followed by an exit section.
3. Remainder section: The remaining code is the remainder section.

General structure of a typical process Pi:

do

{

entry section

critical section

exit section

remainder section

} while (true);

A solution to the critical-section problem must satisfy the following three requirements:

1.

Mutual exclusion: If process Pi is executing in its critical section, then no other processes can be
executing in their critical sections.

Progress: If no process is executing in its critical section and some processes wish to enter their critical
sections, then only those processes that are not executing in their remainder sections can participate in
deciding which will enter its critical section next, and this selection cannot be postponed indefinitely.

Bounded waiting: There exists a bound, or limit, on the number of times that other processes are
allowed to enter their critical sections after a process has made a request to enter its critical section and
before that request is granted.

Two general approaches are used to handle critical sections on operating systems
Preemptive Kernel: A preemptive kernel is where the kernel allows a process to be removed and
replaced while it is running in kernel mode.

Non-Preemptive Kernel: A non preemptive kernel does not allow a process running in kernel mode to
be preempted; a kernel-mode process will run until it exits kernel mode, blocks, or voluntarily yields
control of the CPU.

5.2 PETERSON’S SOLUTION
= |t provides a good algorithmic description of solving the critical-section problem.

= Peterson’s solution is restricted to two processes that alternate execution between their critical
sections and remainder sections. The processes are numbered PO and P1.

The structure of process Pi in Peterson’s solution:

do
{

flag[i] = true;
turn = j;
while (flag[j] && turn == j);

critical section

flag[i] = false;

remainder section

} while (true);

P. Critical Section
1

P, acquires remainder section

| >| X

P; acquires critical section Trun P; ,//”’///

Peterson’s solution proves

Mutual exclusion is preserved.

The progress requirement is satisfied.
The bounded-waiting requirement is met.

wN e

5.3 SYNCHRONIZATION HARDWARE (TEST AND SET, SWAP, UNLOCK AND LOCK)

= Process Synchronization problems occur when two processes running concurrently share the same

data or same variable.

= The value of that variable may not be updated correctly before its being used by a second process.

Such a condition is known as Race Around Condition.

Test and Set Lock
Swap
Unlock and Lock

W

5.3.1 Test and Set Lock :
= A hardware solution to the synchronization problem.

= There is a shared link variable which can take either of the two values, 0 or 1.
= Before entering into the critical section, a process inquires about the lock.

= |fitis locked, it keeps on waiting till it becomes free.
= |fitis not locked, it takes the lock and executes the critical section.

The definition of the test and set() instruction.

boolean test and set(boolean *target)

{

boolean rv = *target;
*target = true;
return rv;

}

Mutual-exclusion implementation with test and set().

do

{

while (test and set(&lock));
/* do nothing */

/* critical section */

There are three algorithms in the hardware approach of solving Process Synchronization problem:

Critical Section

Variable

lock = false; PO
/* remainder section */
} while (true);
Waiting to P1
acquire critical
section

X

CHAPTER 6
CPU SCHEDULING

6.1 BASIC CONCEPTS

= |n asingle-processor system, only one process can run at a time. Others must wait until the CPU is
free and can be rescheduled.

= The objective of multiprogramming is to have some process running at all times, to maximize CPU
utilization.

6.1.1 CPU - 1/0 Burst Cycle

= Process execution consists of a cycle of CPU execution and 1/O wait. The state of process under
execution is called CPU burst and the state of process under 1/O request & its handling is called I/O
burst.
= Processes alternate between these two states. Process execution begins with a CPU burst. That is
followed by an 1/0 burst, which is followed by another CPU burst, then another I/O burst, and so on.
.

load slare
add store » CPU burst
read Irom file

wait fer VO = 10 bursi

store incrament
Index » CPU burst
write to lile |

| wait far /O = 1O birsi
load store
add slore » CPU burst

read flom hie

wailt for /O » Q) burst

Figuro 6.1 Altarnating sagqusnce of CPU and /0 bursts,

6.1.2 CPU Scheduler

CPU scheduler selects a process among the processes that are ready to execute and allocates CPU to
one of them. S

Short-term schedulers, also known as dispatchers, make the decision of which process to execute
next. Short-term schedulers are faster than long-term schedulers.

6.1.3 Preemptive Scheduling IMP 2M

Preemptive Scheduling is a CPU scheduling technique that works by dividing time slots of CPU to a
given process.

The time slot given might be able to complete the whole process or might not be able to it. When
the burst time of the process is greater than CPU cycle, it is placed back into the ready queue and
will execute in the next chance. This scheduling is used when the process switch to ready state.

6.1.4 Dispatcher

The dispatcher is the module that gives a process control over the CPU after it has been selected
by the short-term scheduler.

6.2 SCHEDULING CRITERIA

Different CPU Scheduling Algorithms have different properties, and the choice of a particular
algorithm depends on the processor.

Many criteria have been suggested for comparing CPU scheduling algorithms. The criteria include
the following.

CPU Utilization: The main objective of any CPU scheduling algorithm is to keep the CPU as busy as
possible. Theoretically, CPU utilisation can range from 0 to 100 but in a real-time system, it varies
from 40 to 90 percent depending on the load upon the system.

Throughput: Number of jobs completed in a unit of time. The throughput may vary depending upon
the length or duration of processes.

Turnaround Time: Turnaround time may simply deal with the total time it takes for a program to
provide the required output. Turn-around time is the sum of times spent waiting to get into

memory, waiting in ready queue, executing in CPU, and waiting for I/0.

Waiting Time: Waiting time is the total time spent by the process in the ready queue.

5. Response Time: Time taken from submission of the process of request until the first response is
produced. This measure is called response time.

6.3 SCHEDULING ALGORITHMS VVIMP

6.3.1 First Come First Serve

= First Come First Serve is the full form of FCFS. It is the easiest and most simple CPU scheduling

algorithm. In this type of algorithm, the process which requests the CPU gets the CPU allocation

first. This scheduling method can be managed with a FIFO queue.

Example 1: Demonstrate First-Come, First-Served Scheduling with the following data

Process Burst Time
P1 24
P2 3
P3 3

Solution: If the processes arrive in the order P1, P2, P3, and are served in FCFS order,
= we get the result shown in the following Gantt chart, which is a bar chart that

= |llustrates a particular schedule, including the start and finish times of each of the participating
processes.
Py Pz P3
0 24 27 30
= The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, and 27 milliseconds for
process P3. Thus, the average waiting time is (0+ 24 + 27)/3 = 17 milliseconds.
Example 2: Demonstrate First-Come, First-Served Scheduling with the following data
Process Burst Time
P2 3
P3 3
P1 24
Py | P3 Py
0 3 & 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds.

6.3.2 Shortest-Job-First Scheduling:

Shortest job first (SJF) or shortest job next, is a scheduling policy that selects the waiting process
with the smallest execution time to execute next.

Shortest Job first has the advantage of having a minimum average waiting time among all scheduling
algorithms.

It is a Greedy Algorithm.

It may cause starvation if shorter processes keep coming. This problem can be solved using the
concept of ageing.

It is practically infeasible as Operating System may not know burst time and therefore may not sort
them. While it is not possible to predict execution time, several methods can be used to estimate
the execution time for a job, such as a weighted average of previous execution times. SIF can be
used in specialized environments where accurate estimates of running time are available.

Example 1: Using SJF Algorithm draw the Gantt Chart using the following Processes and their Burst

Times.
Process Burst Time
P1 6
P2 8
P3 7
P4 3
4 1”1 Py Py
0 3 9 16 24

The waiting time is 3 milliseconds for process P1, 16milliseconds for processP2, 9milliseconds for process
P3, and Omilliseconds for process P4. Thus, the average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds.
The sIF algorithm can be either preemptive or nonpreemptive.

Preemptive SIF scheduling is sometimes called shortest-remaining-time-first scheduling.

Example2: Using Shortest-Remaining-Time-First Scheduling Algorithm draw the Gantt Chart using the
following Processes and their Arrival Time and Burst Time.

Process Arrival Time | Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5
F P P 8 P,
oD 1] 10 i7

Process P1is started at time 0, since it is the only process in the queue. ProcessP2 arrives at time 1. The
remaining time for process P1 (7 milliseconds) is larger than the time required by process P2 (4

milliseconds), so process P1is preempted, and process P2 is scheduled.

The average waiting time for this example is [(10 - 1) + (1 - 1) + (17 - 2) + (5 - 3)]/4 = 26/4 = 6.5

milliseconds.

6.3.2 Priority Scheduling:

Priority scheduling is a non-preemptive algorithm and one of the most common scheduling

algorithms in batch systems.

Each process is assigned a priority. Process with highest priority is to be executed first and so on.

Processes with same priority are executed on first come first served basis.
Processes with same priority are executed on first come first served basis.

Examplel: Using Priority-Scheduling Scheduling Algorithm draw the Gantt Chart using the following

Processes and their Burst Time and Priority.

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2
) A b) A}
! 2 ’ 5 ! | I 3 ! <
| 8 16 18 19

The average waiting time is (0+1+6+16+18) / 5 = 8.2 milliseconds

A major problem with priority scheduling algorithms is indefinite blocking, or starvation. A process
that is ready to run but waiting for the CPU can be considered blocked. A priority scheduling
algorithm can leave some low priority processes waiting indefinitely. In a heavily loaded computer
system, a steady stream of higher-priority processes can prevent a low-priority process from ever

getting the CPU.

A solution to the problem of indefinite blockage of low-priority processes is aging. Aging involves

gradually increasing the priority of processes that wait in the system for a long time.

6.3.3 Round-Robin Scheduling:

Round Robin is a CPU Scheduling Algorithm where each process is assigned a fixed time slot
in a cyclic way.

A small unit of time, called a time quantum or time slice, is defined. A time quantum is
generally from10 to 100 milliseconds in length. The ready queue is treated as a circular
queue.

The CPU scheduler goes around the ready queue, allocating the CPU to each process for a
time interval of up to 1 time quantum.

It is simple, easy to implement, and starvation-free as all processes get fair share of CPU.
One of the most commonly used technique in CPU scheduling as a core.

It is preemptive as processes are assigned CPU only for a fixed slice of time at most.

The disadvantage of it is more overhead of context switching.

Examplel: Using Round-Robin Scheduling Algorithm draw the Gantt Chart using the following Processes
and their Burst Time and with a time quantum of 4 milliseconds

Process Burst Time
P1 24
P2 3
P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4 milliseconds. Since it
requires another 20 milliseconds, it is preempted after the first time quantum, and the CPU is given
to the next process in the queue, process P2. Process P2 does not need 4 milliseconds, so it quits
before its time quantum expires. The CPU is then given to the next process, process P3. Once each
process has received 1 time quantum, the CPU is returned to process P1 for an additional time
quantum.

P, Py | B P

W

B 7 10 14 18 22 28

Let’s calculate the average waiting time for this schedule. P1 waits for 6 milliseconds (10 - 4), P2
waits for 4 milliseconds, and P3 waits for 7 milliseconds. Thus, the average waiting time is 17/3 =
5.66 milliseconds.

Average waiting time (10-4) + 4 + 7 = 17/3 = 5.66 milliseconds.

6.3.4 Multilevel Queue Scheduling

30

A multi-level queue scheduling algorithm partitions the ready queue into several separate queues.
The processes are permanently assigned to one queue, generally based on some property of the
process, such as memory size, process priority, or process type. Each queue has its own scheduling
algorithm.

For example, a common division is a foreground (interactive) process and a background (batch)
process. These two classes have different scheduling needs. For this kind of situation Multilevel
Queue Scheduling is used.

highest priority

| ———==p
— interactiva editing processes {— -
—_— balch procosses —
—— | studant protasses —

lowest printity

Figure 6.6 Multileval quale sehaduling,

The Description of the processes in the above diagram is as follows:

System Process The Operating system itself has its own process to run and is termed as System
Process.

Interactive Process The Interactive Process is a process in which there should be the same kind of
interaction (basically an online game).

Batch Processes Batch processing is basically a technique in the Operating system that collects the
programs and data together in the form of the batch before the processing starts. (Payroll System,
Bank Statements)

Student Process The system process always gets the highest priority while the student processes
always get the lowest priority.

In an operating system, there are many processes, in order to obtain the result we cannot put all
processes in a queue; thus this process is solved by Multilevel Queue Scheduling.

6.3.5 Multilevel Feedback Queue Scheduling

In a multilevel queue-scheduling algorithm, processes are permanently assigned to a queue on entry
to the system.

Processes do not move between queues. This setup has the advantage of low scheduling overhead,
but the disadvantage of being inflexible.

Multilevel feedback queue scheduling, however, allows a process to move between queues. The
idea is to separate processes with different CPU-burst characteristics.

If a process uses too much CPU time, it will be moved to a lower-priority queue.

Similarly, a process that waits too long in a lower-priority queue may be moved to a higher-priority
gueue. This form of aging prevents starvation.

- = 1 =
guantum = 8 =
-~ ——] =
guantum =186 -
p--. == : | .
FOFS "

Figure 6.7 Muitiiavel feedback ausues

Explanation:

vk wnN e

First of all, Suppose that queues 1 and 2 follow round robin with time quantum 8 and 16
respectively and queue 3 follows FCFS.

One of the implementations of Multilevel Feedback Queue Scheduling is as follows:

A process entering the ready queue is put in queue 0.

A process in queue 0 is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1.

If queue 0 is empty, the process at the head of queue 1 is given a quantum of 16 milliseconds. If it
does not complete, it is preempted and is put into queue 2.

Processes in queue 2 are run on an FCFS basis but are run only when queues 0 and 1 are empty.

In general, a multilevel feedback queue scheduler is defined by the following parameters:

The number of queues.

The scheduling algorithm for each queue.

The method used to determine when to upgrade a process to a higher priority queue.

The method used to determine when to demote a process to a lower priority queue.

The method used to determine which queue a process will enter when that process needs service.

Advantages of MFQS

1.
2.
3.

This is a flexible Scheduling Algorithm

This scheduling algorithm allows different processes to move between different queues.

In this algorithm, A process that waits too long in a lower priority queue may be moved to a higher
priority queue which helps in preventing starvation.

Disadvantages of MFQS

1.
2.

This algorithm is too complex.

As processes are moving around different queues which leads to the production of more CPU
overheads.

In order to select the best scheduler this algorithm requires some other means to select the values.

6.4 MULTIPLE PROCESSOR SCHEDULING

In multiple-processor scheduling multiple CPU’s are available and hence load sharing becomes
possible. However multiple processor scheduling is more complex as compared to single
processor scheduling. In multiple processor scheduling there are cases when the processors are
identical i.e. HOMOGENEOQOUS, in terms of their functionality, we can use any processor available
to run any process in the queue.

6.4.1 Approaches to Multiple-Processor Scheduling

Asymmetric Multiprocessing system: Asymmetric Multiprocessing has the master-slave relationship
among the processors. There is one master processor that controls remaining slave processor.
The master processor allots processes to slave processor, or they may have some predefined task to
perform. The master processor runs the tasks of the operating system.

Symmetric Multiprocessing Asymmetric Multiprocessing
CPU 1 P1 Slavel —>| P1
CPU2 P2 Master —>| P2
CUP3 p3 Slave2 —>| P3
CPU4 P4 Slave3 P4

(No Shared Memory)

(Shared Memory)

Fig 6.8: Symmetric and Asymmetric Multiprocessing.

Symmetric Multiprocessing system: In symmetric multiprocessing, all the processors are treated
equally. All processors communicate with another processor by a shared memory.

CPUy CPUy CPU;
registers registers registels
cache caohe cache
Mamaory

Fig 6.9.1 : Symmetric multiprocessing architecture.

A recent trend in CPU design is to include multiple computing cores on a single chip. Such
multiprocessor systems are termed multicore.

CPU cors, CPU corg,
regisiars registas
ciche aacha

R
| menory

Fig 6.9.2: A dual-core design with two cores placed on the same chip.

6.4.2 Processor Affinity

Processor affinity enables the binding and unbinding of a process or a thread to a central processing
unit (CPU) or a range of CPUs, so that the process or thread will execute only on the designated CPU
or CPUs rather than any CPU.

Soft Affinity: Processes are allowed to move between the Processors.

10

= Hard Afinity: Processes are allowed to move between the Processors. Linux and some other
Operating Systems support hard affinity.

6.4.3 Load Balancing 2 MARKS IMP

= Load balancing is defined as the methodical and efficient distribution of network or application
traffic across multiple servers.

Users

Internet

Load Balancer

N\
Server 1 Server 2

= There are two general approaches to load balancing: push migration and pull migration.

There are two general approaches to load balancing:

1. Push Migration: In push migration a task routinely checks the load on each processor and if it finds
an imbalance then it evenly distributes load on each processors by moving the processes from
overloaded to idle or less busy processors.

2. Pull Migration: Pull migration occurs when an idle processor pulls a waiting task from a busy
processor for its execution.

6.4.4 Multicore Processors:

= |n multicore processors multiple processor cores are places on the same physical chip. Each core
has a register set to maintain its architectural state and thus appears to the operating system as a
separate physical processor. SMP systems that use multicore processors are faster and consume
less power than systems in which each processor has its own physical chip.

11

compule cycle memory stall cycle
thread M G c M o M
Figure 6.10 Memory stall.
lhreadl C M G
shmadg M c

time

Figure 6.11 Multithreaded multicore system,

12

CHAPTER 7
DEADLOCKS

7.1 SYSTEM MODEL

= Dead Lock: Deadlock is a situation where a set of processes are blocked because each process is
holding a resource and waiting for another resource acquired by some other process.

= For example, in the below diagram, Process 1 is holding Resource 1 and waiting for resource 2 which
is acquired by process 2, and process 2 is waiting for resource 1.

Resource 1

Process Process
A B

Resource 2

Under the normal mode of operation, a process may utilize a resource in only the following sequence:

= Request: The process requests the resource. If the request cannot be granted immediately (for
example, if the resource is being used by another process), then the requesting process must wait
until it can acquire the resource.

= Use: The process can operate on the resource (for example, if the resource is a printer, the process
can print on the printer).

= Release: The process releases the resource.

7.2 DEADLOCK CHARACTERIZATION

= Dead Lock: Deadlock is a situation where a set of processes are blocked because each process is
holding a resource and waiting for another resource acquired by some other process.

= For example, in the below diagram, Process 1 is holding Resource 1 and waiting for resource 2 which
is acquired by process 2, and process 2 is waiting for resource 1.

Resource 1

Process Process

A B

Resource 2 /

7.2.1 Necessary Conditions VVIMP

Deadlock can arise if the following four conditions hold simultaneously (Necessary Conditions)

4,

Mutual Exclusion: One or more than one resource are non-shareable (Only one process can use
at a time).

Hold and Wait: A process is holding at least one resource and waiting for resources.

No Preemption: A resource cannot be taken from a process unless the process releases the
resource.

Circular Wait: A set of processes are waiting for each other in circular form.

7.2.2 Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called a system resource-
allocation graph.

This graph consists of a set of vertices V and a set of edges E. The set of vertices V is partitioned into
two different types of nodes P = {P1, P2, ..., Pn}, the set consisting of all the active processes in the
system, and R = {R1, R2, ..., Rm}, the set consisting of all resource types in the system.

A directed edge from process Pi to resource type Rj is denoted by Pi = Rj; it signifies that process Pi
has requested an instance of resource type Rj and is currently waiting for that resource.

A directed edge from resource type Rjto process Piis denoted by Rj = Pi; it signifies that an instance of
resource type Rj has been allocated to process Pi. A directed edge Pi - Rjis called a request edge; a
directed edge Rj = Piis called an assignment edge.

The resource-allocation graph shown in the following figure depicts the following situation.
The sets P, R, and E:
P = {P1, P2, P3}

R 1 R’s

o o
\ / \
|_P'1/) P J (\}_:'. 3/]

%
/
%

Ay 0

AL

7.1 Resource Allocation Graph.

R = {R1, R2, R3, R4}
E={P1->R1,P2->R3,Rl-> P2 R2->P2,R2->P1,R3 > P3}

Resource instances:

* One instance of resource type R1

= Two instances of resource type R2

*= One instance of resource type R3

= Three instances of resource type R4

Process states:

= Process P1 is holding an instance of resource type R2 and is waiting for an instance of resource type
R1.

= Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an instance of R3.

= Process P3 is holding an instance of R3.

.\ .\
VAV
(®) Pz 11:5)
\\,
. B
A,

7.2 Resource Allocation Graph with a Deadlock.

= Two minimal cycles exist in the system:
Pi-Ri1-P2-R3->P3->R2-P1

P2-> R3—- P3-> R2- P2

= Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, which is
held by process Ps. Process Pz is waiting for either process P1 or process P2 to release resource
R2. In addition, process P1is waiting for process P2 to release resource R1

Example2: Now consider the resource-allocation graph in Figure 7.3. In this example, we also have
acycle:

P1->R1->P3->R2-5>P1

.P‘

7.3 Resource Allocation Graph with a Cycle but no Deadlock.

7.3 DEADLOCK PREVENTION VVIMP

We can prevent Deadlock by eliminating any of the above four conditions.

1. Eliminate Mutual Exclusion: The mutual exclusion condition must hold for non-shareable resources
that is only one process can use a resource at a time. If another process want to access that
resource, then it must wait until the resource has been released.

2. Eliminate No Preemption: Preempt resources from the process when resources required by other
high priority processes.

3. Eliminate Hold and Wait: Allocate all required resources to the process before the start of its
execution, this way hold and wait condition is eliminated but it will lead to low device utilization.
For example, if a process requires printer at a later time and we have allocated printer before the
start of its execution printer will remain blocked till it has completed its execution.

4. Eliminate Circular Wait: Processes waiting for resources from the others form a circular chain, that
means all waiting processes form a circular chain or circular list where each process in the list is
waiting for a resource held by next process in the list. This kind of situation is eliminated.

7.4 DEADLOCK AVOIDANCE

= |n order to avoid deadlocks, the process must tell OS, the maximum number of resources a process
can request to complete its execution.

7.4.1 Safe State

The simplest and most useful approach states that the process should declare the maximum number
of resources of each type it may ever need. The Deadlock avoidance algorithm examines the
resource allocations so that there can never be a circular wait condition.

unsale
daadiock
/-A
//-, -
. safe
/’/I-

7.6 Safe, unsafe, and deadlocked state spaces. 5

7.4.2 Resource-Allocation-Graph Algorithm

= Suppose that P2 requests R2. Although Rz is currently free, we cannot allocate it to P2, since this action
will create a cycle in the graph. A cycle, as mentioned, indicates that the system is in an unsafe state. If P1
requests Rz, and P2 requests R1, then a deadlock will occur.

R,

T —

A,

7.8 An unsafe state in a Resource Allocation Graph.
7.4.3 Banker’s Algorithm VVIMP

Bankers Algorithm is illustrated with the following example

Process Allocation Need Available
A B C A B C|A B C
PO 0 10 7 5 33 3 2
P1 2 0O 3 2 2
P2 3 0 2 9 0 2
P3 2 11 2 2 2
P4 0 0 2 4 3 3
Solution:
Process Allocated Need Available Maximum
A B C A B C A B C A B C
PO 0 10 7 5 3 3 3 2 7 4 3

P1 0 3 22 3 32 12
1 2 2
2 10
Releases Available
5 3 2
P3 1 2 22 5 3 2 0 1
0 11
5 2 1
Releases Available
7 4 3
P4 0 4 3 3 7 43 4 3
4 3 1
3 1 2
Releases Available
> 7 4 5
P> 0 9 0 2 7 45 6 0
6 0O
1 4 5
Releases Available

10 4 7

PO 0 10 7 5 3 10 4 7 7 4 3

7 4 3
Releases Available
> 10 5 7

7.5 CASE STUDIES

Problem 1: Verify whether the following resources allocation graphs are deadlocked or not.

i/

(a) Resource-allocation graph. (b) Corresponding wait-for graph.

Solution: It is not possible to eliminate the conflicting situation of nodes P1 and P2. Since the
above Resource Allocation Graph is Deadlocked.

Problem 2: lllustrate the following example with Bankers Algorithm

Process Allocation Need Available

A B CD| A BT CD A B CD

PO 0 0120012 1 520
P1 1000|1 7 50
P2 1 35 4|2 3 56
P3 06 3 2|0 652
P4 0 01 4|0 6 56

7.6 RECOVERY FROM DEADLOCK

7.6.1 Process Termination: To eliminate deadlocks by aborting a process, we use one of two methods.
To eliminate the deadlock, we can simply kill one or more processes. For this, we use two methods:
(a) Abort all the Deadlocked Processes: Aborting all the processes will certainly break the deadlock,
but with a great expense. The deadlocked processes may have computed for a long time and the
result of those partial computations must be discarded and there is a probability to recalculate them
later.

(b) Abort one process at a time until deadlock is eliminated: Abort one deadlocked process at a time,
until deadlock cycle is eliminated from the system. Due to this method, there may be considerable
overhead, because after aborting each process, we have to run deadlock detection algorithm to check
whether any processes are still deadlocked.

2. Resource Preemption:T o eliminate deadlocks using resource preemption, we preempt some
resources from processes and give those resources to other processes. This method will raise three
issues

(a) Selecting a Victim: We must determine which resources and which processes are to be preempted
and also the order to minimize the cost.

(b) Rollback: We must determine what should be done with the process from which resources are
preempted. One simple idea is total rollback. That means abort the process and restart it.

(c) Starvation: In a system, it may happen that same process is always picked as a victim. As a result,
that process will never complete its designated task. This situation is called Starvation and must be
avoided. One solution is that a process must be picked as a victim only a finite number of times.

CHAPTER 8
MEMORY MANAGEMENT

8.1 BASICS OF MEMORY MANAGEMENT

= Memory management is a method in the operating system to manage operations between main
memory and disk during process execution. The main aim of memory management is to achieve
efficient utilization of memory.

Why Memory Management is required:

= Allocate and de-allocate memory before and after process execution.
= To keep track of used memory space by processes.

= To minimize fragmentation issues.

= To proper utilization of main memory.

= To maintain data integrity while executing of process.

8.1.1 Basic Hardware

= Main memory and the registers built into the processor itself are the only general-purpose storage
that the CPU can access directly

W or
operaling
Syelamn
OER000 |
PO EeRES
304040 . HAhER40
Prescess nase
20340 t20S00
lirmut
ProCEES
A |
{ D200

8.1 A base and a limit register define a logical address space.

-
T — _ e - "
—I = . - o _—

Memory protection is a way to control memory access rights on a computer, and is a part of most
modern instruction set architectures and operating systems. This prevents a bug or malware within
a process from affecting other processes, or the operating system itself.

Il}ﬁ.ﬁﬁl = | [irritl

bass

| address """ yas T YR

— 5

CRU

trap o operatng sysiem

manitor—addressing error memary

8.2 Hardware Address Protection with base and limit registers.

Now we are discussing the concept of logical address space and Physical address space:

Logical Address space: An address generated by the CPU is known as “Logical Address”. It is also
known as a Virtual Address. Logical address space can be defined as the size of the process. A logical
address can be changed.

Physical Address space: An address seen by the memory unit (i.e the one loaded into the memory
address register of the memory) is commonly known as a “Physical Address”.

A Physical address is also known as a Real Address. The set of all physical addresses corresponding
to these logical addresses is known as Physical Address Space.

A physical address is computed by MMU. The run-time mapping from virtual to physical addresses
is done by a hardware device Memory Management Unit (MMU). The physical address always
remains constant.

The base register holds the smallest legal physical memory address; the limit register specifies the
size of the range. For example, if the base register holds. 300040 and the limit register is 120900,
then the program can legally access all addresses from 300040 through 420939 (inclusive).

physical
acdress

14346

MU

ey

8.4 Dynamic relocation using a relocation register.

In this case, we usually refer to the logical address as a virtual address. We use logical address and
virtual address interchangeably in this text. The set of all logical addresses generated by a program is
a logical address space. The set of all physical addresses corresponding to these logical addresses is
a physical address space. Thus, in the execution-time address-binding scheme, the logical and
physical address spaces differ.

8.2 SWAPPING IMP
Swapping is a mechanism in which a process can be swapped temporarily out of main memory (or
move) to secondary storage (disk) and make that memory available to other processes.

At some later time, the system swaps back the process from the secondary storage to main

memory.

-Bpamtig e
yatEm

DHFG e SIS

TN ATHETHITY

8.5 Swapping of two processes using a disk as a backing store

= The total time taken by swapping process includes the time it takes to move the entire process to a
secondary disk and then to copy the process back to memory, as well as the time the process takes
to regain main memory.

Example: Let us assume that the user process is of size 2048KB and on a standard hard disk where
swapping will take place has a data transfer rate around 1 MB per second. The actual transfer of the
1000 KB process to or from memory will take

2048KB / 1024KB per second
2 seconds
2000 milliseconds

8.2.1 Swapping on Mobile Systems: Although most operating systems for PCs and servers support some
modified version of swapping, mobile systems typically do not support swapping in any form.

= Mobile devices generally use flash memory rather than more spacious hard disks as their persistent
storage. The resulting space constraint is one reason why mobile operating system designers avoid
swapping.

8.3 CONTIGUOUS MEMORY ALLOCATION

= Contiguous Memory Allocation: Contiguous memory allocation is basically a method in which a
single contiguous section/part of memory is allocated to a process or file needing it. Because of
this all the available memory space resides at the same place together, which means that the
freely/unused available memory partitions are not distributed in a random fashion here and there
across the whole memory space.

Processes Memory

8.3.1 Memory Protection

= Memory protection is a way to control memory access rights on a computer, and is a part of most
modern instruction set architectures and operating systems. This prevents a bug or malware within

a process from affecting other processes, or the operating system itself.

0

256000

JO0A0

G20340

HAND00

1023000

'.u.' A} [l‘.u
syslan
progess
PIOCERS ha.‘.-’-u
. 20800’
Tt
PIoOSEES

8.6 A base and a limit register define a logical address space.

ingical

Irap! addressing arror

piddrass “N

Py ——— < > yes

lirrit ralocation
register reqistar
phystoal
-, Address
{4
Ny

8.7 Hardware support for relocation and limit registers.

e mory

(7]

8.3.2 Memory Allocation & Fragmentation

= Fixed-size Partition Scheme: This technique is also known as Static Partitioning. The size of each
partition is fixed.

= |n this partition scheme, each partition may contain exactly one process. There is a problem that this
technique will limit the degree of multiprogramming because the number of partitions will basically
decide the number of processes.

= Whenever any process terminates then the partition becomes available for another process.

Example: Let's take an example of fixed size partitioning scheme, we will divide a memory size of 15 KB
into fixed-size partitions.

3 KB 3 KB 3 KB 3 KB 3 KB

Advantages of Fixed-size Partition Scheme

1. This scheme is simple and is easy to implement.

2. It supports multiprogramming as multiple processes can be stored inside the main memory.
3. Management is easy using this scheme.

Disadvantages of Fixed-size Partition Scheme:

Some disadvantages of using this scheme are as follows:

1. Internal Fragmentation: Suppose the size of the process is lesser than the size of the partition in that
case some size of the partition gets wasted and remains unused. This wastage inside the memory is
generally termed as internal fragmentation. As we have shown in the above diagram the 70 KB partition
is used to load a process of 50 KB so the remaining 20 KB got wasted.

2. Limitation on the size of the process: If in a case size of a process is more than that of a maximum-
sized partition then that process cannot be loaded into the memory.

3. External Fragmentation: It is another drawback of the fixed-size partition scheme as total unused
space by various partitions cannot be used in order to load the processes even though there is the
availability of space but it is not in the contiguous fashion.

4. Degree of multiprogramming is less: In this partition scheme, as the size of the partition cannot
change according to the size of the process. Thus the degree of multiprogramming is very less and is
fixed.

Process O Process 7

Free Space 2MB /[\

Three is enough memory to
Process 1
run Process 7 but the

External

Free Space 1MB memory is not contiguous.

Fragmentation

Process 2

Free Space2MB

Process 3

Free Space 3MB

Variable-size Partition Scheme: This scheme is also known as Dynamic Partitioning and is come into
existence to overcome the drawback i.e internal fragmentation that is caused by Static Partitioning.
In this partitioning, scheme allocation is done dynamically.

The size of the partition is not declared initially. Whenever any process arrives, a partition of size
equal to the size of the process is created and then allocated to the process. Thus the size of each
partition is equal to the size of the process.

As partition size varies according to the need of the process so in this partition scheme there is
no internal fragmentation.

0S

Process P1
3 MB Partition 1

Process P2

5 MB Partition 2

Process P1

3 MB Partition 3

Size of Partition = Size of Process

Advantages of Variable-size Partition Scheme
Some Advantages of using this partition scheme are as follows:

1.

No Internal Fragmentation: As in this partition scheme space in the main memory is allocated
strictly according to the requirement of the process thus there is no chance of internal
fragmentation. Also, there will be no unused space left in the partition.

Degree of Multiprogramming is Dynamic: As there is no internal fragmentation in this partition
scheme due to which there is no unused space in the memory. Thus more processes can be loaded
into the memory at the same time.

No Limitation on the Size of Process: In this partition scheme as the partition is allocated to the
process dynamically thus the size of the process cannot be restricted because the partition size is
decided according to the process size.

Disadvantages of Variable-size Partition Scheme

Some Disadvantages of using this partition scheme are as follows:

1.

External Fragmentation: As there is no internal fragmentation which is an advantage of using this
partition scheme does not mean there will no external fragmentation. Let us understand this with
the help of an example. In the above diagram Process P1 (3MB) and Process P3 (8MB) completed
their execution. Hence there are two spaces left i.e. 3MB and 8MB. Let’s there is a Process P4 of
size 15 MB comes. But the empty space in memory cannot be allocated as no spanning is allowed in
contiguous allocation. Because the rule says that process must be continuously present in the main
memory in order to get executed. Thus it results in External Fragmentation.

8.4 SEGMENTATION

In Operating Systems, Segmentation is a memory management technique in which the memory is
divided into the variable size parts. Each part is known as a segment which can be allocated to a
process. The details about each segment are stored in a table called a segment table. Segment table
is stored in one (or many) of the segments.

Example: Normally, when a program is compiled, the compiler automatically constructs segments
reflecting the input program.

A C compiler might create separate segments for the following:

1. The code

Global variables

The heap, from which memory is allocated

The stacks used by each thread

. The standard C library

Libraries that are linked in during compile time might be assigned separate segments. The loader
would take all these segments and assign them segment numbers.

G AW

TP AL g1l | [e] |

ewmbaal

tshi

Sqrt

it

peoram

-

fopical sindroty
8.8 Programmer’s view of a program.

8.4.2 Segmentation Hardware

Segment table contains mainly two information about segment:

Base: It is the base address of the segment
Limit: It is the length of the segment.

Translation of Logical address into physical address by segment table

256000

300040

#2040 :

SA0000

1 O2S000

bt .[._
i
progess
e bass
. fEneo
fivrut
Prooess

8.9 A base and a limit register define a logical address space.

[
- 5
@
= il {base
sagmant
table
cPU TS E]
yes:
—

»

trap: addressing ermar

physical memory

8.10 Translation of Logical address into physical address by segment table.

Example:

MAIN

SEREREE mEEnw

Call SUBY

Call 5us2

T

ELLER]

LELEE

Segiment O
8.11 Division of main program into Segment.

-

i [

i i

R l

i MAIN 1

i 1

i 1

! |

i 1

i |

' TN

i i

] 1

i |

|]

1 496 1

i 1

! Segment0 |

L0 -

! su1 il

i [

i —r—1
|

: | p—

i i

i 1

i] 1

1 199 i

i 1

' Segment 1 !

]

] u I 1

: sus2 || |

| i ¢

i i

i i

1 99 |

| Segment2 |

Pragram 1

sUa

FEEENEEE FEEES SEwEm
BEFEETEEE RhEES SRR

EFAREFE GEENE PEEER

SuB2

EESEEIRE FREEE

EAEEEEE FEEES SEEAm

FEERENEE EEEEE PEENER

Segmant |

500 3000 | Executable

200 4000 | Execulable

100 4800 | Executabls

Segment Map Table[SMT)
for process 1

8.12 Converting Logical Address into Physical Addresses.

Segment 2

9 DOperating
System
2000 -

3000

3500

4200

4800
4900

Free

FREE
SUB1
FREE

suB2

FREE

Main memory

10

Advantages of Segmentation:

1. Nointernal fragmentation

2. Average Segment Size is larger than the actual page size.

3. Lessoverhead

4. |tis easier to relocate segments than entire address space.

5. The segment table is of lesser size as compared to the page table in paging.
Disadvantages:

1. It can have external fragmentation.

2. Itis difficult to allocate contiguous memory to variable sized partition.

3. Costly memory management algorithms.

8.5 PAGING

= Paging is a memory management scheme that eliminates the need for contiguous allocation of
physical memory. This scheme permits the physical address space of a process to be non —
contiguous.

= Logical Address or Virtual Address: An address generated by the CPU.

= Logical Address Space or Virtual Address Space: The set of all logical addresses generated by a
program

= Physical Address: An address actually available on memory unit.

= Physical Address Space: The set of all physical addresses corresponding to the logical addresses

11

.-'".--' -"HH—
./ B
£ submatine stack ‘5\
i N 1A0G
| Segment 3 1 BEGMART [
II 2200
] symbnl
sEgmRet 0 table
_ limig" | basa
sagmant 4 o 1eah | 1408 -
|| oy _) ol k| s 0
t-. main j 2| 400 | s
e e J 3| 1900 | 3200
ﬁ'\. V. 4| 1060 | 0 segment §
b ! '
=ITD ’ seginent tabie
“gaarant | i L ; o aament 2
- i
-, . e -
logl=al address space gagmant 4
B
GG :
FFEGQITIRIGL)
ity A
pyEical mamary

8.13 Example of segmentation.

8.5.1 Hardware support for Paging

= The mapping from virtual to physical address is done by the memory management unit (MMU)
which is a hardware device and this mapping is known as paging technique.

= The Physical Address Space is conceptually divided into a number of fixed-size blocks,
called frames.

= The Logical address Space is also splitted into fixed-size blocks, called pages.
Page Size = Frame Size

12

Izl

phiysical
Acidress

e

1OG00 ... D000

8.14 Paging hardware.

page tabia

1111 e 1111

physical
MEmony

13

8.15 Paging example for a 32-byte memory with 4-byte pages.

Example 1:

PROCESS
Logical Address
Page
0|a
Page O 1| b
2|6
3|d
4 | &
Page 1 5| f
6| g
7| h
8 [
Page 2 91
10| k
11 [
12 ['m
Page 3 13(n
14| ©
15| p

logical memary

[R |
= | (M,

3|2

page table

MAIN MEMORY

Physical Address

Index

0
& [
]
k
|
g m
n
0]
p
12
16
20 | @
b
G
d
24 | ©
f
g
h
28

physical memory

Logical Address Page Offset Value
0 0 0 a
(5x4)+0
20 +0=20
0 0 1 b

]

14

Example 1:

Logical Address Page Offset Value
4 1 e
(6x4)+0
24 +0=24
4 1 f
(6x4)+1
24 +1=25
[rae-frarme el
14 -
1
13 .
18
20 14
15
s !:-
— . ot
prge 0 15
poekgs 4
pRge 2 -
page 3
Ay processl 18
9
20
21

8.16 Free Frame before the allocation.

15

frea:drama: fist
1 14 {page 1
14 [paga
= — =, 1 EI
[I
page o 15
pags |
pags 2 17
page 3
ErPes o page2
|:|h'_| 14
1113
218 20 |peinge 3|
3120
NEw-pronEss page mhis 21

8.17 Free Frame after the Allocation.

8.5.2 Paging Hardware with TLB

= Translation Lookaside Buffer (TLB) is nothing but a special cache used to keep track of recently
used transactions.

= TLB contains page table entries that have been most recently used.

= Given a virtual address, the processor examines the TLB if a page table entry is present (TLB hit),
the frame number is retrieved and the real address is formed.

= |f a page table entry is not found in the TLB (TLB miss), the page number is used as index while
processing page table. TLB first checks if the page is already in main memory, if not in main
memory a page fault is issued then the TLB is updated to include the new page entry.

16

Imeneal

address
n—'—‘——l. il i
page Irame

nurmtser Bember

- |
: | TLE N

E . physcal
E : ! “address
S i R
LB
pd | —
TLE imiss |: -
== physical
MRETRIEY

8.18 Paging hardware with TLB.

8.5.3 Protection

= Memory protection in a paged environment is accomplished by protection bits associated with each
frame.

= One additional bit is generally attached to each entry in the page table: a valid-invalid bit.

= When this bit is set to valid, the associated page is in the process’s logical address space and is thus
a legal (or valid) page.

= When the bit is set to invalid, the page is not in the process’s logical address space. lllegal addresses
are trapped by use of the valid-invalid bit. The operating system sets this bit for each page to allow
or disallow access to the page

17

ek A5E
12.267

page2

page 3

i

page 5

frArmE- NUmbar
1

III,.'.IE|u-l:t—rrun.-r:al:il:l ot
3

PO
ool |m| el e

| wg | || |] e

= T TN

pags tahls

8.19 Valid (v) or invalid (i) bit in a page table.

8.5.4 Shared Pages in OS

= Sharing is another design issue for paging system.
= |tis very common for many computer users to be running the same program at the same time in a

large multiprogramming computer system.
= Now, to avoid having two copies of same page in the memory at the same time, just share the

pages.

page 0

page |

page 2

pAGO A

18

'

data 1

process P

o1

0oz

datsd

procass F,

o | e | G

iy

page fabis
it P,

BERD

pags tnbss
far P

8.20 Sharing of code in a paging environment.

ed 1
<
ud 2 4
243 E
Fi
ety 2 pape tabls
oo o £,
procass P,

LR

teta

datn 3

ad 1

e 2

i

data 2

19

CHAP 9
VIRTUAL MEMORY

= Virtual Memory: Virtual memory is a feature of an operating system that enables a computer to be
able to compensate shortages of physical memory by transferring pages of data from disk storage to
primary memory.

poge @ |
page 1 | —
g =
P
— ol N
| T,
- D I

= B
E E

[
o -]
]

maumory
mEn ==
pagEy pnysinal
| BTy
WL
METHY

9.1 Diagram showing virtual memory that is larger than physical memory.

9.1 DEMAND PAGING

= Demand Paging: The process of loading the page into memory on demand (whenever page fault
occurs) is known as demand paging.

= Steps to be followed in Demand Paging:

1. Attempt to access page.

2. If pageis valid (in main memory) then continue processing instruction as normal.

3. If pageisinvalid then a page-fault trap occurs.

4. Check if the memory reference is a valid reference to a location on secondary memory. If not, the

process is terminated (illegal memory access). Otherwise, we have to page in the required page.

5.
6.

T

i oud

Schedule disk operation to read the desired page into main memory.

Restart the instruction that was interrupted by the operating system trap.

T

ar] 1213l |

b

qLI'] E'i._-i ﬁ.[-_'-:l n‘i]
Ly [iU T
12 WA e s

e ?_l;Jrﬁ];tu];l

man

ey
9.2 Transfer of a paged memory to contiguous disk space.

o = 2]

= Page table when some pages are not in main memory.

lehitie

=~
F - - -
'g e e o M A S S I S

TEImny

ikl

—'i—-.—'-'-la-

i I AR & e es

|

g
;

i]
== WO
Bl & L] [[E]
!) B E
gl F E@E
i LIt Jeg s
3 S i
10

T

15

pifipesaiil ey

9.3 Page table when some pages are not in main memory.

= Stepsin handling a page fault.

3 pace iy an
aee backing miore

ciparating
syEtEm
|'. 2
ipranes
rali :m.. a i
| @
o M 2 b f+—
2 E.'. -
et pagn takia
n=truction
Ires frame - - —
5 (e}
resat page LiFltng im
fables ImisEm pEgs
pherslest

IFlarndary
9.4 Steps in handling a page fault.

9.2 PAGE REPLACEMNT

= The page replacement algorithm decides which memory page is to be replaced. The process of
replacement is sometimes called swap out or write to disk. Page replacement is done when the
requested page is not found in the main memory (page fault).

= There are two main aspects of virtual memory, Frame allocation and Page Replacement. It is very
important to have the optimal frame allocation and page replacement algorithm. Frame allocation is
all about how many frames are to be allocated to the process while the page replacement is all
about determining the page number which needs to be replaced in order to make space for the
requested page

Virtual Memory
I

Frame AIIocaTion (How many Frames Page Replacement (Which Pageistobe | 3

are to be allocated for a Process.) Replaced)

L L BRI

o H frazme bt
—— ¥
e 1 EA
FE,_..-*.:-'-II - -1
2 J 4 v
: 5Ty
3] —y
Ingical msmary vy e
i user for uear 1
walid—iniuatid
2 A FrEE it
: O
! B o v
| I
5 iy
3 E ¥ov
Ingical mamary. jrsgE 1abls -
Toruder 2 F Lisgsr-2

9.5 Need for page replacement.

9.2.1 Basic Page Replacement

= Page replacement takes the following approach. If no frame is free, we find one that is not currently

being used and free it.

framme Wilkd vl bat
.-_'i__..l!l'
chanod
a1 Igjlnllm-'lllrl
=t |
1)
. roset pads
. tahli o
paigitalie I AL

9.6 Page Replacement.

nhysaal

IMZEy

= W O m 8y NG

MEMOTY

ph1:|-|¢l:|l
wlotim

3}
T page in
desitad
ST

1. Find the location of the desired page on the disk.

2. Find a free frame:
a. If there is a free frame, use it.
b. If there is no free frame, use a page-replacement algorithm to select a victim frame.
c. Write the victim frame to the disk; change the page and frame tables accordingly.

3. Read the desired page into the newly freed frame; change the page and frame tables.

4. Continue the user process from where the page fault occurred.

CHAPTER-10
MASS-STORAGE STRUCTURE

10.1 OVERVIEW OF MASS-STORAGE STRUCTURE

10.1.1 Magnetic Disks

= Magnetic disk is a circular plate constructed of metal or plastic coated with magnetized material .
= Both sides of the disk are used.

= Several disks may be stacked on one spindle with Read/Write heads available on each surface.
= All disks rotate together at high speed and not stopped or started for access purpose.

= Used to store large amount of data .

= Basic unit of storage is BIT .

= BITis 1 by magnetizing area on disk .

= Character: Group of bits.

= Capacity: Number of bytes it can store.

= Number of tracks: ranges from few hundred to few thousand.

= Capacity of each track: ranges from tens of Kbytes to 150 Kbytes.

= Formatting: Tracks are divided into equal sized disk blocks called sectors.

= Sector size is fixed range from 512 to 4096 bytes.

_anchr ool 8 dosh)

=

g

Ik i ——._ — —_——— .

Y

it

= , '
— N il

I F T i G
e T Il £
— T

Read/Write head is classified into
Fixed head system.
Moving head system.

Rotate disk pack of cylinders ranging from 3600 and 7200 rpm

Access time: Time required to access the data.
ty = Access time
tA = t5+ t|_

Seek time: Time required to position the read/write head on the correct track & correct surface.
ts = Seek time

Latency time: Time required to locate the required disk block from the beginning.
t, = Latency time

(o

-

10.1.2 Floppy Disk

A disk drive with removable disks are called a Floppy Disk

The disks used with a Floppy disk drive are small disks made of plastic coated with magnetic
recording material

There are two sizes commonly used, with diameters of 5.25 and 3.5 inches
The 3.5 inch disks are smaller and can store more data than 5.25 inch disks

Floppy disks extensively used in personal computer as a medium for distributing software to
computer users

Basic unit of storage is BIT .

BIT is 1 by magnetizing area on disk .

Character: Group of bits.

Capacity: Number of bytes it can store.

Density : Single density and Double density

Data stored in: Tracks & Sectors

Track: Data is placed in concentric magnetic circles called tracks

Sector :Each track is divided into storage units called sectors

FAT uses 512 byte sectors exclusively.

The number of Sectors per Track vary depending on the media and format.’
Physical Sector Numbering starts with the number 1at the beginning of each track and side.

Number of Tracks: 80 in 3.5 inch floppy disk

Disk Formats - 3.5”

Low Density High Density
Tracks 80 80
Sectors per track 9 18
Bytes per sector 512 512
Total capacity 720K 1.44M

il Ll o af Braes |

= Formatting: Tracks are divided into equal sized disk blocks called sectors.
= Access time: Time required to access the data.
ty = Access time

tA=t5+ tL

= Seek time: Time required to position the read/write head on the correct track & correct surface.
ts = Seek time

= Latency time: Time required to locate the required disk block from the beginning.
t, = Latency time
10.1.3 Magnetic Tape

= Magnetic tape transport consists of the electrical, mechanical and electronic components provide
the parts and control mechanism for magnetic tape unit.

= The tape is a strip of plastic coated with magnetic recording media .
= Bits are recorded as magnetic spots on the tape along with several tracks.

= Usually, seven or nine bits are recorded simultaneously to form a character together with a parity
bit.

= The information is recorded in blocks referred to as records.

= Each record on tape has an identification bit pattern at the beginning and end. By recording the bit
pattern at the beginning, the tape control identifies the record number.

= By reading the bit pattern at the end of the record, the control recognizes the beginning of a gap
= Atape unitis addressed by specifying the record number and number of characters in the record

= Record may be fixed length or variable length

= Sequential access.
= Read/Write head: Reads or writes data on tape.
= Strorage: 1600 to 6250 bytes per inch.

= |nter block gap: 0.6 inches.

Block Block Block Block Block Block

10.2 DISK SCHEDULING IMP

= The algorithms used for disk scheduling are called as disk scheduling algorithms.
= The purpose of disk scheduling algorithms is to reduce the total seek time.
= Seek Time: Seek time is the time taken to locate the disk arm to a specified track where the data is

to be read or write. So the disk scheduling algorithm that gives minimum average seek time is
better.

10.2.1 FCFS (First Come First Served) Scheduling

= Asthe name suggests, this algorithm entertains requests in the order they arrive in the disk queue.
= |tis the simplest disk scheduling algorithm.

Advantages:
= |tis simple, easy to understand and implement.
= |t does not cause starvation to any request.

Disadvantages:
= |t results in increased total seek time.
= |tisinefficient.

Problem1: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 37, 122, 14, 124,
65, 67. The FCFS scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders
are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while
servicing these requests.

queue = 88, 183, 37, 122, 14, 124, 65, 67
head starls at 53

0 14 37 536567 g8 122124 183129
i 1 ! 1l 1 1! | |
| |
) - o ~
~ 8 e

10.1 FCFS disk scheduling.

Total head movements incurred while servicing these requests: (98-53) + (183-98) + (183-37) +(122-
37) +(122-14) + (124-14) + (124-65) + (67-65) =45 + 85 + 146 + 85 + 108 + 110 + 59 + 2 = 640

Problem2: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124,
65, 67. The FCFS scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders
are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while
servicing these requests.

10.2.2 SSTF (Shortest Seek Time First) Scheduling
= SSTF stands for Shortest Seek Time First.

= This algorithm services that request next which requires least number of head movements from its
current position regardless of the direction.

= |t breaks the tie in the direction of head movement.

Advantages:
= |t reduces the total seek time as compared to FCFS.
= |t provides increased throughput.

= |t provides less average response time and waiting time.

Disadvantages:
= There is an overhead of finding out the closest request.

= The requests which are far from the head might starve for the CPU.
= |t provides high variance in response time and waiting time.
= Switching the direction of head frequently slows down the algorithm.

Example 2: Consider a disk queue with requests for 1/0 to blocks on cylinders 98, 183, 37, 122, 14, 124,
65, 67. The SSTF scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders
are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while
servicing these requests.

queue = 28, 188, 37, 122, 14, 124, 65, 67
head staris at 53

0 14 37 536567 298 122124 183189
{ | 1 I u | Ll ! |
| ' |
.‘.
>
£-> — ——
) =5

10.2 SSTF disk scheduling.

Total head movements incurred while servicing these requests: (65-53) + (67-65) + (67-37) +
(37-14) + (98-14) + (122-98) +(124-122) + (183-124) =12 +2 +30+23 + 84+ 24 +2 + 59 =236

Example 2: Consider a disk queue with requests for /0O to blocks on cylinders 98, 183, 41, 122, 14, 124,
65, 67. The SSTF scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders

are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while
servicing these requests.

10.2.3 SCAN Scheduling

* Asthe name suggests, this algorithm scans all the cylinders of the disk back and forth.

* Head starts from one end of the disk and move towards the other end servicing all the requests in
between.

= After reaching the other end, head reverses its direction and move towards the starting end
servicing all the requests in between.

= The same process repeats.

Note:
»= SCAN Algorithm is also called as Elevator Algorithm.
»= This is because its working resembles the working of an elevator.

Advantages:

» |tissimple, easy to understand and implement.

= It does not lead to starvation.

* |t provides low variance in response time and waiting time.

Disadvantages:

= It causes long waiting time for the cylinders just visited by the head.

» |t causes the head to move till the end of the disk even if there are no requests to be
serviced.

Example 1: Consider a disk queue with requests for 1/0 to blocks on cylinders 98, 183, 41, 122, 14, 124,
65, 67. The SCAN scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders
are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while
servicing these requests.

queus = 98, 183, 37, 122, 14, 124. 65, 67
head starts at 53

0 14 37 5368567 a8 122124 183108
i i i i il i il i]
| 1
“V .
) ¢
B 8

10.3 SCAN Disk Scheduling.

Total head movements incurred while servicing these requests =
(53-37) + (37-14) +(14-0) + (65-0) + (67-65) + (98-67) + (122-98) + (124-122) + (183-124) = 16 +23
+14+65+2+31+24+2+59=236

Example 2: Consider a disk queue with requests for 1/0 to blocks on cylinders 98, 183, 41, 122, 14, 124,
65, 67. The SCAN scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders
are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while
servicing these requests.

10.2.4 C-SCAN Scheduling

= Circular-SCAN Algorithm is an improved version of the SCAN Algorithm.

= Head starts from one end of the disk and move towards the other end servicing all the requests in
between.

= After reaching the other end, head reverses its direction.

= |t then returns to the starting end without servicing any request in between.

= The same process repeats.

Advantages:
= The waiting time for the cylinders just visited by the head is reduced as compared to the SCAN
Algorithm.

= |t provides uniform waiting time.
= |t provides better response time.

Disadvantages:
= |t causes more seek movements as compared to SCAN Algorithm.
= |t causes the head to move till the end of the disk even if there are no requests to be serviced.

Example 1: Consider a disk queue with requests for 1/0 to blocks on cylinders 98, 183, 37, 122, 14, 124,
65, 67. The C-SCAN scheduling algorithm is used. The head is initially at cylinder number 53. The
cylinders are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred
while servicing these requests.

queue = 98, 183, 37, 122, 14 124 65, 67
head starts at 53

0 14 37 536567 g8 122124 183199
I | LU | L 1|
| 7l
“
,
o8
- B e —

10.4 C-SCAN Disk Scheduling.

Total head movements incurred while servicing these requests =

(65-53) + (67-65) + (98-67) + (122-98) + (124-122) + (183-124) + (199-183) + (199-0) + (14-0)+ (37-
14) =

12+2+31+24+2+59+16+ 199 +14+ 23 =382

Example 2: Consider a disk queue with requests for 1/0 to blocks on cylinders 98, 183, 41, 122, 14, 124,
65, 67. The C-SCAN scheduling algorithm is used. The head is initially at cylinder number 53. The
cylinders are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred
while servicing these requests.

10.2.5 LOOK Scheduling
= LOOK Algorithm is an improved version of the SCAN Algorithm.

= Head starts from the first request at one end of the disk and moves towards the last request at
the other end servicing all the requests in between.

= After reaching the last request at the other end, head reverses its direction.
= |t then returns to the first request at the starting end servicing all the requests in between.

= The same process repeats.

10

Advantages:

= |t does not causes the head to move till the ends of the disk when there are no requests to be
serviced.

= |t provides better performance as compared to SCAN Algorithm.
= |t does not lead to starvation.
= |t provides low variance in response time and waiting time.

Disadvantages:
= There is an overhead of finding the end requests.
= |t causes long waiting time for the cylinders just visited by the head.

Example 1: Consider a disk queue with requests for 1/0 to blocks on cylinders 98, 183, 41, 122, 14, 124,
65, 67. The LOOK scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders
are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while
servicing these requests.

-

R o
-
-
4
v—l
4
-
-
B
e

10.5 LOOK Scheduling.

Total head movements incurred while servicing these requests = (65 -53) + (67 - 65) + (98 — 67) + (122 -
98) + (124 -122) + (183 -124) + (183 - 41) + (41 - 14)

=12+2+31+24+2+59+142+27=299

Example 2: Consider a disk queue with requests for 1/0 to blocks on cylinders 98, 183, 37, 122, 14, 124,
65, 67. The LOOK scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders

are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while
servicing these requests.

11

10.2.6 C-LOOK Scheduling

Circular-LOOK Algorithm is an improved version of the LOOK Algorithm.

Head starts from the first request at one end of the disk and moves towards the last request at the
other end servicing all the requests in between.

After reaching the last request at the other end, head reverses its direction.

It then returns to the first request at the starting end without servicing any request in between.
The same process repeats.

Advantages:

It does not causes the head to move till the ends of the disk when there are no requests to be
serviced.

It reduces the waiting time for the cylinders just visited by the head.

It provides better performance as compared to LOOK Algorithm.

It does not lead to starvation.

It provides low variance in response time and waiting time.

Disadvantages:

There is an overhead of finding the end requests.

Example 1: Consider a disk queue with requests for 1/0O to blocks on cylinders 98, 183, 41, 122, 14, 124,
65, 67. The C-LOOK scheduling algorithm is used. The head is initially at cylinder number 53. The
cylinders are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred
while servicing these requests.

i

| i
V L 1]

N .('.
A. e

——
—

.
-
-

10.6 C-LOOK

12

Total head movements incurred while servicing these requests
=(65-53)+(67-65)+(98-67) + (122 -98) + (124 - 122) + (183 - 124) + (183 - 14) + (41 - 14)
=12+2+31+24+2+59+169+27=326

Example 2: Consider a disk queue with requests for /0 to blocks on cylinders98, 183, 37, 122, 14, 124,
65, 67. The C-LOOK scheduling algorithm is used. The head is initially at cylinder number 53. The
cylinders are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred
while servicing these requests.

10.3 SWAP-SPACE MANAGEMENT

Swapping is a memory management scheme in which any process can be temporarily swapped from
main memory to secondary memory so that the main memory can be made available for other
processes. It is used to improve main memory utilization. In secondary memory, the place where the
swapped-out process is stored is called swap space.

The purpose of the swapping in operating system is to access the data present in the hard disk and
bring it to RAM so that the application programs can use it. The thing to remember is that swapping

is used only when data is not present in RAM.

Although the process of swapping affects the performance of the system, it helps to run larger and
more than one process. This is the reason why swapping is also referred to as memory compaction.

The concept of swapping has divided into two more concepts: Swap-in and Swap-out.
Swap-out is a method of removing a process from RAM and adding it to the hard disk.

Swap-in is a method of removing a program from a hard disk and putting it back into the main
memory or RAM.

Advantages of Swapping:

N

4.

It helps the CPU to manage multiple processes within a single main memory.

It helps to create and use virtual memory.

Swapping allows the CPU to perform multiple tasks simultaneously. Therefore, processes do not
have to wait very long before they are executed.

It improves the main memory utilization.

Disadvantages of Swapping:

1.

If the computer system loses power, the user may lose all information related to the program in
case of substantial swapping activity.

If the swapping algorithm is not good, the composite method can increase the number of Page Fault
and decrease the overall processing performance.

13

10.3.1 Swap-Space: The area on the disk where the swapped-out processes are stored is called swap
space.

10.3.2 Swap-Space Management: Swap-Swap management is another low-level task of the operating
system. Disk space is used as an extension of main memory by the virtual memory. As we know the
fact that disk access is much slower than memory access, In the swap-space management we are
using disk space, so it will significantly decreases system performance. Basically, in all our systems we
require the best throughput, so the goal of this swap-space implementation is to provide the virtual
memory the best throughput. In these article, we are going to discuss how swap space is used, where
swap space is located on disk, and how swap space is managed.

10.3.3 Swap-Space Use: Swap-space is used by the different operating-system in various ways. The

systems which are implementing swapping may use swap space to hold the entire process. Paging
systems may simply store pages that have been pushed out of the main memory.

= Following table shows different system using amount of swap space:

System Swap-Space
Solaris Equal amount of Physical Memory
Linux Double the amount of Physical Memory

= Solaris, setting swap space equal to the amount by which virtual memory exceeds page-able
physical memory. In the past Linux has suggested setting swap space to double the amount of
physical memory. Today, this limitation is gone, and most Linux systems use considerably less
swap space.

10.3.4 Swap-Space Use Example:

= Linux allows one or more swap areas to be established.

= A swap area may be in either a swap file on a regular file system or a dedicated swap partition.

= Each swap area consists of a series of 4-KB page slots, which are used to hold swapped pages.

= Associated with each swap area is a swap map-an array of integer counters, each corresponding to a
page slot in the swap area.

= [f the value of a counter is 0, the corresponding page slot is available.

= Values greater than 0 indicate that the page slot is occupied by a swapped page. For example , a
value of 3 indicates that the swapped page is mapped to three different processes

| swap area

page
= siot —

Swap partition
ar swap file

w
3 -

SWap map | 0

10.7 The data structures for swapping on Linux systems. 14

10.4 RAID VVIMP

Redundant Array Independent Disk

RAID LEVEL 0 : Striped Disk Array without Fault Tolerance

RAID

Controller
Server

RAID Level O requires a minimum of 2 drives to implement.

Characteristics & Advantages:

1.

b

RAID 0 implements a striped disk array, the data is broken down into blocks and each block is
written to a separate disk drive.

I/0 performance is greatly improved by spreading the 1/0 load across many channels and drives.
Best performance is achieved when data is striped across multiple controllers with only one drive
per controller.

No parity calculation overhead is involved.

Very simple design.

Easy to implement.

Disadvantages:

1. Not a "True" RAID because it is NOT fault-tolerant.

2. The failure of just one drive will result in all data in an array being lost.
3. Should never be used in mission critical environments.

RAID LEVEL 1 : Mirroring & Duplexing

Controller

Server

Mirroring = Mirroring

= For Highest performance, the controller must be able to perform two concurrent separate reads per
mirrored pair or two duplicate Writes per mirrored pair.
= RAID Level 1 requires a minimum of 2 drives to implement.

Characteristics & Advantages:

1. One Write or two Reads possible per mirrored pair.

2. Twice the Read transaction rate of single disks, same Write transaction rate as single disks.

3. 100% redundancy of data means no rebuild is necessary in case of a disk failure, just a copy to the
replacement disk.

4. Transfer rate per block is equal to that of a single disk.

5. Under certain circumstances, RAID 1 can sustain multiple simultaneous drive failures.

Disadvantages:

1. Highest disk overhead of all RAID types (100%) — inefficient

2. Typically the RAID function is done by system software, loading the CPU/Server and possibly
degrading throughput at high activity levels. Hardware implementation is strongly recommended

3. May not support hot swap of failed disk when implemented in "software"

RAID LEVEL 2 : Hamming Code ECC

Al A2 ECC/Ax ECC/Az
B1 B2 ECC/Bx ECC/Bz
Cci c2 ECC /Cx ECC/Cz
D1 D2 ECC / Dx ECC/Dz
AdtoAS=Word A BOtoB3=WordB ECC/Ax to Az = Ward A ECC BCC/Bx to Bz = Ward B ECC
COtoC3=Word C DOto D3 =Word D ECC/Cx to Cz = Word C ECC ECC/Dx to Bz = Word D ECC
= Characteristics & Advantages:
1. Each bit of data word is written to a data disk drive (4 in this example: 0 to 3).
2. Each data word has its Hamming Code ECC word recorded on the ECC disks.
3. On Read, the ECC code verifies correct data or corrects single disk errors.
= Disadvantages:
1. Very high ratio of ECC disks to data disks with smaller word sizes — inefficient.
2. Entry level cost very high - requires very high transfer rate requirement to justify
3. Transaction rate is equal to that of a single disk at best (with spindle synchronization)
4. No commercial implementations exist / not commercially viable.

16

RAID LEVEL 3 : Parallel Transfer with Parity

Parity

Generation
h FARITY

B parity

c PARITY

D rarity

Stripe 0 Stripe 1 Stripe 2 Stripe 3 Stripes 0,1, 2, 3 Parity

= The data block is subdivided ("striped") and written on the data disks. Stripe parity is generated on
Writes, recorded on the parity disk and checked on Reads.
= RAID Level 3 requires a minimum of 3 drives to implement.

Characteristics & Advantages:

Very high Read data transfer rate.

Very high Write data transfer rate.

Disk failure has an insignificant impact on throughput.

Low ratio of ECC (Parity) disks to data disks means high efficiency.

PWNPE

Disadvantages:

1. Transaction rate equal to that of a single disk drive at best (if spindles are synchronized).
2. Controller design is fairly complex.

3. Very difficult and resource intensive to do as a "software" RAID.

RAID LEVEL 4 :Independent Data Disks with Shared Parity Disk

Parity

Generation
h PARITY

B pamity

c PARITY

D rariTy

Block 0 Block 1 Block 2 Block 3 Blocks 0,1, 2, 3 Parity

17

1. Each entire block is written onto a data disk. Parity for same rank blocks is generated on Writes,

VAW

SRS

Bwnp .

recorded on the parity disk and checked on Reads.
RAID Level 4 requires a minimum of 3 drives to implement.

Characteristics & Advantages:
Very high Read data transaction rate.
Low ratio of ECC (Parity) disks to data disks means high efficiency.High aggregate Read transfer rate.

Disadvantages:

Quite complex controller design.

Worst Write transaction rate and Write aggregate transfer rate.
Difficult and inefficient data rebuild in the event of disk failure.
Block Read transfer rate equal to that of a single disk.

RAID LEVEL 5 : Independent Data Disks with Distributed Parity Blocks

Parity
Generation

BO | C{.'I. DO 0 PARITY
B1 . €1 1 PARITY . E1

Server

. B2 2 PARITY . D2 E2
3 PARITY - C3 D3 . E3
4 pARITY B4 . Ca . D4 E4

A Blocks B Blocks C Blocks D Blocks E Blocks

Each entire data block is written on a data disk; parity for blocks in the same rank is generated on
Writes, recorded in a distributed location and checked on Reads.
RAID Level 5 requires a minimum of 3 drives to implement.

Characteristics & Advantages:

Highest Read data transaction rate. Medium Write data transaction rate.
Low ratio of ECC (Parity) disks to data disks means high efficiency.

Good aggregate transfer rate.

Disadvantages:

Disk failure has a medium impact on throughput.

Most complex controller design.

Difficult to rebuild in the event of a disk failure (as compared to RAID level 1).
Individual block data transfer rate same as single disk.

18

RAID LEVEL 6 : Independent Data Disks with Two Independent Distributed Parity Schemes

>) >

XOR Parity | Reed-S5olgman
Generation (P) | ECC Code A =
Generation (Q} B A Ii QO pAgTY

AT Q1 prary P1 pasry]|
Q2 parrty P2 pagsty sy D2
P3 parry ' e 03 pamTy
oWy S e Ste..
A Blocks B Blocks C Blocks D Blocks

Server

= Two independent parity computations must be used in order to provide protection against double
disk failure. Two different algorithms are employed to achieve this purpose.
= RAID Level 6 requires a minimum of 4 drives to implement

= Characteristics & Advantages:

1. RAID 6 is essentially an extension of RAID level 5 which allows for additional fault tolerance by using
a second independent distributed parity scheme (dual parity).

2. Datais striped on a block level across a set of drives, just like in RAID 5, and a second set of parity is
calculated and written across all the drives; RAID 6 provides for an extremely high data fault
tolerance and can sustain multiple simultaneous drive failures.

3. Perfect solution for mission critical applications.

= Disadvantages:

1. More complex controller design.

2. Controller overhead to compute parity addresses is extremely high.

3. Write performance can be brought on par with RAID Level 5 by using a custom ASIC for computing

Reed-Solomon parity.
4. Requires N+2 drives to implement because of dual parity scheme.

19

11.1 FILE CONCEPT
File: Collection of interrelated records.

11.1.1 File Attributes

11.1.2 File Operations IMP

CHAPTER 11
FILE SYSTEM INTERFACE

Name: The symbolic file name is the only information kept in human readable form.

Identifier: This unique tag, usually a number, identifies the file within the file system.

Type: This information is needed for systems that support different types of files.

Location: This information is a pointer to a device and to the location of the file on that device.

Size: The current size of the file (in bytes, words, or blocks) and possibly the maximum allowed size are included in
this attribute.

Protection: Access-control information determines who can do reading, writing, executing, and so on.

Time, date, and user identification: This information may be kept for creation, last modification, and last use.
These data can be useful for protection, security, and usage monitoring.

File: A file is collection of interrelated records.

Create

Creates a file

Read (or) Get

Reads the content of the file.

Write

Writes data to file

Open Prepares the file for reading (or) writing.

Truncate Erase the contents of a file but keeps its attributes

Reset Sets file pointer to the beginning of the file.

Find (or) Locate Searches the first record that satisfies the search condition.

Find Next Searches for next record into the file that satisfies the search
condition.

Delete Deletes the current record.

Modify Modifies field value for current record.

Close Completes the file access.

Scan If the file has just been opened (or) reset, scan returns the first

record, otherwise it returns the next record.

Record at a time operations

Reset

Sets the file pointer to the beginning of the file.

Insert

Insert new record in the file

Set at a time operations

Find All Locates all the records in the file that satisfy a search condition.

Find Ordered Retrieves all the records in the file in some specified order.

Reorganize Starts the reorganize process i.e. organization of data file into blocks,
records.

11.1.3 File Types

file type usual extension function
executable axe, com, bin ready-to-run machine-
or none language program
object obj, 0 compiled, machine

language, not linked

source code

C, Cc, java, perl,
asm

source code in various
languages

mp4, avi

batch bat, sh commands to the command
interpreter

markup xml, html, tex textual data, documents

word processor | xml, rif, various word-processor

docx formats

library lib, a, so, dll libraries of routines for
programmers

print or view gif, pdf, jpg ASCIl or binary fileina
format for printing or
viewing

archive rar, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage

multimedia mpeg, mov, mp3, | binary file containing

audio or A/V information

11.2 FILE ACCESS METHODS VIMP

11.2.1 Sequential Access

= In sequential access, the OS read the file word by word. A pointer is maintained which initially
points to the base address of the file. If the user wants to read first word of the file then the
pointer provides that word to the user and increases its value by 1 word. This process continues
till the end of the file.

= Most of the files such as text files, audio files, video files, etc need to be sequentially accessed.

Key points:

= Data is accessed one record right after another record in an order.

= When we use read command, it move ahead pointer by one.

= When we use write command, it will allocate memory and move the pointer to the end of the file.
= Such a method is reasonable for tape.

A A

1

11.2.2 Direct Access

= Another method is direct access (or relative access).
= Here, a file is made up of fixed-length logical records that allow programs to read and write records
rapidly in no particular order.

1 3 7 2 8 6 4 5

1 |

11.2.3 Index Sequential Method

= A particular record can be accessed by its index. The index is nothing but the address of a record in
the file.

= In index accessing, searching in a large database became very quick and easy but we need to have
some extra space in the memory to store the index value.

logleal record
st name rumber

Adams
Arthur
Ashar £rnith, john lﬂﬂﬂﬂl-ﬁéﬁmﬂﬂ age

Smiith &

index fik relative file
11.1 Example of index and relative files.

11.3 DIRECTORY OVER VIEW IMP

= Directory: A directory is a container that is used to contain folders and files.
= |t organizes files and folders in a hierarchical manner.

11.3.1 Single-Level Directory

= All files are contained in the same directory which makes it easy to support and understand.

directory - _ ' &I .Em! dﬂfal nﬂ

nbbds

11.2 Single-level directory.

Advantages:

= Allfiles are contained in the same directory, which is easy to support and understand.

= [fthe files are smaller in size, searching will become faster.

= The operations like file creation, searching, deletion, updating are very easy in such a directory
structure.

4

Disadvantages:

= There may chance of name collision because two files can not have the same name.
= Searching will become time taking if the directory is large.

= This can not group the same type of files together.

11.3.2 Two Level Directory

= |nthe two-level directory structure, Master File Directory contain list of Users.
= Each user has User File Directory.

masier lils

diractory | 158r 1| user2 | user.3 | userd

R

usar file

directory gal | &0 -

0066 b6

11.3 Two Level Directory.

Ry

= This generalization allows the user to create their own subdirectories and to organize their files
accordingly.

11.3.5 Tree-Structured Directories

oot | sl | i o

oo | vt i || e [5 [[

3

"

=

[

T 'JrerkJ_ couny |

= e

Fa
1
h

11.4 Tree Structured Directory.

A tree structure is the most common directory structure. The tree has a root directory, and every file in
the system has a unique path.

Advantages:

= Very general, since full pathname can be given.

= Very scalable, the probability of name collision is less.

= Searching becomes very easy, we can use both absolute paths as well as relative.

Disadvantages:

= Every file does not fit into the hierarchical model, files may be saved into multiple directories.
= We can't share files.

= ltisinefficient, because accessing a file may go under multiple directories.

11.3.6 Acyclic-Graph Directories

= An acyclic graph is a graph with no cycles and allows directories to share subdirectories and files.

= The same file or subdirectory may be in two different directories. The acyclic graph is a generalization of
the tree-structured directory scheme.

rool | -dict &ﬂﬁ!{"

i "'iﬂf'| all | W r:orm?| icuunr words| fist

& &

—»I lisl | rade w?‘i
000

11.5 Acyclic-graph directory structure.

= |tis used in the situation like when two programmers are working on a joint project and they need
to access files. The associated files are stored in a subdirectory, separating them from other projects
and files of other programmers since they are working on a joint project so they want the
subdirectories to be into their own directories. The common subdirectories should be shared. So
here we use Acyclic directories.

= |t is the point to note that the shared file is not the same as the copy file. If any programmer makes
some changes in the subdirectory it will reflect in both subdirectories.

Advantages:
= We can share files.
= Searching is easy due to different-different paths.

Disadvantages:

= We share the files via linking, in case deleting it may create the problem.

= [fthe link is a soft link then after deleting the file we left with a dangling pointer.

= |nthe case of a hard link, to delete a file we have to delete all the references associated with it.

11.3.7 General Graph Directory Structure

= Ingeneral graph directory structure, cycles are allowed within a directory structure where multiple
directories can be derived from more than one parent directory.

= The main problem with this kind of directory structure is to calculate the total size or space that has

been taken by the files and directories.
ic Jirm |
® \

| text | mai r:.:aunf|taﬂaﬁ.'| |L'.|a|:':k mnﬂ'|una‘rex fiypa

oot aw

o g L

avi | count

11.6 General Graph Directory. —r

Advantages:
= [t allows cycles.
= |t is more flexible than other directories structure.

Disadvantages:
= |tis more costly than others.
= |t needs garbage collection.

11.4 FILE SYSTEM MOUNTING

= Mounting: Attaching the files to file system.

= Qperating system makes files and directories available at a specific path so that we can make use of
all those files and directories at that specific path.

= Generally a computer can have partitions C,D, E etc.

= Generally C file system contains software’s and D, E file system contains user programs or user
related data.

= Theroot (/) file system is always mounted. Any other file system can be connected or disconnected
from the root (/) file system.

Example:

Let us assume that we have turbo c in our system. By using turbo C we can execute file system.
C:\TURBO C

We want execute TURBO C from D:\

We have to attach the C:\ to D:\

D:\MOUNT C:\TURBO C D:\

After executing the command we can execute C file system from D:\

= Unmounting: Detaching file from file system.

D:\UMOUNT C:\TURBO C D:\

Mount Point: Mount point specifies the location at which the file system is attached.

SUe fame

(&) (&)

11.14 File system. (a) Existing system. (b) Unmounted volume.

UEEIS

11.15 Mount Point.

11.5 PROTECTION

= Protection actually refers to a mechanism that restricts the access of the resources specified by a
computer system to programs, processes, or users.

Need of System Protection:

= To prevent access of unauthorized users.

= To ensure that resources are used only as specified policy by each active program or mechanism in
the scheme.

= Toimprove reliability by detecting latent errors.

11.6.1 Types of Access

= Read: Read from the file.

= Write: Write or rewrite the file.

= Execute: Load the file into memory and execute it.

= Append: Write new information at the end of the file.

= Delete: Delete the file and free its space for possible reuse.

= List: List the name and attributes of the file.

11.6.2 Access Control

= Owner. The user who created the file is the owner.
= Group. A set of users who are sharing the file and need similar access is a group, or work group.
= Universe. All other users in the system constitute the universe.

= The characters are pretty easy to remember.
r =read permission

W = write permission

X = execute permission

—=no permission

= File access permissions can also be changed by a numerical (octal) chmod specification. Read
permission is given the value 4, write permission the value 2 and execute permission 1.

rwx
421

These values are added together for any one user category:

10

= no permissions

= execute only

= write only

= write and execute (1+2)

read only

= read and execute (4+1)

= read and write (4+2)

= read and write and execute (4+2+1)

NoouphwbNnEeOo
1}

Example:

Access permissions can be expressed as three digits:

user group others
chmod 640 filel rw- r-- ---
chmod 754 filel rwX r-X r--
chmod 664 filel rw- rw- r--

11

CHAPTER12
FILE SYSTEM IMPLEMENTATION

12.1 FILE SYSTEM STRUCTURE

= File System provide efficient access to the disk by allowing data to be stored, located and retrieved
in a convenient way.

= Afile System must be able to store the file, locate the file and retrieve the file.

= Most of the Operating Systems use layering approach for every task including file systems. Every

layer of the file system is responsible for some activities.

Application Program

Logical File System

File Organization Module

Basic File System

\
I/O Control

N

Devices

12.1 Layered File System.

= When an application program asks for a file, the first request is directed to the logical file system.
The logical file system contains the Meta Data of the File and Directory Structure. If the application
program doesn't have the required permissions of the file then this layer will throw an error. Logical

file systems also verify the path to the file.

Generally, files are divided into various logical blocks. Files are to be stored in the hard disk and to
be retrieved from the hard disk. Hard disk is divided into various tracks and sectors. Therefore, in
order to store and retrieve the files, the logical blocks need to be mapped to physical blocks. This
mapping is done by File organization module. It is also responsible for free space management.

Once File organization module decided which physical block the application program needs, it
passes this information to basic file system. The basic file system is responsible for issuing the
commands to 1/O control in order to fetch those blocks.

I/0 controls contain the codes by using which it can access hard disk. These codes are known as

device drivers. I/O controls are also responsible for handling interrupts.

12.2 FILE SYSTEM IMPLEMENTATION

There are various on disk data structures that are used to implement a file system. This structure
may vary depending upon the operating system.

Boot Control Block: Boot Control Block contains all the information which is needed to boot an
operating system from that volume. It is called boot block in UNIX file system. In New Technology

File System, it is called the partition boot sector.

Volume Control Block: Volume control block all the information regarding that volume such as
number of blocks, size of each block, partition table, pointers to free blocks and free File Control
Blocks. In UNIX file system, it is known as super block. In NTFS, this information is stored inside

master file table.

Directory Structure (Per File System): A directory structure (per file system) contains file names and

pointers to corresponding FCBs. In UNIX, it includes inode numbers associated to file names.

File Control Block: File Control block contains all the details about the file such as ownership details,
permission details, file size,etc. In UFS, this detail is stored in inode. In NTFS, this information is

stored inside master file table as a relational database structure.

lile permissions

file dates (create, access, write)

file owner, group, ACL

file size

fila data blocks or poiritars 1o file data blocks

12.2 A typical file-control block.

ACL: Access Control List.

12.2.1 In-memory file-system structures.

= They are maintained in main-memory and these are helpful for file system management for

caching.

[h—

directory structure

open (file nama)
directory structure file-control block

user space kamal mamory secondary storage

12.3 In-memory file-system structures - File Open
index
e data blocks
read (index) | T
per-process system-wide: file-control block
open-file table open-file table
usar space karnel memory sacondary storage

12.4 In-memory file-system structures - File Read

12.2.2 Virtual File Systems

= A virtual file system (VFS) is programming that forms an interface between an operating system's

kernel and a more concrete file system. The VFS serves as an abstraction layer that gives

applications access to different types of file systems and local and network storage devices.

fle-system interiacs
4
VFS interface
Iocal file systom local file system remote fils system
typo 1 type 2 type 1

12.5 Schematic view of a virtual file system.

12.4 ALLOCATION METHODS VIMP

= The allocation methods define how the files are stored in the disk blocks. There are three

main disk space or file allocation methods.

1. Contiguous Allocation
2. Linked Allocation
3. Indexed Allocation

12.4.1 Contiguous Allocation

A

network

= |n this scheme, each file occupies a contiguous set of blocks on the disk. For example, if a file
requires n blocks and is given a block b as the starting location, then the blocks assigned to the file

4

will be b, b+1, b+2,......b+n-1. This means that given the starting block address and the length of
the file, we can determine the blocks occupied by the file.

The directory entry for a file with contiguous allocation contains

= Address of starting block
= Length of the allocated portion.

‘Q diractory
' file

e start length
ol 12l] al] count () 2

2 f tr 14 2
4] s el 7] mail 19 6
81 e 1ol 1% o % W

v2[_13 allhsCl
16l 117018 |18t]
_ ~mall ‘

20{ j21j22i j23(]
24| |25 |26l |27 |

o list -
28l j29[laol |31

12.6 Contiguous allocation of disk space.

Advantages:

= Both the Sequential and Direct Accesses are supported by this. For direct access, the address of
the k™ block of the file which starts at block b can easily be obtained as (b+k).

= This is extremely fast since the number of seeks are minimal because of contiguous allocation of
file blocks.

Disadvantages:

= This method suffers from both internal and external fragmentation. This makes it inefficient in
terms of memory utilization.

= |ncreasing file size is difficult because it depends on the availability of contiguous memory at a
particular instance.

12.4.2 Linked Allocation

= |n this scheme, each file is a linked list of disk blocks which need not be contiguous.

= The disk blocks can be scattered anywhere on the disk.

= The directory entry contains a pointer to the starting and the ending file block. Each block
contains a pointer to the next block occupied by the file.

= The file ‘jeep’ in following image shows how the blocks are randomly distributed. The last block
(25) contains -1 indicating a null pointer and does not point to any other block.

directory

file start end
|BEp 9 25

24[|25iEH26] 127 |
28l |29l 130131]

12.7 Linked Allocation of Disk Space.

Advantages:
= Thisis very flexible in terms of file size. File size can be increased easily since the system does not
have to look for a contiguous chunk of memory.

= This method does not suffer from external fragmentation. This makes it relatively better in terms
of memory utilization.

Disadvantages:

= Because the file blocks are distributed randomly on the disk, a large number of seeks are needed
to access every block individually. This makes linked allocation slower.

= |t does not support random or direct access. We can not directly access the blocks of a file. A
block k of a file can be accessed by traversing k blocks sequentially (sequential access) from the
starting block of the file via block pointers.

= Pointers required in the linked allocation incur some extra overhead.

12.4.3 Indexed Allocation

= In this scheme, a special block known as the Index block contains the pointers to all the blocks
occupied by a file.

» Each file has its own index block. The i*" entry in the index block contains the disk address of the ith
file block. The directory entry contains the address of the index block as shown in the image.

7= = directory

»

\—‘—""/K file mndex block
ol] 1L e jald jeep 13
a7 sL1 81700
8l 19 141

16 g 25

o) I -] - [N e /

g -1
24l I25[Ti26] 127 | \ o

28] 129 |30[31 | { "
" |

——— e
12.8 Indexed Allocation of Disk Space.

~

Advantages:

= This supports direct access to the blocks occupied by the file and therefore provides fast access to
the file blocks.

= |t overcomes the problem of external fragmentation.

Disadvantages:

= The pointer overhead for indexed allocation is greater than linked allocation.

= For very small files, say files that expand only 2-3 blocks, the indexed allocation would keep one
entire block (index block) for the pointers which is inefficient in terms of memory utilization.
However, in linked allocation we lose the space of only 1 pointer per block.

12.5 FREE-SPACE MANAGEMENT

The system keeps tracks of the free disk blocks for allocating space to files when they are created.

12.5.1 Bitmap or Bit vector

= A Bitmap or Bit Vector is series or collection of bits where each bit corresponds to a disk block. The
bit can take two values 0 and 1.

= QOindicates that the block is allocated and 1 indicates a free block.

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Advantages:
= Simple to understand.

12.5.2 Linked List Allocation

= In this approach, the free disk blocks are linked together i.e. a free block contains a pointer to the
next free block.

= The block number of the very first disk block is stored at a separate location on disk and is also
cached in memory.

free-space list head

20
24/
28 129
Advantage: \“____ =
= No wastage of Space. 12.9 Linked free-space list on disk.

Disadvantage:
= |/O required for free space list traversal.

12.5.3 Grouping

= This approach stores the address of the free blocks in the first free block. The first free block stores
the address of some, say n free blocks.

= Qut of these n blocks, the first n-1 blocks are actually free and the last block contains the address of
next free n blocks.

Advantage:

The addresses of a group of free disk blocks can be found easily.

12.5.4 Counting

This approach stores the address of the first free disk block and a number n of free contiguous disk
blocks that follow the first block.

Every entry in the list would contain:

1. Address of first free disk block

2. Anumbern

12.6 EFFICIENCY AND PERFORMANCE
= Efficiency: An OS allows the computer system resources to be used efficiently.

= The page cache caches pages of files to optimize file I/0. The buffer cache caches disk blocks to
optimize block I/0.

I/Q using
read() and write()

~ 7

;

page cache /

memory-mappad /O

buiter cache

4

Y

{ file system ‘

12.10 I/O without a unified buffer.

I/Q using
read() and write()

L/

memaory-mappad /O

bufter cache

4

b4

file system

12.11 1/0 using a unified bu%fer cache.

12.7 RECOVERY

= Files and directories are kept both in main memory and on disk, and care must be taken to ensure
that a system failure does not result in loss of data or in data inconsistency.

12.7.1 Consistency Checking

= The consistency checker is a systems program such as fsck in UNIX, compares the data in the
directory structure with the data blocks on disk and tries to fix any inconsistencies it finds.

= The allocation and free space management algorithms dictate what types of problems the checker
can find and how successful it will be in fixing them.

= For instance, if linked allocation is used and there is a link from any block to its next block, then the
entire file can be reconstructed from the data blocks, and the directory structure can be recreated.

= The loss of a directory entry on an indexed allocation system can be disastrous, because the data
blocks have no knowledge of one another.

10

12.7.2 Log-Structured File Systems

= Alog structured file system (LFS) gives a completely different approach to managing a file system.

= The central idea behind LFS is that blocks are never modified; whenever an operation conceptually
modifies a file, the operation instead places a new block at the end of the log. Writes always go to
the end of the disk.

= For example, suppose | wished to change the first byte of a file. | would create a new copy of the
direct block containing that byte, and place it at the end of the log. Since the address of that block

has now changed, | would also create a copy of the inode for the file.

= An inode isa data structure in UNIX operating systemsthat contains important information
pertaining to files within a file system.

12.7.3 Backup and Restore

A typical backup schedule may then be as follows:

Day 1: Copy to a backup medium all files from the disk. This is called a full backup.

Day 2. Copy to another medium all files changed since day 1. This is an incremental backup.

Day 3. Copy to another medium all files changed since day 2.

Day N. Copy to another medium all files changed since day N-1. Then go back to day 1.

11

LECTURE NOTES PREPARED BY

Dr.T.S.RAVI KIRAN, ASSISTANT PROFESSOR & HOD

DEPARTMENT OF COMPUTER SCIENECE

P.B.SIDDHARHA COLLEE OF ARTS & SCIENECE, VJAYAWADA, AP, INDIA PIN:
520010

Email: tsravikiran@pbsiddhartha.ac.in
Mobile: 9441176980

COURSE:
PROBLEM SOLVING USING PYTHON
POGRAMMING

CONTENTS:

Introduction

Data Structures
Control Flow
Functions

Classes & Objects
Inheritance

Operator Overloading
Errors & Exceptions

. Regular Expressions
10. File Handing

11. Python Databases
12. Additional Python Exercises

WONURWNE

INTRODUCTION TO PYTHON

1.1 ABOUT PYTHON

Python is an Interpreted, Object-Oriented, High-Level Programming Language with Dynamic
Semantics.

= Pythonis easy to learn and it is powerful Programming Language.

= |t has efficient high level Data Structures.

= Provide efficient approach to Object Oriented Programming.

= Provide Elegant Syntax.

= |t has Interpreted Nature.

1.2 HISTORY OF PYTHON

= Python was developed by “GUIDO VAN ROSSUM” in the late 80’s and early 90’s at “National
Research Institute for Mathematics and Computer Science” in the Netherland.
= |t has been derived from many languages such as ABC, MODUAL-3, C, C++, ALGOL-68, SMALL TALK,

UNIX, and Other Scripting Languages.

1.3 FEATURES OF PYTHON VIMP

1. Simple
Python is Simple and a Small language.
= Reading a program written in Python leads everyone like Reading Language.

2. EasytolLearn

= A python program is Clearly Defined and Easily Readable.
= The structure of the program is Very Simple.

= |t uses Few Keywords and a Clearly Defined Syntax.

3. Portable
= Due toits Open Source Nature python has been ported to many platforms.
= All python programs can works on any platforms without requiring any changes.

4. Interpreted

= Pythonis processed at run time by the interpreter.

= No need to compile a program before executing it. We can simply run the program.

= Basically python converts the source code into an interpreted form called as byte code.

5. Object Oriented

= Python supports Object Oriented as well as Program Oriented style of programming.

= While Object Oriented Technique encapsulates Code and Functionalities with in Objects, Procedure
Oriented Technique, as the other hand, builds the Program (or) Functionalities which are noting
Reusable Pieces of Program.

6. Extensible
= Since python is open source software any one can add low level modules to the python interpreter.
= These modules enable programmers to add or customize their tools to work more efficiently.

7. Embeddable
= Programmers can embed python using their C, C++, ACTIVE X, COBAL, and Java programmers to give
Scripting Capabilities for users.

8. Extensive Libraries

= Python has a huge library that is easily portable across different platforms.

= Their library functions are compatible as UNIX, Windows and allow programmers to perform a wide
range of applications varying from Text Processing, Maintaining Database, to GUI Programming.

1.5 APPLICATIONS OF PYTHON (OR) WHO USES PYTHON

= Python is used to develop wide range of applications including Image Processing, Text Processing,
Enterprise Level Applications using Scientific and Numeric data for Networks.

= Python is used in Embedded Scripting Languages, 3D Software, Web Development, GUI Based
Develop Applications, Image Processing of Graphic Design Applications, Scripting or Computational
Applications, Visualizations, and Parallel Computing.

= Python is also used in developing Games, Enterprise and Business Applications, Operating System,
Language Development, Network Programming of Teaching.

= Python is also being applied in revenue generations of products by companies. for instance , among
the general known python uses base:

1. Google makes extensive use of python its Web Based Systems.

2. The popular Youtube Video Sharing Services is largely written in Python.

3. The Drop Box Storage Service (Dropbox is a free service that lets you bring your photos, docs, and
videos anywhere and share them easily) codes and boots its server and Desktop Client Software is
primarily written in python.

4. Voice and Text Chat for gamers uses python.

5. Bit Torrent peers to peer file sharing system began its life as python program.

6. Python is used in the production of Animated Movies.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

GIS Mapping Products use python.

Google Opening Web Development Framework use python as Application Language.

Cisco Email Server Products uses more than one, million lines of code of Python to do its job.
MAYA a powerful interpreted 3D Modelling and Animation System provides a python scripting API.
The MSA Symmetric Key use python for Cryptography and Intelligence Analysis.

Robotics uses python to develop Commercial and Military Robotic Devices.

The civilizations games customizable scripted level are written in python.

The one laptop per child (olpc) project builds its user interface and activities involved in python.
Netflix and yelp have both documented the roleof pytshon in their software infrastructure.

Intel, Cisco,Hewlett-Packard, Seagate, Qualcomm core and IBM use python for hardware testing.
JP Morgan chase, UBS, get go and Citadel apply python to financial market for costing.

NASA, Los Alamos, Fermi lab, JPL and other use python for scientific programming.

In reality trending Instagram has more than 100 million people, interestingly. Its programming is
written in python.

Pinterest and quora e viral network giants with large user base uses python for their primary

backend system.

1.6 WHAT CAN | DO WITH PYTHON?

In addition to being a well-designed programming languages, python is useful for accomplishing real

world basis

1.6.1 System Programming:

Python’s builts makes idle for writing, portable, maintainable System Administration Tools and

Utilities.
Python Programmer can send Files and Directory Trees to, other Programmers.
Do Parallel Processing with Process and Threads, etc.

1.6.2 GUI'S:

Python provide TIC GUI API called ‘TKINTER’ that allows Python Program to implement portable GUI'S

with machine look and feel.

1.6.3 Internet Scripting:

Python comes with Standard Internet Modules that allows Python Program to perform a wide

variety of Networking Tasks, in Client / Server Modes.

1.6.4 Component Integration:

= Python Scripts can easily communicate with other application using variety of Integration
Mechanisms.

= For instance, integrating a library into python enables python to test and leaves the library’s
components and embedding python in a products enables onsite customization to be coded
with having to recompile to entire product

1.6.5 Database Programming:

= Python interfaces to all commands used in Relational Database System such as Oracle,
DDBC, MYSQL, and SQL Lite.

1.6.6 Rapid Prototyping:

= Rapid Prototyping with python allows a developer to incorporate several ideas into
prototypes within budget.

1.6.7. Numeric and Scripting:

= Numerical Python adding a fast company Multidimensional Array Facilities to Python.
= NUMPY in the successor to both Numeric and Num Array.
= Additional numeric tools for Python Animation, 3D Visualization.

1.7 VARIABLES IMP

Variable: Variable is reserved memory location that stores value.

® |n programming, avariable is a value that can change, depending on conditions or on information
passed to the program.

Variables are examples of identifiers.

Identifiers are names given to identify something.
For naming any identifier there are some basic rules that you must follow. These rules are

1. The first character of an identifier must be an underscore (‘_’) or letter (upper or lowercase).

2. Therest of the identifier name can be underscore(‘_’), letter (upper or lowercase), or digits (0-9).
3. Identifiers names are case-sensitive. For example, myvar and myVar are not the same.

4. Punctuation characters such as @,S, and % are not allowed within identifiers.

Examples of valid identifier names are sum, my var, numl, r, var 20, First. etc.

Examples of invalid identifier names are 1num, my-var, %check, Basic Sal, H#R&A,
etc.

Example: Program to display data of different types using variables
and literal constants.

num="7

amt=123.45

code = 'A'

pi=3.1415

population of India = 10000000000
msg = "Hi"

print ("NUM ="+str (num))

(
print ("\n AMT = "+str (amt))
print (" CODE = "+str (code))
print ("POPULATION OF INDIA = " + str(population of India))
print ("\n MESSAGE = "+str (msg))
OUTPUT
NUM =7
AMT = 123.45
CODE = A

POPULATION OF INDIA = 10000000000
MESSAGE = Hi

1.8 TYPED LANGAUGE

= The typing discipline of a language is defined by the nature of type constraint and the way they are
evaluated and enforced.
= The Concept Of Typing Discipline Is Dealt With Four Types That Are As Follows.
1. Statically Typed Languages
2. Dynamically Typed Languages
3. Strongly Typed Language
4. Weakly Typed Language

1.Statically Typed Languages

= Alanguage in which types are fixed at compile time.
E.g. Cand Java

2. Dynamically Typed Languages

= Alanguage in which the types are discovered at execution time.
E.g. Python, VB Script

Strongly Typed Language:

= Alanguage in which the types are always enforced.

= For instance, Java and Python are strongly typed. If you have integer, you can not treat like a string
without explicitly converting it.

Weakly Typed Language:

= A language in which the type may be ignored which is actually the opposite of strongly typed. VB
Script is weakly typed. In VB Script, you can concatenate the string ‘12’ and the integer 3 to get the
string ‘123’, then treat that as the integer 123, all without any explicit conversion.

= Python is both dynamically typed (because it does not use explicit data type declarations) and
strong typed (because once a variable has a data type, it actually matters).

1.9 DATA TYPES IN PYTHON VIMP

Python has the following data types built-in by default, in these categories:

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

= Print the data type of the variable x:
X =5
print(type(x))

= Setting the Data Type
In Python, the data type is set when you assign a value to a variable:

Example Data Type Description
x = "Hello World" str
x=20 int
x=20.5 float
X =1j complex
x = ["apple", "banana", "cherry"] list
x = ("apple", "banana", "cherry") tuple
X = range(6) range The rage specifies values between
Oto6

x={"name" : "John", "age" : 36} dict Create a dictionary containing
personal information

x = {"apple", "banana", "cherry"} set

x = frozenset({"apple", "banana", "cherry"}) | frozenset The frozenset() function returns an
unchangeable frozenset object
(which is like a set object, only

unchangeable).

E.g.

mylist = ['apple', 'banana',
'cherry']

x = frozenset (mylist)

x[1] = "strawberry"

print (x)

x = True bool

X = b"Hello" bytes Bytes objects are immutable
sequences of single bytes.

E.g.

#triple single or double
quotes allows multiple lines
x = b'''Python Tutorial,
Javascript Tutorial,

MySQL Tutorial'''

print (x)

x = bytearray(5) bytearray It gives a mutable sequence of
integers in the range 0 <= x < 256.
E.g.

#create a bytearray from a
list of integers in the range
@ through 255

X = bytearray([94, 91, 101,
125, 111, 35, 120, 101, 115,
101, 200])

print(x)

x = memory view(bytes(5)) memoryview The python memoryview() function
returns a memoryview object of the
given argument.

1.10 LITERALS
Literal: In Python, literals refer to the data that is specified in a variable or constant.

1.10.1 Numbers
Can be integers (1 and 2), floats (1.1 and 1.2), fractions (1/2 and 2/3) or even complex humbers
(3+7i)

1.10.1 Strings
= String: A string is group of characters.

= Strings in python are surrounded by either single quotation marks, or double quotation
marks.

= 'hello' is the same as "hello".

= You can display a string literal with the print() function:

E.gl.
print("Hello")
print('Hello")

E.g.

a=""We are the students of P.B.Siddhartha College of Arts & Scince,
MCA Fourth Semester,

Leaning Python Programming."'

print(a)

1.11 OPERATORS

Operators are symbols that represent that represent computations like addition, subtraction,
multiplication and so on.

Operator categories:

= Arithmetic Operators

= Relational Operators

= Logical Operators

= Assignment Operators

= Increment and Decrement Operators
= Bitwise Operators

= Special Operators

CHAPTER 2
DATA STRUCTURES

2.1 LISTS

= Lists are used to store multiple items in a single variable.

= Lists are created using square brackets.

= List items are ordered, changeable, and allow duplicate values.

= List items are indexed, the first item has index [0], the second item has index [1] etc.

= When we say that lists are ordered, it means that the items have a defined order, and that
order will not change.

= |f you add new items to a list, the new items will be placed at the end of the list.

= Since lists are indexed, lists can have items with the same value.

Example 1:
thislist = ["apple"”, "banana", "cherry", "apple", "cherry"]
print(thislist)

Output:

["apple', 'banana', 'cherry', 'apple', 'cherry']

Example 2:
thislist = ["apple"”, "banana", "cherry"]
print(len(thislist))

Output: 3

Example 3:

listl = ["apple"”, "banana", "cherry"]
list2 = [1, 5, 7, 9, 3]

list3 [True, False, False]

Output:
["apple', 'banana', 'cherry']

[1, 5, 7, 9, 3]
[True, False, False]

Example 4:
mylist = ["apple", "banana", "cherry"]
print(type(mylist))

Output:

<class 'list'>

Example 5:

thislist = list(("apple"”, "banana", "cherry")) # note the double
round-brackets

print(thislist)

Output:

["apple', 'banana', 'cherry']

2.1.1 Access List Items
= List items are indexed and you can access them by referring to the index number.

Examplel:
thislist = ["apple", "banana", "cherry"]
print(thislist[1])

Output:
SENERE]

2.1.2 Change Item Value
= To change the value of a specific item, refer to the index number.

Examplel:

thislist = ["apple", "banana", "cherry"]
thislist[1] = "blackcurrant”
print(thislist)

Output:

['apple', 'blackcurrant', 'cherry']

2.1.3 Appended Items
= To add an item to the end of the list, use the append() method.

Examplel:

thislist = ["apple"”, "banana", "cherry"]
thislist.append("orange")
print(thislist)

Output:

['apple', 'banana', 'cherry', 'orange']

2.1.4 Remove Specified Item
= The remove() method removes the specified item

Examplel:

thislist = ["apple"”, "banana", "cherry"]
thislist.remove("banana")
print(thislist)

Output:
["apple', 'cherry']

2.1.5 Loop Through a List
= You can loop through the list items by using a for loop.
Example 1:
thislist = ["apple", "banana", "cherry"]
for x in thislist:

print(x)

2.1.6 List Comprehension
= List comprehension offers a shorter syntax when you want to create a new list based on the
values of an existing list.

Example:

= Based on a list of fruits, you want a new list, containing only the fruits with the letter "a" in
the name.

= Without list comprehension you will have to write a f or statement with a conditional test
inside.

Example 1:

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]
newlist = []

for x in fruits:
if "a" in x:
newlist.append(x)
print(newlist)

Output:

3

['apple’', 'banana', 'mango’]

2.1.7 Sort List Alphanumerically
= List objects have asort () method that will sort the list alphanumerically, ascending, by
default.

Example 1:

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]
thislist.sort()

print(thislist)

['banana', 'kiwi',

'mango', 'orange', 'pineapple']
Example2:

thislist = [100, 50, 65, 82, 23]

thislist.sort()

print(thislist)

Output:
[23, 50, 65, 82, 100]

2.1.8 Copy a List

= You cannot copy a list simply by typinglist2 = 1istl, because:li st 2 will only be
areferencetol i st1, and changes made inli st 1 will automatically also be made
inlist2.

= There are ways to make a copy, one way is to use the built-in List method copy/() .

Example:

thislist = ["apple"”, "banana", "cherry"]
mylist = thislist.copy()

print(mylist)

["apple', 'banana', 'cherry’]

2.1.9 Join Two Lists

= There are several ways to join, or concatenate, two or more lists in Python.

= One of the easiest ways are by using the + operator.

Example 1:

listl = ["a", "b", "C"]
list2 = [1, 2, 3]
list3 = listl + 1list2
print(list3)

Example 2:
1ist1 = [llall, llbll , "C"]

list2 = [1, 2, 3]

for x in list2:
listl.append(x)
print(listl)

Example 1:
thistuple = ("apple", "banana", "cherry")
print(thistuple)

2.1.9 List Methods

Method Description
append() Adds an element at the end of the list
clear() Removes all the elements from the list
copy() Returns a copy of the list
count() Returns the number of elements with the specified value
extend() Add the elements of a list (or any iterable), to the end of the current list
index() Returns the index of the first element with the specified value
insert() Adds an element at the specified position
pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

Output:

("apple', 'banana', 'cherry')

2.2 TUPLE

= Tuples are used to store multiple items in a single variable.

= Atupleis a collection which is ordered and unchangeable.

= Tuples are written with round brackets.

= Tuple items are ordered, unchangeable, and allow duplicate values.

= Tuple items are indexed, the first item has index [0], the second item has index [1] etc.

Example 1:
thistuple = ("apple", "banana", "cherry")
print(thistuple)

Output:

('apple', 'banana', 'cherry')

2.1.1 Access Tuple Items

= You can access tuple items by referring to the index number, inside square brackets.

Example 1:
thistuple = ("apple", "banana", "cherry")
print(thistuple[1])

Output:
banana
Negative Indexing:

= Negative indexing means start from the end.
= -1 refers to the last item, -2 refers to the second last item etc.

Example 1:
thistuple = ("apple"”, "banana", "cherry")

print(thistuple[-1])

Output:
cherry

Range of Indexes:
= You can specify a range of indexes by specifying where to start and where to end the range.
= When specifying a range, the return value will be a new tuple with the specified items.

Example 1:
thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[2:5])

#This will return the items from position 2 to 5.

#Remember that the first item is position 0,
#and note that the item in position 5 is NOT included

('cherry', 'orange', 'kiwi')

Example 2:
thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[:4])

'banana', 'cherry', 'orange')

Example 3:
thistuple = ("apple"”, "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[2:])

('cherry', 'orange', 'kiwi', 'melon', 'mango')

Range of Negative Indexes:
= Specify negative indexes if you want to start the search from the end of the tuple.

Example 4:

thistuple = ("apple"”, "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[-4:-1])

('orange', 'kiwi', 'melon")
#Negative indexing means starting from the end of the tuple.

#This example returns the items from index -4 (included) to index -1
(excluded)

#Remember that the last item has the index -1

Check if Item Exists:
= Check if "apple" is present in the tuple.

Example 5:
thistuple = ("apple", "banana", "cherry")
if "apple" in thistuple:
print("Yes, 'apple' is in the fruits tuple")

2.1.2 Update Tuples

= Tuples are unchangeable, meaing that you cannot change, add, or remove items once the tuple is
created.
= But there are some workarounds.

Example 1:

x = ("apple”, "banana", "cherry")
y = list(x)

y[1] = "kiwi"

x = tuple(y)

print(x)

, "kiwi", "cherry")

Add Items:
= Once atupleis created, you cannot add items to it.

Example 1:
thistuple = ("apple", "banana", "cherry")
thistuple.append("orange") # This will raise an error

print(thistuple)

Output:
Traceback (most recent call last):

File "./prog.py", line 2, in <module>
AttributeError: 'tuple' object has no attribute 'append

Example 2:
= Convert the tuple into a list, add "orange", and convert it back into a tuple:

thistuple = ("apple", "banana", "cherry")
y = list(thistuple)

y.append("orange")

thistuple = tuple(y)

print(thistuple)

'banana', 'cherry', 'orange')

Remove Items:

= Note: You cannot remove items in a tuple.
Example 3:

thistuple = ("apple", "banana", "cherry")
y = list(thistuple)

y.remove("apple")

thistuple = tuple(y)

print(thistuple)

Output:

("banana', 'cherry')

Unpacking a Tuple:

= When we create a tuple, we normally assign values to it. This is called "packing" a tuple.

Example 4: (Packing tuple)

fruits = ("apple"”, "banana", "cherry")

print(fruits)

'banana', 'cherry')

= But, in Python, we are also allowed to extract the values back into variables. This is called
"unpacking".
Example 5:

fruits = ("apple"”, "banana", "cherry")
(green, yellow, red) = fruits
print(green)

print(yellow)
print(red)

Using Asterisk*

= If the number of variables is less than the number of values, you can add an * to the variable name
and the values will be assigned to the variable as a list.

Example 6:

fruits = ("apple"”, "banana", "cherry", "strawberry", "raspberry")
(green, yellow, *red) = fruits

print(green)

print(yellow)
print(red)

['cherry', 'strawberry', ‘'raspberry']

10

= |f the asterix is added to another variable name than the last, Python will assign values to the

variable until the number of values left matches the number of variables left.

fruits = ("apple"”, "mango", "papaya", "pineapple", "cherry")
(green, *tropic, red) = fruits
print(green)

print(tropic)
print(red)

"pineapple’]

2.1.3 Loop Through a Tuple
= You can loop through the tuple items by using a f or loop.

Example 1:
thistuple = ("apple", "banana", "cherry")
for x in thistuple:

print(x)

Loop Through the Index Numbers:

= You can also loop through the tuple items by referring to their index number.

= Use the range() and len() functions to create a suitable iterable.

Example 2:

thistuple = ("apple", "banana", "cherry")
for i in range(len(thistuple)):
print(thistuple[i])

11

Using a While Loop:

= You can loop through the list items by using a while loop.

= Use thelen() function to determine the length of the tuple, then start at 0 and loop your way
through the tuple items by refering to their indexes.

= Remember to increase the index by 1 after each iteration.

Example 3:

thistuple = ("apple", "banana", "cherry")
i=20
while i < len(thistuple):
print(thistuple[i])
i=1+1

2.1.4 Python - Join Tuples
Join Two Tuples

= To join two or more tuples you can use the + operator.

Example 4:

tuplel
tuple2

("a", "b" , "c")
(1, 2, 3)

tuple3 = tuplel + tuple2
print(tuple3)

Multiply Tuples
= |f you want to multiply the content of a tuple a given number of times, you can use the * operator.

12

Example 5:

fruits = ("apple"”, "banana", "cherry")
mytuple = fruits * 2

print(mytuple)

, 'banana', 'cherry', 'apple', 'banana', 'cherry')

2.1.5 Tuple Methods

= Python has two built-in methods that you can use on tuples.

Method Description
count() Returns the number of times a specified value occurs in a tuple
index() Searches the tuple for a specified value and returns the position of where it
was found
2.3 SETS

= Asetis a collection which is both unordered and unindexed.

= Unordered means that the items in a set do not have a defined order.

= Setitems can appear in a different order every time you use them, and cannot be referred to by
index or key.

= Sets are used to store multiple items in a single variable.

= Sets are written with curly brackets.

Examplel:
thisset = {"apple", "banana", "cherry"}
print(thisset)

Note: the set list is unordered, meaning: the items will appear in a random
order.

Refresh this page to see the change in the result.

"apple’', 'banana'}

13

= Sets cannot have two items with the same value. (Duplicates Not Allowed)

Examplel:
thisset = {"apple", "banana", "cherry", "apple"}
print(thisset)

‘cherry', 'apple'}

2.3.1 Access Set Items

= You cannot access items in a set by referring to an index or a key.
= But you can loop through the set items using a f or loop, or ask if a specified value is present in
a set, by using the i n keyword.

Examplel:
thisset = {"apple"”, "banana", "cherry"}
for x in thisset:

print(x)

Change Items: Once a set is created, you cannot change its items, but you can add new items.

2.3.2 Add Set Items

= Once aset is created, you cannot change its items, but you can add new items.

Examplel:

thisset = {"apple", "banana", "cherry"}
thisset.add("orange")

print(thisset)

'orange', 'banana’, 'apple'}
2.3.2 Remove Set Items

* Toremove an item in a set, use the r enove(), orthe di scar d() method.

14

Examplel:

thisset = {"apple"”, "banana", "cherry"}
thisset.remove("banana")

print(thisset)

2.3.2 Loop Sets
= You can loop through the set items by using a f or loop.

Examplel:
thisset = {"apple", "banana", "cherry"}
for x in thisset:

print(x)

2.3.3 Join Two Sets

= There are several ways to join two or more sets in Python.
" You can use the uni on() method that returns a new set containing all items from both sets,
or the updat e() method that inserts all the items from one set into another.

Examplel:

setl = {"a", "b" , "c"}
set2 = {1, 2, 3}

set3 = setl.union(set2)
print(set3)

Example2:
setl = {"a', "b" , "c"}
set2 = {1, 2, 3}

setl.update(set2)
print(setl)

Keep ONLY the Duplicates:
» Theintersection_update() method will keep only the items that are present in both
sets.

Examplel:
x = {"apple", "banana", "cherry"}

y = {"google”, "microsoft”, "apple”}
X.intersection _update(y)

print(x)

Output:

{'apple'}

Example2:

X — {"apple"_, "banana"_, "Cher‘r‘y"}

y = {"google", "microsoft", "apple"}
z = X.intersection(y)

print(z)

Output:
{'apple'}
Keep All, But NOT the Duplicates:

» Thesymmetric_difference_update() method will keep only the elements that are
NOT present in both sets.

Examplel:

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}
x.symmetric_difference_update(y)
print(x)

{'google', 'banana', 'microsoft', 'cherry'}
= Thesymmetric_difference() method will return a new set, that contains only the

elements that are NOT present in both sets.

16

Examplel:
x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}
z = x.symmetric_difference(y)
print(z)

"banana’,

J

2.3.4 Set Methods

"'microsoft’,

‘cherry'}

Method Description
add() Adds an element to the set
clear() Removes all the elements from the set
copy() Returns a copy of the set

difference()

Returns a set containing the difference between two or
more sets

difference_update()

Removes the items in this set that are also included in
another, specified set

discard()

Remove the specified item

intersection()

Returns a set, that is the intersection of two other sets

intersection_update ()

Removes the items in this set that are not present in other,
specified set(s)

isdisjoint()

Returns whether two sets have a intersection or not

issubset()

Returns whether another set contains this set or not

issuperset()

Returns whether this set contains another set or not

pop()

Removes an element from the set

remove()

Removes the specified element

symmetric_difference()

Returns a set with the symmetric differences of two sets

17

symmetric_difference_update | inserts the symmetric differences from this set and another

()

union() Return a set containing the union of sets
update() Update the set with the union of this set and others
2.4 DICTIONARY

= Dictionaries are used to store data valuesin key : val ue pairs.
= Adictionary is a collection which is ordered*, changeable and does not allow duplicates.
= Dictionaries are written with curly brackets, and have keys and values:

Examplel:

thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}
print(thisdict)

'"Ford', 'model': 'Mustang', 'year': 1964}

Ordered or Unordered?

= When we say that dictionaries are ordered, it means that the items have a defined order, and that
order will not change.

= Unordered means that the items does not have a defined order, you cannot refer to an item by
using an index.

Changeable
= Dictionaries are changeable, meaning that we can change, add or remove items after the dictionary
has been created.

Duplicates Not Allowed

= Dictionaries cannot have two items with the same key.
= Duplicate values will overwrite existing values.

18

Examplel:

thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964,
"year": 2020

}

print(thisdict)

"Ford', 'model': 'Mustang', 'year': 2020}

2.4.1 Accessing Items

= You can access the items of a dictionary by referring to its key name, inside square brackets.
= Get the value of the "model" key:

Examplel:

thisdict = {
"brand": "Ford",
"model”: "Mustang",
"year": 1964

}

x = thisdict["model"]

print(x)

Output:
Mustang

» There is also a method called get () that will give you the same result:

Example2:

thisdict = {
"brand": "Ford",
"model"”: "Mustang",
"year": 1964

}

x = thisdict.get("model™)

print(x)

Output:
Mustang

19

Change Values:

= You can change the value of a specific item by referring to its key name
= Change the "year" to 2018

Examplel:

thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}

thisdict["year"] = 2018

print(thisdict)

"Ford', 'model': 'Mustang', 'year': 2018}

Update Dictionary:
= Theupdat e() method will update the dictionary with the items from the given argument.

» The argument must be a dictionary, or an iterable object with key: val ue pairs.
= Update the "year" of the car by using the updat e() method.

Examplel:
thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964
}
thisdict.update({"year": 2020})
print(thisdict)

"Ford', 'model': 'Mustang', 'year': 2020}

2.4.2 Adding Items

= Adding an item to the dictionary is done by using a new index key and assigning a value to it.

20

Examplel:

thisdict = {

"brand": "Ford",

"model": "Mustang",
"year": 1964

}

thisdict["color"] = "red"
print(thisdict)

'"Ford', 'model': 'Mustang', 'year': 1964, 'color': 'red'}

Update Dictionary:

* Theupdat e() method will update the dictionary with the items from a given argument. If the
item does not exist, the item will be added.

» The argument must be a dictionary, or an iterable object with key: val ue pairs.

= Add a color item to the dictionary by using the update() method:

Examplel:
thisdict = {
"brand": "Ford",
"model"”: "Mustang",
"year": 1964
}
thisdict.update({"color": "red"})
print(thisdict)

'"Ford', 'model': 'Mustang', 'year': 1964, 'color': 'red'}

2.4.3 Remove Dictionary Items

= There are several methods to remove items from a dictionary.
= The pop() method removes the item with the specified key name.

21

Examplel:
thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964
}
thisdict.pop("model")
print(thisdict)

'"Ford', 'year': 1964}

* The popi t en() method removes the last inserted item (in versions before 3.7, a random item is
removed instead).

Examplel:

thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}

thisdict.popitem()

print(thisdict)

"Ford', 'model': 'Mustang'}

= Thedel keywordremoves the item with the specified key name.

Examplel:

thisdict = {
"brand": "Ford",
"model": "Mustang",

"year": 1964

}
del thisdict

print(thisdict) #this will cause an error because "thisdict" no longer
exists.

22

Output:

Traceback (most recent call last):
File "demo dictionary del3.py", line 7, in <module>
print(thisdict) #this will cause an error because "thisdict"™ no longer

NameError: name 'thisdict' is not defined

= Thecl ear () method empties the dictionary.

Examplel:

thisdict = {
"brand": "Ford",
"model”: "Mustang",
"year": 1964

}

thisdict.clear()

print(thisdict)

g

2.4.4 Loop Through a Dictionary:

= You can loop through a dictionary by using a for loop.

= When looping through a dictionary, the return value are the keys of the dictionary, but there are
methods to return the values as well.

= Print all key names in the dictionary, one by one.

Examplel:

thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}

for x in thisdict:

print(x)

23

= Print all values in the dictionary, one by one.

Examplel:

thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}

for x in thisdict:
print(thisdict[x])

" Youcanusethe keys() method to return the keys of a dictionary:

Examplel:

thisdict = {
"brand": "Ford",
"model”: "Mustang",
"year": 1964

}

for x in thisdict.keys():
print(x)

= Loop through both keys and values, by using the i t ems() method.

Examplel:

thisdict = {
"brand": "Ford",
"model": "Mustang",

"year": 1964
}

for x, y in thisdict.items():
print(x, y)

2.4.5 Copy a Dictionary

= You cannot copy a dictionary simply by typing dict2 = dictl, because: dict2 will only be

a reference to dict1, and changes made in dict1 will automatically also be made in dict2.

= There are ways to make a copy, one way is to use the built-in Dictionary method copy().

Examplel:

thisdict = {
"brand": "Ford",
"model”: "Mustang",
"year": 1964

}

mydict = thisdict.copy()

print(mydict)

'Ford', 'model': 'Mustang', 'year': 1964}

= Another way to make a copy is to use the built-in function dict().

Examplel:

thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}

mydict = dict(thisdict)

print(mydict)

"Ford', 'model': 'Mustang', 'year': 1964}

2.4.6 Nested Dictionaries:

= Adictionary can contain dictionaries, this is called nested dictionaries.
= (Create a dictionary that contain three dictionaries:

25

Examplel:

myfamily = {
"childl" : {
"name" : "Emil",
"year" : 2004
}s
"child2" {
"name" : "Tobias",
"year" : 2007
}s
"child3" {
"name" : "Linus",
"year" : 2011
¥
}
print(myfamily)

Output:

{'childl': {'name': 'Emil"’,

'year': 2007}, 'child3': {'name’:

'year': 2004},

"Linus',

'child2': {'name’:
'year': 2011}}

'Tobias',

Create three dictionaries, then create one dictionary that will contain the other three

"Emil",

: 2004

"Tobias",

1 2007

"Linus",

1 2011

dictionaries.

Examplel:

childl = {
"name"
"year"

}

child2 = {
"name" :
"year"

}

child3 = {
"name" :
"year"

}

26

myfamily = {
"childl" : childi,
"child2" : child2,
"child3" : child3

}
print(myfamily)

Output:
{'childl': {'name': 'Emil', 'year': 2004},
'year': 2007}, 'child3': {'name': 'Linus',

'child2': {'name’:
'year': 2011}}

'Tobias',

2.4.7 Dictionary Methods:

Method Description
clear() Removes all the elements from the dictionary
copy() Returns a copy of the dictionary
fromkeys() Returns a dictionary with the specified keys and value
get() Returns the value of the specified key
items() Returns a list containing a tuple for each key value pair
keys() Returns a list containing the dictionary's keys
pop() Removes the element with the specified key
popitem() Removes the last inserted key-value pair
setdefault() Returns the value of the specified key. If the key does not exist: insert
the key, with the specified value
update() Updates the dictionary with the specified key-value pairs
values() Returns a list of all the values in the dictionary

CHAPTER 3
CONTROL FLOW

TOPIC 1: DECISION CONTROL STATEMENTS

Decision Control Statements

A 4

Sequential Control Statements Selection Control Statements Iterative Control Statements

Statement 1 Statement 1 Statement 1

Statement 2

Test Condition Test Condition
True
Statement n + +
v True False
False |—

4.2 SELECTION / CONDITIONAL BRANCHING STATEMENTS

4.2.1 IF STATEMENT

= The if statement is the simplest form of decision control statement that is frequently used in
decision making.

Figure: Flow chart for if statement

.

Syntax:
If test_expression:
Statement 1

Test
Expression

False

Statement n
Statement x

Example 1: Statement Block 1
X = 10 #Initialize the value of x
if (x>0): #test the value of x <
X=X+1 #tIncrement the value of x if it is > ©
Statement Block x

print(x) #Print the value of x

Example 2:
Write a program to determine whether a person is eligible to vote.
age = int(input("Enter the age : "))
if (age >= 18):
print("You are eligible to vote")

Output:

Enter the age : 18
You are eligible to vote

Example 3:
Write a program to determine the character entered by the user
char = input("Press any key : ")

if(char.isalpha()):

print("The user has entered a character")
if(char.isdigit()):

print("The user has enterd a digit")
if(char.isspace()):

print("The user entered a white space character")

Output:

Press any key : a
The user has entered a character

4.2.2 if - else Statement

= The if..else statement evaluates test expression and will execute the body of if only when
the test condition is True . If the condition is False , the body of else is executed

Syntax: Figure: Flow chart for if-else statement
If test_expression: l

Statement block 1
else:

Statement block 2
Statement x

Test
Expression

True False

\ 4 A 4

Statement Block 1 Statement Block 2

\ 4

Statement Block x

Example 1:
Write a program to find whether the given number is even or odd
num = int(input("Enter any number :"))
if(num%2==0):
print(num,"is even")
else:
print(num,"is odd")

Output:

Enter any number :125
125 is odd

Example 2:
Write a program to enter any character. If the entered character is in
lowercase then convert it into uppercase and if it is
an uppercase character, then convert it into lowercase.
ch = input ("Enter any character : ")
if (ch >= 'A" and ch <= 'Z"):
ch = ch.lower()

print("The entered character was in uppercase. In lowercase it is :" +
ch)
else:

ch = ch.upper()

print("The entered character was in lowercase. In uppercase it is :" +
ch)

Output:

Enter any character : ¢
The entered character was in lowercase. In uppercase it is :C

Example 3:

A company decides to give bonus to all its emplyess on Diwali. A 5% bonus
on salary

is given to the male workers and 10% bonus on salary to the female workers.
Write a

program to enter the salary of the employee and sex of the employee. If the
salary of

the employee is less than Rs.10,000 then the employee get an extra 2%
bonuson salary.

Calcullate the bonus that has to given to the employee and display the
salary that the

employee will get.

ch=input("Enter the sex of the employee (m or f) :")
sal=int(input("Enter the salary of the employee :"))
if (ch=="m"):

bonus = 0.05 * sal
else:

bonus = ©0.10 * sal
amt_to_be_paid = sal + bonus
print("Salary =", sal)

print("Bonus =", bonus)
print("****************************")

print("Amount to be paid : ",amt_to_be_ paid)

Output:
Enter the sex of the employee (m or f) :m
Enter the salary of the employee :30000

Salary = 30000
Bonus = 1500.0

3k >k >k >k 5k 5k 5k 3k >k >k %k >k 5k 5k 5k >k >k %k >k %k 5k 5k 5k %k %k %k %k

Amount to be paid : 31500.0

4.2 3 if...elif...else in Python

"= if.elif.else are conditional statements that provide you with the
decision making that is required when you want to execute code based on a
particular condition.

Syntax:

If (test _expression 1)
Statement_block 1

Elif (test_expression 2)
Statement_block 2

Elif (test_expression N)
Statement_block N
Else
Statement_block X
Statement_Y

Figure: Flow chart for if-elif-else

|

Test
Expression

False

\4

Statement Block 1

Expression

Statement Block 2 Statement Block x

Statement Block Y

A

\A 4

Examplel:
Write a program to test whether a number entered by the user is negative,

positive or equal to zero

num = int(input("Enter any number : "))
if (num==0):

print("The value is equal to zero")
if (num>0):

print("The number is positive")
else:

print("The number is negative")

Output:

Enter any number : -10
The number is negative

Example2:
Write a program to determine whether the character entered is vowel or not.

ch = input("Enter any character :")

if(ch=="A" or ch=="E" or ch=="I" or ch=="0" or ch=="U"):
print (ch, "is vowel")

elif (ch=="a" or ch=="e" or ch=="i" or ch=="0" or ch=="u"):
print(ch, "is vowel")

else:
print(ch, "is not a vowel")

Output:

Enter any character :A
A is vowel

Example 3: Write a program to find the greatest number from three numbers.

Write a program to find the greatest number from three numbers.
numl = int(input("Enter the first number : "))

num2 = int(input("Enter the second number : "))
num3 = int(input("Enter the third number : "))
if(numl>num2):
if(numl>num3):
prit(numl, "is greater than", num2, "and", num3)
else:
print(num3, "is greater than", numl, "and", num2)
elif(num2>num3):
print(num2, "is greater than", numl, "and", num3)
else:

print("The three numbers are equal")

the first number : 13

the second number : 43
the third number : 25
greater than 13 and 25

Example 4: Write a program to calculate tax given the following conditions:
If income is less than 1,50, 000 then no tax

If taxable income is Rs.1,50,001 - Rs.300,000 then charge 10% tax

If taxable income is Rs.3,00,001 - Rs.500,000 then charge 20% tax

If taxable income is above Rs.5,00,001 then charge 30% tax

#Write a program to calculate tax given the following conditions:
#If income is less than 1,50, 000 then no tax

#If taxable income is Rs.1,50,001 - Rs.300,000 then charge 10% tax
#If taxable income is Rs.3,00,001 - Rs.500,000 then charge 20% tax
#If taxable income is above Rs.5,00,001 then charge 30% tax

MIN1 = 150001

MAX1 = 300000

RATE1l = 0.10

MIN2 = 300001

MAX2 = 500000

RATE2 = 0.20
MIN3 = 500001
RATE3 = 0.30
income = int(input("Enter the income : "))

taxable _income = income - 150000
if(taxable_income<= 0):
print("No tax")
elif(taxable_income>=MIN1 and taxable_income<MAX1):
tax = (taxable_income - MIN1) * RATE1

elif(taxable_income>=MIN2 and taxable_income<MAX2):
tax = (taxable_income - MIN2) * RATE2
else:
tax = (taxable_income - MIN3) * RATE3
print("TAX = ", tax)

Output:

Enter the income : 2000000
TAX = 404999.7

4.3 BASIC LOOP STRUCTURES / ITERATIVE STATEMENTS

= Python supports basic loop structures through iterative statements.
= |terative statements are used to repeat the execution of list of statements depending on the value
of integer expression.

4.3.1 While Loop

= While loop provides a mechanism to repeat one or more statements while a particular condition is
True.

Syntax:

Statement x

While (condition):
Statement block

Statement y

Figure: Flow chart for while loop

Statement X

| g!

Update the
Condition Condition

?

Statement Block

True

A

v False

Statement Y

Example 1: Write a program to print first 5 numbers using while loop.

i=1

while i < 6:
print(i)
i=1+1

Example 2: Write a program to calculate the sum of numbers from m to n

Write a program to calculate the sum of numbers from m to n
m=int(input("Enter the value of m : "))
n=int(input("Enter the value of n : "))
s=0
while (m<=n):
S=S+m
m=m+1
print("sum = ", s)

Output:
Enter the value of m : 1

Enter the value of n : 10
sum = 55

Example 3: Write a program to read the numbers until -1 is encountered. Also
count the negative, poitive, and zeros entered by the user.

Write a program to read the numbers until -1 is encountered. Also count the
negative, poitive, and zeros entered by the user.

negatives=0
positives=0
zeroes=0
print("Enter -1 to exit...")
while(1):
num=int(input("Enter any number : "))
if(num==-1):
break
if(num==0):
zeroes=zeroes+1
elif(num>0):
positives = positives+1l

else:
negatives = negatives+1l
print("Count of positive numbers entered
print("Count of negative numbers entered
print("Count of zeroes entered ", zeroes)

, positives)
, hegatives)

4.3.1 For Loop

= For loop provides a mechanism to repeat task until a particular condition
is True.

Syntax:

for loop_control_var in sequence:
Statement block

Figure: Flow chart for while loop

Specify the range of sequence

!

Is Loop control

variable in specified Statement Block 1

range

Statement Block 2

Example 1: Write program to print first 5 numbers using the range() in a for
loop

Write program to print first 5 numbers using the range() in a for loop
for i in range(1, 5):
print(i)

Example 2: Write program to print first 10 numbers using the range() in a for
loop using step value

Write program to print first 5 numbers using the range() in a for loop
for i in range(1, 10, 2):
print(i)

Example 3: Write a program using for loop to calculate the average of first n
natural numbers

Write a program using for loop to calculate the average of first n natural
numbers
n=int(input("Enter the value of n :"))
avg = 0.0
s =0
for i in range(1,n+1):
s=s+i
avg = s/i
print("The sum of first ",n,"numbers is",s)
print("The average of first",n,"natural numbers is",avg)

Output:
Enter the value of n :5

The sum of first 5 numbers is 15
The average of first 5 natural numbers is 3.0

4.4 NESTED LOOPS

= Anested loopis aloop inside a loop.
= The "inner loop" will be executed one time for each iteration of the "outer loop".

Example 1: Write a program to Print each adjective for every fruit.
adj - [Ilr\edll’ Ilbigll) lltastyll]
fruits = ["apple"”, "banana", "cherry"]

for x in adj:

for y in fruits:
print(x, y)

10

tasty banana
tasty cherry

Example 2
Pass 1- 1
Pass 2- 1
Pass 3- 1
Pass 4- 1
Pass 5- 1

for i in range(1,6):

print("Pass",i,"-",end=" ') # appends space instead of newline
for j in range(1,6):

print(j, end=" ") # appends space instead of newline
print()

4.5 THE BREAK STATEMENT

= The break statement is used to terminate the execution of the nearest enclosing loop in which it
appears.

11

Syantax:
for ...
while.. .. for... for ...
If condition: If condition: If condition:
break break break
Transfer of Transfer of Transfer of control
control out of control out of the out of the inner loop
while loop for loop

Examplel: Program to demonstrate the break statement.

fruits = ["apple", "banana", "cherry"]
for x in fruits:
if x == "banana":
break
print(x)

Output:

apple

Example 2: Write a program to print numbers 1 to 5 from the sequnce of ten
numbers

i=1
while i <= 10:
print(i, end =

) # appends space instead of newline

if i==5:
break
i=1i+1

print("\n Done")

12

4.6 THE CONTINUE STATEMENT

= The continue statement is used to stop the current iteration of the loop and continue with the next

one.

Syntax:

while . ..

If condition:
continue

A

for...

If condition:
continue

A

Transfer of
control out of
while loop

for ...

for ...

If condition:
continue

A

Transfer of
control out of the
for loop

Transfer of control
out of the inner loop

Example 1: Write a program to skip the iteration if the variable
continue with the next iteration:

for i in range(9):

if i ==
continue
print(i)

i is 3, but

13

Example 2: Write a program to print sequence of numbers 1 to 10 by excluding
number 5.

for i in range(1,11):
if(i==5):
continue
print(i, end=
print("\n Done")

) # appends space instead of newline

Output:
12346789 10

Done

4.7 THE PASS STATEMENT

= The pass statement acts as a placeholder and usually used when there is no need of
code but a statement is still required to make a code syntactically correct.

Write a program to check if the number is even we are doing nothing and if
it is odd then we are displaying the number.

for num in [20, 11, 9, 66, 4, 89, 44]:
if num%2 == 0:

pass
else:
print(num)

14

CHAPTER 4
FUNCTIONS

TOPIC 1: INTRODUCTION

= Function: A function is a block of organized and reusable program code that performs a single,
specific, and well defined task.

.......... def funcl():
.......... # function code

|

Syntax:
def function_name(variablel, variable2,..)
document string
statement block
return [expression]
Example 1: Write a function to display message “Hello from a function”
def my function():

print("Hello from a function™)
my_function()

Output:
Hello from a function

Example 2: Write a program that subtract two numbers using a function

Write a program that subtract two numbers using a function

def diff(x,y): # function to subtract two numbers
return x -y

a =20

b =10

operation = diff # function name assigned to a variable

print(operation(a,b)) # function called using variable name

Output:
19

Example 3: Write a function that displays a string repeatedly

Write a function that displays a string repeatedly
def func():
for i in range(4):
print("Hello World")
func() #function call

Hello World
Hello World

TOPIC 2: FUNCTION CALL

= Defining a function means specifying its name, parameters that are expected, and the set of
instructions.

Syntax:
function_name(variablel, variable2, ..)

2.1 Function Parameters

= Information can be passed into functions as arguments.

= Arguments are specified after the function name, inside the parentheses. You can add as many
arguments as you want, just separate them with a comma.

Example 1: Program to add two integers using functions

Program to add two integers using functions

def total(a,b):
result = a+b

print("Sum of ",a, "and" ,b, "=", result)
a=int(input("Enter the first number : "))
b=int(input("Enter the second number : "))

total(a,b) #function call with two arguments

Enter the first number :

Enter the second number :
Sum of 10 and 20 = 30

TOPIC 3: VARIABLE SCOPE AND LIFE TIME

Scope of the variable: Part of the program in which a variable is accessible is called its scope.
Lifetime of the variable: Duration for which the variable exits is called its life time.

LOCAL AND GLOBAL VARIABLE

= Global Variable: Global variable are those variables which are defined in the main body of the
program file.
= They are visible throughout the program file.

= Local Variable: A variable which is defined within a function is local to that function.

= Alocal variable can be accessed from the point of its definition until the end of the function in which
it is defined. It exists as long as the function is executing

= Function parameters behave like local variable in the function.

Example 1: Write a program to understand the difference between local and
global variables.

numl=10 # global variable
print("Global variable numl = ", numl)
def functionl(num2): # num2 is function parameter
print("In Function - Local Varible num2 =",num2)
num3= 30 # num3 is a local variable
print ("In Function - Local Variable num3 =",num3)
functionl1(20) # 20 is passed as an argument to the function
print("numl again =", numl) #global variable is being accessed
Error - local varible can't be used outside the function in which it is
defined

print ("num3 outide fuction =", num3)

Output:
Global variable numl = 10

In Function - Local Varible num2 = 20
In Function - Local Variable num3 = 30
numl again =

Example 2: Write to add two integers using functions with different
arguments.

def total(x,y):
result = x+y

print("Sum of ",x, "and" ,y, "=", result)
a=int(input("Enter the first number : "))
b=int(input("Enter the second number : "))

total(a,b) #function call with two arguments

Output:
Enter the first number : 10

Enter the second number : 12
Sum of 10 and 12 = 22

USING THE GLOBAL STATEMENT

= To define a variable defined inside a function as a global, you must use the global statement.
= This declares the local or the inner variable of the function to have module scope.

Example 1: Write a program to demonstrate the use of global statement

var = "Good"

def show():
global varl
varl="Morning"

print("In function var is - ", var)
show()
print("Outside function, varl is - ",varl) # accessible as it is global
variable

print("var is - ", var)

Output:
In function var is - Good

Outside function, varl is - Morning
var is - Good

Example 2: Program to demonstrate modifying a global variable

var = "Good"
def show():
global var
var = "Moring"
print("In Function var is -
show()
print("Outside Function var is - ",var)
var = "Fantastic"
print("Outside Function, after modification,var is -

, var)
", var)

Output:
In Function var is - Moring

Outside Function var is - Moring
Outside Function, after modification,var is - Fantastic

THE RETURN STATEMENT

The return statement is used for two things.
= Return avalue to the caller.
= Toend and exit a function and go back to its caller.

Examplel: Program demonstrate return statement.

def display(str):

print(str)
x = display("Hello World") # assignig return value to another variable
print(x)
print(display("Hello Again")) # print the value without assigning it to
another variable
It should be noted that in the output None is returned from the function

Output:
Hello World

None
Hello Again
None

Example 2: Program to demonstrate function which returns an integer to the
caller.

def cube(x):
return(x*x*x)
num=10
result = cube(num)
print("Cube of",num, "=", result)

Output:
Cube of 10 = 1000

MORE ON DEFINING FUNCTIONS

A function can be defined with
Required Arguments

Keyword Arguments

Default Arguments
Varible-length Arguments

PN

Required Arguments

® |n the required argument, the arguments are passed to a function in correct positional order. Also,
the number of arguments in the function call should exactly match with the number of arguments
specified in the function definition.

Examplel: Program to demonstrate function with required argument
def display(str):
print(str)
str="Hello"
display(str)

Output:
Hello

Keyword Arguments

= When we call a function with some value, the values are assigned to the arguments based on their
position.

= Python also allows functions to be called using keyword arguments in which the order (or position)
of the arguments can be changed.

= The values are not assigned to arguments according to their position but based on their name.

Example 1: Write a program to demonstrate the use of keyword arguments.

def display(str,int_x,float y):

print("The string is :", str)

print("The integer value is :",int_x)

print("The floating position value is : ",float_y)
display(float_y=56789.045, str="Hello",int x=1234)

Output:
The string is : Hello

The integer value is : 1234
The floating position value is : 56789.045

Default Arguments

= Python allows users to specify function arguments that can have default values.
= The default value to an argument is provided by using the assignment operator (=).
= Users can specify a default value for one or more arguments.

Example 1: Write a program to demonstrate the use of default arguments.

def display(name, course = "M.C.A"):

print("Name : " + name)

print("Course : " + course)
display(course = "M.Sc", name = "Charishma") # Keyword Arguments
display(name = "Abhiram") # Default Argument

Output:
Name : Charishma

Course : M.Sc
Name : Abhiram
Course : M.C.A

Varible-length Arguments

= |n some situations, it is not known in advance how many arguments will be passed to a function. In
such cases, Python allows programmers to make function calls with arbitrary number of arguments

= When we use arbitrary arguments or variable-length arguments, then the function definition uses
an asterisk (*) before parameter name.

Syntax:

def functionaname([argl, arg2, . . .] *var_args_tuple):
function statements
return [expression]

Example 1: Program to demonstrate the use of variable-length arguments.

def func(name, *fav_subjects):
print("\n",name, " likes to read ", end=" ")
for subjects in fav_subjects:
print(subjects, end=" ")
func("Bindu", "CO", "DBMS")
func("Raju", "DMS", "Python", "DS", "SE")
func("Hemanth")

Output:
Bindu 1likes to read CO DBMS

Raju likes to read DMS Python DS SE
Hemanth likes to read

LAMBDA FUNCTIONS (OR) ANONYMOUS FUNCTIONS

Lambda or anonymous functions are so called because they are not declared as other functions
using the def keyword.

Lambda functions are throw-away functions, i.e. they just needed where they have been created
and can be used anywhere a function is required

Example 1: Write a program that adds two numbers using the syntax of lambda
function.

sum = lambda X,y:Xx+y
print("Sum =", sum(3,5))

Output:
Sum = 8

Example 2: Write a program to find smaller of two numbers using lambda
function.

def small(a,b): # a regular function that returns smaller value
if(a<b):
return a
else:
return b
sum = lambda x,y:x+y # lambda function to add two numbers
diff = lambda x,y:x-y # lambda function to subtract two numbers
Pass lambda function as arguments to the regular function
print("Smaller of two numbers = ", small(sum(-3,-2),diff(-1,2)))

Output:
Smaller of two numbers = -5

MULTILINE DOCUMENT STRINGS

= You can assign a multiline string to a variable by using three quotes.

= Docstrings (document strings) serve the same purpose as of comments, as they are designed to
explain the code.

Example 1: Write a program to demonstrate multiline document string.
a = """Dear students

Welcome to Deparment of Computer Science,

P.B.Siddhartha College of Arts & Science,

Vijayawada-10, AP, INDIA."""

print(a)

Output:
Welcome to Deparment of Computer Science,

P.B.Siddhartha College of Arts & Science,
Vijayawada-10, AP, INDIA.

Example 2: Write a program to demonstrate multiline document string.
a = '''Dear students

Welcome to Deparment of Computer Science,

P.B.Siddhartha College of Arts & Science,

Vijayawada-10, AP, INDIA.'''

print(a)

Output:
Welcome to Deparment of Computer Science,

P.B.Siddhartha College of Arts & Science,
Vijayawada-10, AP, INDIA.

RECURSIVE FUNCTIONS

= Recursive Function: A function that calls itself

Syntax:
def recurse(): 3
| recursive
recurse() - | call
recurse() -

Example 1: Write a program to calculate the factorial of number recursively.

def fact(n):
if (n==1 or n==0):
return 1
else:
return n*fact(n-1)
n = int(input("Enter the value of n : "))
print("The factorial of",n, "is", fact(n))

Output:

Enter the value of n : 4
The factorial of 4 is 24

Example 2: Write a program to calculate GCD using the recursive functions.

def GCD(x,y):
rem = X %y
if (rem == 09):
return y
else:
return GCD(y, rem)
n=int(input("Enter the first number : "))
m=int(input("Enter the second number : "))
print("The GCD of numbers is", GCD(n,m))

Output:
Enter the first number : 62

Enter the second number : 8
The GCD of numbers is 2

Working:
Assume a = 62 and b = 8
GCD(62, 8)

rem = 62 % 8 = 6

GCD(8 % 6)
rem =8 % 6 = 2
GCD(6, 2)
rem =6%2 =20
return 2
return 2
return 2

MODULES

= Module: Modules are pre-written pieces of codes that are used to perform common tasks.
Create & use a Module

= To create a module just save the code you want in a file with the file extension . py

10

Examplel: Write a program to create and use file f1 comprises of message
“Hello this is TSR KIRAN”

Creating fl.py:
def my_ function():
print("Hello this is TSR KIRAN")

Creating f2.py:
from f1 import *
my_function()

Example2: Write a program to import a module that comprises of functions add
and subtract to perform addition & subtraction operations.

Creating p3.py:

A simple module, p3.py
def add(x, y):
return (x+y)
def subtract(x, y):
return (x-y)

Creating p4.py:

importing module p3.py
from p3 import *
print(add(10,2))
print(subtract(10,2))

PACKAGES

= Package: A package is a hierarchical file directory structure that has modules and other packages
within it.

= Every package in Python is a directory which must have a special file called _init_.py

= This file may not even have a single line of code. It is simply added to indicate that this directory is
not an ordinary directory and contains a Python package.

= For example, to create a package called MyPackage, create a directory called MyPackage having the
module MyModule and the _init_.py file. Now, to use MyModule in a program, you must first
import it. This can be done in two ways.

import MyPackage.MyModule

or
from MyPackage import MyModule

11

Example 1: Write a program that prints absolute value, square root, and cube of a number.

import math
def cube(x):
return x**3

a=-100

print("a= ",a)

a=abs(a)

print("abs(a) = ", a)

print("Square Root of ",a, " = ", math.sqrt(a))
print("Cube of ",a, " =", cube(a))

Output:
a= -100

abs(a) = 100
Square Root of 100 = 10.0
Cube of 100 = 1000000

Example 2: Write a program to gnerate 10 random numbers between 1 to 100

import random

for i in range(10):
value = random.randint(1, 100)
print(value, end=" ")

Output:
73 92 65 25 16 83 78 84 76 7

Example 3: Write a program to display the date and time using the Time module.
import time

localtime = time.asctime(time.localtime(time.time()))
print("Local current time :", localtime)

Output:

Local current time : Sat Jun 5 00:13:04 2021

Example 4: Program that prints the clendar of a particular month.
import calendar
print(calendar.month(2017, 1))

Output:
January 2017
Mo Tu We Th Fr Sa Su
1

2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

12

CHAPTER 5
CLASSES & OBIJECTS

5.1 CLASSES AND OBIJECTE

5.1.1 CLASS

= Aclassis a user-defined blueprint or prototype from which objects are created.

= C(Classes provide a means of bundling data and functionality together.

= (Class creates a user-defined data structure, which holds its own data members and
member functions, which can be accessed and used by creating an instance of that class.

Some points on Python class:

Classes are created by keyword class.

Attributes are the variables that belong to a class.

Attributes are always public and can be accessed using the dot (.) operator.
Eg.: Myclass.Myattribute

(ST S I

Class Definition Syntax:
class ClassName:
Statement-1

Statement-N
Examplel: Write a program to demonstrate defining a class.

class Dog:
pass

Note:

= The pass statement is used as a placeholder for future code.

= When the pass statement is executed, nothing happens, but you avoid getting an error
when empty code is not allowed.

5.1.2 OBJECT

= Object: An Object is an instance of a Class.

An object consists of

1. State: It is represented by the attributes of an object. It also reflects the properties of an
object.

2. Behavior: It is represented by the methods of an object. It also reflects the response of an
object to other objects.

3. Identity: It gives a unique name to an object and enables one object to interact with other
objects.

Eample 1: Write a program to access class variable using class object.

class ABC:
var = 10 # class variable
obj = ABC()
print(obj.var) # class variable is accessed using class object

Output:
10

Example 2: Write a python program to demonstrate instantiating a
class.

class Dog:
A simple class attribute
attrl = "mammal”
attr2 = "dog"

A sample method

def fun(self):
print("I'm a", self.attrl)
print("I'm a", self.attr2)

Driver code
Object instantiation
Shadow = Dog()

Accessing class attributes and method through objects
print(Shadow.attrl)
Shadow. fun()

Output:
NETIERE

I'm a mammal
I'm a dog

5.1.3 THE SELF

= The self keyword is used to represent an instance (object) of the given class.
= By using the “self” keyword we can access the attributes and methods of the class in
python. It binds the attributes with the given arguments.

Example 1: Program to access class membership using the class object.

class ABC():
var=10
def display(self):
print("In class method . . .")
obj = ABC()
print (obj.var)
obj.display()

In class method .

5.1.4 THE _init_() METHOD (THE CLASS CONSTRUCTOR)

= The _init_() method is automatically executed when an object of a class is created.
= The init_() assign values to object properties, or other operations that are necessary
to do when the object is being created.

Example 1: Write a program illustrating the use of _init_ () method.

class ABC():
def _ init (self,val):

print("In class method . . .")
self.val = val
print("The value is : ", val)

obj=ABC(10)

Output:

In class method .
The value is : 10

Example 2: Write a program to display the attributes name, age by
using the _init_() method.

class Person:
def init_ (self, name, age):
self.name = name
self.age = age

pl = Person("Ravi Kiran", 45)

print(pl.name)
print(pl.age)

Output:

Ravi Kiran
45

5.1.5 CLASS VARIABLES & OBJECT VARIABLES

= (Class Variable: Variable owned by the class is called class variable.
= QObject Variable: Variable owned by the object is called object variable.

Example 1: Write a program to differentiate between class and object
variable.

Program to differentiate between class and object variable.
class ABC():
class _var = @ # class variable
def __init_ (self,object_var):
ABC.class_var +=1
self.object_var = object_var # object variable
print("The Object value is : ",object _var)
print("The variable of the class variable is
",ABC.class _var)

objl = ABC(10)
obj2 = ABC(20)
obj3 = ABC(30)

Output:
Object value is : 10
variable of the class variable is

Object value is : 20
variable of the class variable is
Object value is : 30
variable of the class variable is

Program 2: Write a python program to show that the variables with a
value assigned in class declaration, are class variables.

Python program to show that the variables with a value
assigned in class declaration, are class variables

Class for Computer Science Student
class CSStudent:

stream = 'cse' # Class Variable

def __init__ (self,name,roll):
self.name = name # Instance Variable
self.roll = roll # Instance Variable

Objects of CSStudent class
a = CSStudent('Laksmi', 1)
b = CSStudent('Raju', 2)

print(a.stream) # prints "cse
print(b.stream) # prints "cse"
print(a.name) # prints "lakshmi"
print(b.name) # prints "Raju"
print(a.roll) # prints "1"
print(b.roll) # prints "2"

Class variables can be accessed using class
name also

print(CSStudent.stream) # prints "cse"

Now if we change the stream for just a it won't be changed for
b

a.stream = 'ece’

print(a.stream) # prints 'ece’

print(b.stream) # prints ‘'cse

To change the stream for all instances of the class we can

change it
directly from the class
CSStudent.stream = 'mech’

print(a.stream) # prints 'mech’
print(b.stream) # prints 'mech’

CHAPTER 6

INHERITANCE
6.1 INTRODUCTION

Inheritance: The capability applying the properties of base class to child class.

The benefits of inheritance are:

1. It represents real-world relationships well.

2. It provides reusability of a code. We don’t have to write the same code again and again.
Also, it allows us to add more features to a class without modifying it.

3. Itistransitive in nature, which means that if class B inherits from another class A, then all
the subclasses of B would automatically inherit from class A.

Person Generalized Class

v
v v

Doctor Patient Top-down Approach

|
v v

Dentist Surgeon Specialized Class

Example 1: Program to demonstrate the use of inheritance.

parent class
class Person:

init__ is known as the constructor
def _init_ (self, name, idnumber):
self.name = name
self.idnumber = idnumber
def display(self):
print(self.name)
print(self.idnumber)

child class
class Employee(Person):
def _init_ (self, name, idnumber, salary, post):
self.salary = salary
self.post = post

invoking the __init__ of the parent class
Person. init_ (self, name, idnumber)

creation of an object variable or an instance
a = Employee("TSR Kiran",109, 600000, "HoD")

calling a function of the class Person using its instance
a.display()

Output:

TSR Kiran
109

6.2 USE THE SUPER() FUNCTION

= Python also has a super() function that will make the child class inherit all the methods and
properties from its parent.

= By using the super() function, you do not have to use the name of the parent element, it will
automatically inherit the methods and properties from its parent.

Examplel: Program to demonstrate the the use of super() function.
class Person:
def __init_ (self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person):
def _init_ (self, fname, lname, year):
super().__init__ (fname, lname)
self.graduationyear = year

def welcome(self):
print("Welcome", self.firstname, self.lastname, "to the class of",
self.graduationyear)

x = Student("Venkat", "Pola", 2021)
x.welcome()

Output:
Welcome Venkat Pola to the class of 2021

6.2 POLYMORPHISM, FUNCTION OVERLOADING AND METHOD OVERRIDING

6.2.1 POLYMORPHISM

= Polymorphism: Polymorphism is taken from the Greek words Poly (many) and morphism
(forms). It means that the same function name can be used for different types. This makes

programming more intuitive and easier.

Example 1: Write a python program to demonstrate in-built poly-morphic
functions.

len() being used for a string
print(len("geeks"))

len() being used for a list
print(len([10, 20, 30]))

Example2: Write a simple Python function to demonstrate polymorphism.

def add(x, y, z = 0):
return X + y + z

Driver code
print(add(2, 3))
print(add(2, 3, 4))

6.2.2 FUNCTION OVER LOADING

= Function overloading: Function overloading is the ability to have multiple functions with the
same name but with different signatures/implementations.

= When anoverloaded function is called, the runtime first evaluates the arguments /
parameters passed to the function call and judging by this invokes the corresponding
implementation.

Example 1: Program to demonstrate polymorphism using function
overloading.

from multipledispatch import dispatch

#passing one parameter

def product(first,second):
result = first*second
print(result);

#passing two parameters

def product(first,second,third):
result = first * second * third
print(result)

#you can also pass data type of any value as per requirement

def product(first,second,third):

result = first * second * third
print(result);

#calling product method with 2 arguments
product(2,3,2) #this will give output of 12
product(2.2,3.4,2.3) # this will give output of 17.204

Example 2: Polymorphism using Function Overloading.

def add(datatype, *args):

if datatype is int

initialize answer as ©

if datatype =='int':
answer = 0

if datatype is str
initialize answer as
if datatype =='str':

answer =

Traverse through the arguments
for x in args:

This will do addition if the

arguments are int. Or concatenation
if the arguments are str

answer = answer + X

print(answer)

Integer
add('int', 5, 6)

String
add('str', 'Hi ', 'TSR Kiran')

Hi TSR Kiran

6.2.3 METHOD OVERRIDING

= Method Overriding: Method overriding is ability allows a subclass or child class to provide
a specific implementation of a method that is already provided by one of its super classes
or parent classes.

= When a method in a subclass has the same name, same parameters or signature and
same return type (or sub-type) as a method in its super-class, then the method in the
subclass is said to override the method in the super-class.

-’ | H f 1t

I
axtands

i

Examplel: Python program to demonstrate method overriding.

Defining parent class
class Parent():
Constructor
def _init_ (self):
self.value = "Inside Parent”

Parent's show method
def show(self):
print(self.value)

Defining child class
class Child(Parent):
Constructor
def __init_ (self):
self.value = "Inside Child"

Child's show method
def show(self):
print(self.value)

Driver's code
objl = Parent()
obj2 Child()

objl.show()
obj2.show()

Output:

Inside Parent
Inside Child

Example2: Python program to demonstrate method overriding.

class Rectangle():
def _init_ (self,length,breadth):
self.length = length
self.breadth = breadth
def getArea(self):
print (self.length*self.breadth," is area of rectangle")
class Square(Rectangle):
def __init_ (self,side):
self.side = side
Rectangle. init_ (self,side,side)
def getArea(self):
print (self.side*self.side," is area of square")

-
I

Rectangle(3,5)
Square(10)

0n
]

r.getArea()
s.getArea()

Output:

15 is area of rectangle
100 is area of square

6.3 TYPES OF INHERITANCE
6.3.1 MULTIPLE INHERITANCE

= Multiple Inheritance: When a class is derived from more than one base class it is
called multiple Inheritance.

Example: Program to demonstrate multiple inheritance.

Defining parent class 1
class Parentl():
Parent's show method
def show(self):
print("Inside Parentl")

Defining Parent class 2
class Parent2():
Parent's show method
def display(self):
print("Inside Parent2")

Defining child class
class Child(Parentl, Parent2):
Child's show method
def show(self):
print("Inside Child")

Driver's code
obj = Child()
obj.show()
obj.display()

Output:

Inside Child
Inside Parent2

6.3.3 MULTILEVEL INHERITANCE

= Multilevel Inheritance: Multilevel inheritance refers to a mechanism in OO technology
where one can inherit from a derived class, thereby making this derived class as the base
class for the new class.

Base Class

Intermediatory
Class

Derived Class

Multilevel Inheritance

Examplel: Python program to demonstrate multilevel inheritance.

class Parent():
Parent's show method
def display(self):
print("Inside Parent")

Inherited or Sub class (Note Parent in bracket)
class Child(Parent):
Child's show method
def show(self):
print("Inside Child")

Inherited or Sub class (Note Child in bracket)
class GrandChild(Child):
Child's show method
def show(self):
print("Inside GrandChild")

Driver code
g = GrandChild()
g.show()

g.display()

Output:

Inside GrandChild
Inside Parent

6.3.4 MULTUPATH INHERITANCE (OR) HYBRID INHERITANCE

= Multipath Inheritance: When a class is derived from two or more classes which are derived
from the same base class then such type of inheritance is called multipath inheritance. Here
class 'D' derived from classes 'B' and 'C', which are derived from same base class 'A'.

Example 1: Program to demonstrate multipath inheritance (or) hybrid
inheritance.

Program to demonstrate multipath inheritance (or) hybrid inheritance

class School:
def funcl(self):
print("This function is in school.")

class Studentl(School):
def func2(self):
print("This function is in student 1. ")

class Student2(School):
def func3(self):
print("This function is in student 2.")

class Student3(Studentl, Student2):
def func4(self):
print("This function is in student 3.")

10

Driver's code
object = Student3()
object.func2()
object.func3()

Output:

This function is in student 1.
This function is in student 2.

6.3.5 HIERARCHICAL INHERITANCE

= Hierarchical Inheritance: When more than one derived classes are created from a single
base this type of inheritance is called hierarchical inheritance. In this program, we have a
parent (base) class and two child (derived) classes.

Higrarchical Inheritance

Example 1: Python program to

Base class
class Parent:
def funcl(self):
print("This function

Derived classl
class Childi(Parent):
def func2(self):
print("This function

Derivied class2
class Child2(Parent):
def func3(self):
print("This function

demonstrate Hierarchical inheritance.

is in parent class.")

is in child 1.")

is in child 2.")

11

Driver's code
objectl = Childl()
object2 = Child2()
objectl.funcl()
objectl.func2()
object2.funcl()
object2.func3()

Output:
This function is in parent class.
This function is in child 1.

This function is in parent class.
This function is in child 2.

6.4 ABSTRACT CLASS

= Abstract Class: Abstract classes are classes that contain one or more abstract methods. An
abstract method is a method that is declared, but contains no implementation.

= Abstract classes cannot be instantiated, and require subclasses to provide implementations
for the abstract methods.

Example 1: Program to illustrate the concept of abstract class.

class Fruit:
def taste(self):
raise NotImplementedError()
def rich_in(self):
raise NotImplementedError()
def color(self):
raise NotImplementedError()

class Mango(Fruit):
def taste(self):
return "Sweet"
def rich_in(self):
return "Vitamin A"
def color(self):
return "Yellow"

class Orange(Fruit):
def taste(self):
return "Sour"
def rich_in(self):
return "Vitamin C"

12

def color(self):
return "Orange"
Alphanso = Mango()
print(Alphanso.taste(), Alphanso.rich_in(), Alphanso.color())
Org = Orange()
print(Org.taste(), Org.rich_in(), Org.color())

Output:
Sweet Vitamin A Yellow

Sour Vitamin C Orange

13

CHAP 7
OPERATOR OVERLOADING

= QOperator Overloading: The feature that allows the same operator to have different meaning
according to the context is called operator overloading.

Example 1: Python Program illustrate how to overload an binary +
operator.

class A:
def init_ (self, a):
self.a = a

adding two objects
def _add_ (self, o):
return self.a + o.a

obl = A(1)
ob2 = A(2)
ob3 = A("RAVI")
ob4 = A("KIRAN")

print(obl + ob2)
print(ob3 + ob4)

Output:
3

RAVIKIRAN

Example 2: Program to overload the + operator on a complex object.

class Complex:
def _init_ (self):
self.real = 0
self.imag = ©
def setValue(self, real, imag):
self.real = real
self.imag = imag
def _add_ (self, C):
Temp = Complex()
Temp.real = self.real + C.real
Temp.imag = self.imag + C.imag
return Temp
def display(self):
print("(", self.real,
C1l = Complex()
Cl.setValue(1,2)
C2 = Complex()
C2.setValue(3,4)
C3 = Complex()
C3 =C1 + C2
print ("RESULT = ")
C3.display()

+ ", self.imag, "i)")

CHAPTER 8
ERRORS AND EXCEPTION HANDLING

8.1 INTRODUCTION TO ERRORS AND EXCEPTIONS

* Error: Mistake in a program.

* The programs that we write may behave abnormally or unexpectedly because of some errors and
exceptions.

» Basically, there are syntax errors and logic errors.

* Syntax error: A syntax error is an error in the source code of a program.

Example 1: Program to demonstrate syntax error.

initialize the amount variable

amount = 10000

check that You are eligible to
purchase Dsa Self Paced or not
if(amount>2999)
print("You are eligible to purchase Dsa Self Paced")
Output:

File "<ipython-input-1-417b442f6752>", line 6
if(amount>2999)

A

SyntaxError: invalid syntax

* Logic error: Logic errors occur when there is a fault in the logic or structure of the problem.

8.2 EXCEPTIONS

= Exception: An exception is an event, which occurs during the execution of a program that disrupts
the normal flow of the program's instructions.
8.2.1 Handling Exceptions
= An exception can be handled by using try block and except block.
Syntax:
try:
statements
except ExceptionName:

statements

* The try statement works as follows
Step 1: First, the try block is executed.
Step2 a: If no exception occurs, the except block is skipped.
Step 2 b: If exception occurs, during the execution of any statement in the try block, then
i. Rest of the statement in the try block are skipped.
ii. If the exception type matches the exception named after the except keyword, the except block is
executed and then execution continues after the try statement.
iii. If the exception occurs which do not match the named in the except block, then it is passed on to
outer try block (in case of nested try blocks). If no exception handler is found in the program, then it is
an unhandled exception and the program is terminated with an error message.

Flowchart for Case iii under Step 2b for try statement

Example 1: Program to display divide by zero exception.

initialize the amount variable
marks = 10000

perform division with ©
a = marks / ©
print(a)

Output:

ZeroDivisionError Traceback (most recent call last)
<ipython-input-2-9ba2de7eb@2e> in <module>

)

6 # perform division with @
---->7 a =marks / @

8 print(a)

ZeroDivisionError: division by zero

Example 2: Program to handle divide by zero exception.

num = int(input("Enter the numerator:"))
deno = int(input("Enter the denominator:"))
try:

quo = int(num / deno)
print("Quotient:", quo)

except ZeroDivisionError:
print("Denominator cannot be zero")

Output:
Enter the numerator:10

Enter the denominator:0
Denominator cannot be zero

Example 2: Program to handle multiple errors with one except statement.

try :

=3

if a< 4 :

throws ZeroDivisionError for a = 3

b = a/(a-3)

throws NameError if a >= 4
print ("Value of b = ", b)

note that braces () are necessary here for multiple exceptions
except(ZeroDivisionError, NameError):

print ("\nError Occurred and Handled")

Output:
Error Occurred and Handled

8.3 TYPES OF EXCEPTIONS VVIMP

Types of Exceptions

S.No Exception Name Description
1 Exception Base class for all exceptions
2 StopIteration Raised when the next () method of an iterator does not point to any
object.
3 SystemExit Raised by the sys.exit() function
4 StandardError Base class for all built-in exceptions except StopIteration and
SystemExit.
5 ArithmeticError Base class for all errors that occur for numeric calculation.
6 OverflowError Raised when a calculation exceeds maximum 1limit for a
numeric type.
7 FloatingPointError Raised when a floating point calculation fails.
8 ZeroDivisionError Raised when division or modulo by zero takes place for all
numeric types.
9 AssertionError Raised in case of failure of the Assert statement.
10 | AttributeError Raised in case of failure of attribute reference or
assignment.
11 | EOFError Raised when there is no input from either the raw_input() or
input() function and the end of file is reached.
12 ImportError Raised when an import statement fails

13 KeyboardInterrupt

Raised when the user interrupts program execution, usually
by pressing Ctrl+c.

14 LookupError

Base class for all lookup errors.

15 IndexError

Raised when an index is not found in a sequence.

16 KeyError

Raised when the specified key is not found in the dictionary.

17 NameError

Raised when an identifier is not found in the local or global
namespace.

18 UnboundLocalError

Raised when trying to access a local variable in a function or
method but no value has been assigned to it.

19 EnvironmentError

Base class for all exceptions that occur outside the Python
environment.

20 IOError

Raised when an input/ output operation fails, such as the
print statement or the open() function when trying to open a file that
does not exist.

21 SyntaxError

Raised when there is an error in Python syntax.

22 IndentationError

Raised when indentation is not specified properly.

23 SystemError

Raised when the interpreter finds an internal problem, but when this
error is encountered the Python interpreter does not exit.

24 | SystemExit

Raised when Python interpreter is quit by using the sys.exit() function.
If not handled in the code, causes the interpreter to exit

25 TypeError

Raised when an operation or function is attempted that is invalid
for the specified data type.

26 ValueError

Raised when the built-in function for a data type has the valid type of
arguments, but the arguments have invalid values specified.

27 RuntimeError

Raised when a generated error does not fall into any category.

28 NotImplementedError

Raised when an abstract method that needs to be implemented in an
inherited class is not actually implemented.

8.4 MULTIPLE EXCEPT BLOCKS

= Python allows multiple except blocks in a single try block. The block which matches with
the exception generated will get executed.

= A try block can be associated with more than one except block to specify handlers for
different exceptions. However, only one handler will be executed.

Syntax:
try:

Operation are done in this block

except Exception 1:

If there is Exceptionl, then execute this block.
except Exception 2:

If there is Exceptionl, then execute this block.

else:
If there is no exception then execute this block.

Example 1: Program with multiple except blocks.

try:
num = int(input("Enter the number : "))
print(num**2)
except (KeyboardInterrupt):
print("You have entered a character..... Program Terminating..... ")
except (ValueError):
print("Please check before you enter..... Program
Terminating..... ")

print("Bye")

Output:
Enter the number : abc

Please check before you enter
Bye

8.5 MULTIPLE EXCEPTIONS IN A SINGLE BLOCK

= An except clause many have multiple exceptions as a parenthesized tuple. So whatever
exception is raised, out of three exceptions specified, the same except block will be
executed.

Example 1: Program having an except clause handling multiple
exceptions simultaneously.
try:
num = int(input("Enter the number : "))
print(num**2)
except (KeyboardInterrupt, ValueError, TypeError):

print("Please check before you enter..... Program
Terminating..... ")
print("Bye")

Output:
Enter the number : abc

Please check before you enter
Bye

8.6 EXCEPT BLOCK WITHOUT EXCEPTION

An except block can be specified without mentioning any exception.
Syntax:

try:
Write the operation here

except:
If there is any exception, then execute this block.

else:
If there is no exception then execute this block.

Examplel: Program to demonstarte the use of except: block

try:
file = pen (Filel.txt)
str = f.readline()
print(str)
except IOError:
print("Error occured during Input..... Program Terminating..... ")
except ValueError:
print("Could not convert data to an integer.")
except:
print("Unexpected error..... Program Terminating..... ")

Output:

Unexpected error

8.7 THE else CLAUSE

= The try...except block can optionally have an else clause, which, when present, must
follow all except blocks.

* The statements in the else block is executed only if the try clause does not raise exception.

Examplel: Program to demonstrate the use of else statement in exceptions.
VVIMP

try:
num = int(input("Enter a number: "))
assert num % 2 == @ # if condition returns True, then nothing happens
with assert statement
except:
print(“Not an even number!")
else:
reciprocal = 1/num
print(reciprocal)

Output:
Enter a number: 1
Not an even number!

Output:
Enter a number: 4
0.25

Example 2: Python to demonstrate try...else blocks in exception handling.

def divide(x, y):
try:
Floor Division : Gives only Fractional Part as Answer
result = x // y
except ZeroDivisionError:
print("Sorry ! You are dividing by zero ")
else:
print("Yeah ! Your answer is :

, result)

Look at parameters and note the working of Program
divide(3, 2)
divide(3, 0)

Output:

Yeah ! Your answer is : 1
Sorry ! You are dividing by zero

8.8 THE finally BLOCK

* The try block has another optional block called finally which is used to define clean-up actions that
must be executed under all circumstances.

Syntax:
try:
Some Code...
except:
Optional block
Handling of exception (if required)
else:
Execute if no exception
finally:
Some code ...(always executed)

Try: This block will test the excepted error to occur.

Except: Here you can handle the error.

Else: If there is no exception then this block will be executed.

Finally: Finally block always gets executed either exception is generated or not.

Examplel: Simple program to demonstrate the use of try...catch...finally
block.

a = 10

b=2

try:
c = int(a / b)
print(c)

except ZeroDivisionError as error:
print(error)

finally:

print('Finishing up.")

Output:

5
Finishing up.

Example2: Simple program to demonstrate the use of try...catch...finally
block. VVIMP

a = int(input("Enter first number: "))
b = int(input("Enter second number: "))
try:
c = int(a / b)
print(c)
except ZeroDivisionError as error:
print(error)
finally:

print('Finishing up."')

Output:
Enter first number: 10

Enter second number: ©
division by zero
Finishing up.

8.9 USER DEFINED EXCEPTIONS

* Programmers may name their own exceptions by creating a new exception class.

= Exceptions need to be derived from the Exception class, either directly or indirectly
Although not mandatory, most of the exceptions are named as names that end
in “Error” similar to naming of the standard exceptions in python.

Example: Demonstration of user defined exception. VVIMP

class Error(Exception):
"""Base class for other exceptions
pass

class ValueTooSmallError(Error):
"""Raised when the input value is too
pass

class ValueTooLargeError(Error):
"""Raised when the input value is too
pass

you need to guess this number
number = 10

user guesses a number until he/she gets
while True:
try:

i_num = int(input("Enter a number:

if i_num < number:
raise ValueTooSmallError
elif i_num > number:
raise ValueTooLargeError
break
except ValueTooSmallError:

Small“ nn

large

it right

"))

print("This value is too small, try again!")

print()

10

except ValueToolLargeError:
print("This value is too large, try again!")
print()

print("Congratulations! You guessed it correctly.")

Output:
Enter a number: 12
This value is too large, try again!

Enter a number: 4
This value is too small, try again!

Enter a number: 10
Congratulations! You guessed it correctly.

11

CHAPTER 8
REGULAR EXPRESSION

= A RegEx, or Regular Expression, is a sequence of characters that forms a search pattern.
= RegEx can be used to check if a string contains the specified search pattern.

Examplel: Program to check if the string starts with "The" and ends with "Spain".

import re
#Check if the string starts with "The" and ends with "Spain":
txt = "The rain in Spain”
x = re.search("~The.*Spain$", txt)
if x:
print("YES! We have a match!")
else:

print("No match")

Output:
ES! We have a match!

8.1 RegEx FUNCTIONS

= The re module offers a set of functions that allows us to search a string for a match.

Function Description

findall | Returns a list containing all matches

search Returns a Match object if there is a match anywhere in the
string

split Returns a list where the string has been split at each match

sub Replaces one or many matches with a string

8.1.1 findall()
= The findall function returns a list containing all matches.
Examplel: Program to demonstrate findall function.

import re

#Return a list containing every occurrence of "ai":
txt = "The rain in Spain"

X = re.findall("ai", txt)

print(x)

= The list contains the matches in the order they are found.
= |f no matches are found, an empty list is returned.

Example2: Program to demonstrate No match in regular expression.

import re
txt = "The rain in Spain"
#Check if "Portugal" is in the string:
x = re.findall("Portugal”, txt)
print(x)
if (x):
print("Yes, there is at least one match!")
else:
print("No match")

8.1.2 Search

» The search() function searches the string for a match, and returns a Match object if there is a match.
= |f there is more than one match, only the first occurrence of the match will be returned.

Examplel: Program to find first white space character located in position of a string.

import re

txt = "The rain in Spain”

X = re.search("\s", txt) # \s is white space character

print("The first white-space character is located in position:", x.start())

Output: The first white-space character is located in position: 3

8.1.3 Split

= The split() function returns a list where the string has been split at each match.

Example 1: Program to demonstrate split the string at every white space character.

import re

#Split the string at every white-space character:

txt = "The rain in Spain”

X = re.split("\s", txt) # \s is white space character
print(x)

Output Character:

['The', 'rain', 'in'

'Spain']

)

= You can control the number of occurrences by specifying the maxsplit parameter.
Example 2: Program to demonstrate to split the string at the first white space character.

import re

#Split the string at the first white-space character:

txt = "The rain in Spain"
x = re.split("\s", txt, 1) # \s is white space character
print(x)

‘rain in Spain']
8.1.4 sub()
» The sub() function replaces the matches with the text of your choice.

Example 1: Program to replace all white space characters with the digit 9.

import re

#Replace all white-space characters with the digit "9":
txt = "The rain in Spain"

X = re.sub("\s", "9", txt) # \s is white space character
print(x)

Output:
The9rain9in9Spain

= You can control the number of replacements by specifying the count parameter.

Example 2: Program to replace the first two occurrences of a white-space character with the digit 9.

import re

txt = "The rain in Spain”

X = re.sub("\s", "9", txt, 2) # \s is white space character
print(x)

Output:
The9rain9in Spain

8.2 METACHARACTERS

= Metacharacters are characters with a special meaning.

Character Description Example
[] A set of characters "[a-m]"
\ Signals a special sequence (can also be used to | "\d"

escape special characters)

. Any character (except newline character) "he..o"
n Starts with "“hello"
$ Ends with "world$"
* Zero or more occurrences "aix*"
+ One or more occurrences "aix+"
{} Exactly the specified number of occurrences "al{2}"
| Exactly specify one or two strings falls|stays

Example 1: Python program to match string using metacharacter []

import re
txt = "The rain in Spain"
#Check if the string starts with "The":
x = re.findall("\AThe", txt)
print(x)
if x:
print("Yes, there is a match!")
else:
print("No match")

Output:

['The']
Yes, there is a match!

Example 2: Program to find digits in character using metacharacter \

import re

txt = "That will be 59 dollars"
#Find all digit characters

x = re.findall("\d", txt)
print(x)

Output:
['5', 9]

Example 3: Program for sequence that starts with "he", followed by two (any) characters using metacharacter

import re

txt = "hello world"

#Search for a sequence that starts with "he", followed by two (any) characters, and an "o":
X = re.findall("he..o", txt)

print(x)

Output:
['hello']
Example 4: Program to check if the string starts with 'hello' using metacharacter *

import re
txt = "hello world"
#Check if the string starts with 'hello':
x = re.findall("~hello", txt)
if x:
print("Yes, the string starts with 'hello'")
else:
print("No match™)

Output:
Yes, the string starts with 'hello’

Example 5: Program to check the string ends with 'world' using metacharacter §

import re
txt = "hello world"
#Check if the string ends with 'world':
x = re.findall("world$", txt)
if x:
print("Yes, the string ends with 'world'")
else:
print("No match")

Output:

Yes, the string ends with 'world'

Example 6: Program to check the string contains "ai" followed by © or more "x" characters
import re
txt = "The rain in Spain falls mainly in the plain!"
#Check if the string contains "ai" followed by © or more "x" characters:
x = re.findall("aix*", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

Output:

[lail, Iail-’ Iail) Iail]
Yes, there is at least one match!

Example 7: Program to check the string contains "ai" followed by 1 or more "x" characters
import re

txt = "The rain in Spain falls mainly in the plain!"

#Check if the string contains "ai" followed by 1 or more "x" characters:

x = re.findall("aix+", txt)

print(x)

if x:

print("Yes, there is at least one match!")
else:

print("No match")

Example 9: Program to check if the string contains "a" followed by exactly two "1" characters

import re
txt = "The rain in Spain falls mainly in the plain!"
#Check if the string contains "a" followed by exactly two "1" characters:
x = re.findall("all{2}", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

Example 10: Program to check if the string contains either "falls" or "stays" using meta character |

import re
txt = "The rain in Spain falls mainly in the plain!"
#Check if the string contains either "falls" or "stays":
x = re.findall("falls|stays", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

Output:
['falls']

Yes, there is at least one match!

8.3 SPECIAL SEQUENCES

= A special sequence is a \ followed by one of the characters in the list below, and has a special meaning.

Character Description Example
\A Returns a match if the specified characters are "\AThe"
at the beginning of the string
\b Returns a match where the specified characters | r"\bain"
are at the beginning or at the end of a word. r"ain\b"

(the "r" in the beginning is making sure that
the string is being treated as a "raw string")

\B Returns a match where the specified characters |r"\Bain"
are present, but NOT at the beginning (or at the | r"ain\B"
end) of a word.

(the "r" in the beginning is making sure that

the string is being treated as a "raw string")

\d Returns a match where the string contains digits | "\d"
(numbers from ©-9)

\D Returns a match where the string DOES NOT | "\D"
contain digits

\s Returns a match where the string contains a|"\s"
white space character

\S Returns a match where the string DOES NOT | "\S"
contain a white space character

\w Returns a match where the string contains any | "\w"

word characters (characters from a to Z, digits
from 0-9, and the underscore _ character)

\W Returns a match where the string DOES NOT | "\W"
contain any word characters
\Z Returns a match if the specified characters are | "Spain\z"

at the end of the string

Example 1: Program to check if the string starts with "The"

import re
txt = "The rain in Spain"
#Check if the string starts with "The":
X = re.findall("\AThe", txt)
print(x)
if x:
print("Yes, there is a match!")
else:
print("No match")

Example 2: Program to check if "ain" is present at the begining of a word

import re
txt = "The rain in Spain”
#Check if "ain" is present at the beginning of a WORD:
x = re.findall(r"\bain", txt) # r specifies raw string
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

Example 3: Program to check if "ain" is present at the end of a word

import re
txt = "The rain in Spain"
#Check if "ain" is present at the end of a WORD:
x = re.findall(r"ain\b", txt) # r specifies raw string
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

11

Example 3: # Program to check if "ain" is present, but NOT at the begining of a word

import re
txt = "The rain in Spain"
Check if "ain" is present, but NOT at the beginning of a word
x = re.findall(r"\Bain", txt) # r specifies a raw string
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

['ain', 'ain
Yes, there is at least one match!

Example 4: Program to check if "ain" is present, but NOT at the end of a word

import re
txt = "The rain in Spain”
Check if "ain" is present, but NOT at the end of a word
x = re.findall(r"ain\B", txt) # r specifies a raw string
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

No match
Example 5: Program to Check if the string contains any digits (numbers from ©-9)

import re

txt = "The rain in Spain 1975"
Check if the string contains any digits (numbers from ©-9):
x = re.findall("\d", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

Example 6: Program to return a match at every no-digit character.

import re
txt = "The rain in Spain"
Return a match at every no-digit character
X = re.findall("\D", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

lel) s lr\lJ IalJ lil,
there is at least one match!
Example 7: Program to return a match at every white-space character.

import re
txt = "The rain in Spain”

13

Return a match at every white-space character:
x = re.findall("\s", txt)
print(x)
if x:

print("Yes, there is at least one match!")
else:

print("No match")

Example 8: Program to return a match at every NON white-space character.

import re
txt = "The rain in Spain”
#Return a match at every NON white-space character
X = re.findall("\S", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

lel, lr‘lJ Ial, Iil, lnl’
there is at least one match!

14

Example 9: Program to return a match at every word character (characters from a to Z, digits from ©-9, and
the underscore _ character)

import re
txt = "The rain in Spain"
Return a match at every word character (characters from a to Z, digits from ©-9, and the underscore _
character)
x = re.findall("\w", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

lhl, lel, r‘, Ial, Iil, n
Yes, there is at least one match!

Example 10: Program to return a match at every NON word character (characters NOT between a and Z. Like
1", "?" white-space etc.)

import re
txt = "The rain in Spain"
Return a match at every NON word character (characters NOT between a and Z. Like
etc.)
x = re.findall("\W", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

O

"?" white-space

15

Yes, there is at least one match!

Example 11: Program to check if the string ends with "Spain".

import re
txt = "The rain in Spain"
#Check if the string ends with "Spain":
X = re.findall("Spain\zZ", txt)
print(x)
if x:
print("Yes, there is a match!")
else:
print("No match")

8.4 REGULAR EXPRESSION SETS

= A setis a set of characters inside a pair of square brackets [] with a special meaning.

Set Description

[arn] Returns a match where one of the specified characters (a, r, or n)
are present

[a-n] Returns a match for any lower case character, alphabetically
between a and n

[*arn] Returns a match for any character EXCEPT a, r, and n

[0123] Returns a match where any of the specified digits (0, 1, 2, or 3) are
present

[0-9] Returns a match for any digit between 0 and 9

[0-5][0-9] | Returns a match for any two-digit numbers from 00 and 59

[a-zA-Z] Returns a match for any character alphabetically between a and z,
lower case OR upper case
[+] In sets, +, *, ., |, (), $,{} has no special meaning, so [+] means:

return a match for any + character in the string

Example 1: Program Check if the string has any a, r, or n characters.

import re
txt = "The rain in Spain"
Check if the string has any a, r, or n characters:
X = re.findall("[arn]", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

Example 2: Program to Check if the string has any characters between a and n.

import re
txt = "The rain in Spain"
Check if the string has any characters between a and n
x = re.findall("[a-n]", txt)
print(x)
if x:
print("Yes, there is at least one match!")

else:
print("No match")

Ial) Iil) lnl’ lil-’ lnl-’
there is at least one match!

Program 3: Program to Check if the string has other characters than a, r, or n.

import re
txt = "The rain in Spain"
Check if the string has other characters than a, r, or n
x = re.findall("[”arn]", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

Output:

[ITI, Ihl, Iel) 1 I) lil, 1 IJ lil,
Yes, there is at least one match!

Program 4: Program to check if the string has any 0, 1, 2, or 3 digits.

import re
txt = "The rain in Spain"
Check if the string has any 0, 1, 2, or 3 digits
x = re.findall("[@123]", txt)
print(x)
if x:
print("Yes, there is at least one match!")

18

else:
print("No match")

Program 5: Program to check if a string has any digits.

import re
txt = "8 times before 11:45 AM"
Check if the string has any digits
X = re.findall("[@-9]", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

Program 6: Program to check if the string has any two-digit numbers, from 00 to 59.

import re
txt = "8 times before 11:45 AM"
Check if the string has any two-digit numbers, from 00 to 59
x = re.findall("[©-5][0-9]", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match™)

19

["11', '45']
Yes, there is at least one match!

Program 7: Program to Check if the string has any characters from a to z lower case, and A to Z upper case.

import re
txt = "8 times before 11:45 AM"
x = re.findall("[a-zA-Z]", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

lml’ lel, lSl, lbl, Iel,
there is at least one match!

Program 8: Program to check if the string has any + characters.

import re
txt = "8 times before 11:45 AM"
Check if the string has any + characters
X = re.findall("[+]", txt)
print(x)
if x:
print("Yes, there is at least one match!")
else:
print("No match")

20

CHAPTER 10

FILE HANDLING
10.1 INTRODUCTION

= File: Afile is some information or data which stays in the computer storage devices.

10.1.1 File Path

= Most file systems that are used to day stores files in Tree Structure.

= At the top of the Tree there is one Root Node. Under the Root Node, there are other files
and folders. Even these folders can in turn contain other files and folders and this can go on

to an almost limitless depth.

= Afile path can be relative or absolute.

C:\
v y v
Non Teaching Staff Students Teaching Staff
|
v v
Graduate Post Graduate
|
MCA M.SC(CS)

= Absolute Path: Absolute path always contains the root and complete directory list to
specify the exact location of the file, relative path, on the other hand, needs to be combined
with another path in order to access a file.

E.g. C:\Students\Post Graduate\MCA

= Relative Path: The relative path is part of absolute path. The relative paths starts with
respect to the current working directory.

E.g. Post Graduate\MCA

10.2 FILE HANDLING
10.2.1 Open Function:

= We use open () function in Python to open a file in read or write mode

= Syntax: open (filename, mode).

= There are three kinds of mode, that Python provides and how files can be opened:
"r", for reading.

"w", for writing.

"a", for appending.

r+", for both reading and writing.

Program 1: Write a program to open a file using open method.
f = open('d://demofile.txt', 'r')
print(f.read())

Output:
Hello! Welcome to demofile.txt

This file is for testing purposes.
Good Luck!

10.2.2 Read Only Parts of the File

= By default the read() method returns the whole text, but you can also specify how many characters
you want to return.

Program 2: MWrite a program to return the 5 first characters of the file.

f = open("d:\\demofile.txt", "r")
print(f.read(5))

Output:

Hello

10.2.3 Read Lines

= You can return one line by using the readline() method.

Program 3: Write a program to read a line from a file.

f=open("d:\\demofile.txt", "r")
print(f.readline())

Output:
Hello! Welcome to demofile.txt

10.2.4 Python File Write
Writing a File

Program 4: Program to write

Python code to create a file in write mode

file = open('d:\\x.txt','w")

file.write("This is the write command")

file.write("It allows us to write in a particular file")
file.close()

Using write along with with() function
Program 5: Write python code to illustrate with() along with write()
with open("d:\\y.txt", "w") as f:
f.write("Hello World!!!"™)
Appending a File

= To write to an existing file, you must add a parameter to the open() function:
"a" - Append - will append to the end of the file
"w" - Write - will overwrite any existing content.

Program 6: Program to append a new line to the existing file.

f = open("d:\\demofile2.txt", "a")
f.write("Now the file has more content!")
f.close()

#open and read the file after the appending:
f = open("d:\\demofile2.txt", "r")
print(f.read())

Output:
Hello! Welcome to demofile.txt

This file is for testing purposes.
Good Luck!Now the file has more content!

Program 7: Program to open the file "demofile3.txt" and overwrite the
content.

f = open("d:\\demofile3.txt", "w")
f.write("Woops! I have deleted the content!")
f.close()

#open and read the file after the appending:
f = open("d:\\demofile3.txt", "r")
print(f.read())

Output:

Woops! I have deleted the content!

Removing a File:
Program 8: Program to remove the existing file demofile.

import os
if os.path.exists("d:\\demofile"):
os.remove("d:\\demofile")
else:
print("The file does not exist")
Output:
The file does not exist

Split() using File Handling:
Program 9: Program to illustrate split() function.
with open("d:\\x.txt", "r") as file:
data = file.readlines()
for line in data:
word = line.split()
print (word)

Output:

['This', 'is', ‘'the', ‘'write', ‘command', 'It', ‘allows', ‘us’,

'write', 'in', 'a', 'particular', 'file']

Program 10: Write a program to open the file and count the number of times a
character appears in the file.

with open("d:\\x.txt") as file:
text = file.read()
letter = input("Enter the character to be searhed : ")
count = @
for char in text:
if char == letter:
count = count+1l
print(letter, "appears" , count, "times in file")

Output:
Enter the character to be searhed :

a appears 5 times in file

Program 11: Write a program that reads data from a file and calculates
the percentage of vowels and consonants in the file.

with open("d:\\x.txt") as file:
text = file.read()
count_vowels = 0@
count_consonants = @
for char in text:
if char in "aeiou":
count_vowels = count_vowels + 1
else:
count_consonants = count_consonants + 1
print("Number of vowels = ", count_vowels)
print("Number of consonants ",count_consonants)
print("Total Length of File = ", len(text))

print("Percentage of vowels in the file =
",((count_vowels)*100)/len(text),"%")
print("Percentage of consonants in the file =

",((count_consonants)*100)/len(text), "%")

Output:
Number of vowels = 21
Number of consonants = 47

Total Length of File = 68
Percentage of vowels in the file = 30.88235294117647 %
Percentage of consonants in the file = 69.11764705882354 %

CHAPTER 11
PYTHON DATABASES

Program 1: Write a python program to create EMP table with attributes
ENO,ENAME and ESAL into PBS database.

import pymysql

#database connection

connection = pymysqgl.connect(host="localhost", user="root", passwd="",
database="PBS")

cursor = connection.cursor()

Query for creating table

EmpTableSql = """CREATE TABLE EMP(ENO INT(5) PRIMARY KEY,ENAME CHAR(10) NOT
NULL,ESAL INT(5))"""

cursor.execute(EmpTableSql)

connection.close()

Program 2: Write a python program to insert rows into EMP +table of PBS
database.

import pymysql

Database connection

connection = pymysql.connect(host="localhost", user="root", passwd="",
database="PBS")

cursor = connection.cursor()

Queries for inserting values
insertl = "INSERT INTO EMP(ENO, ENAME, ESAL) VALUES(1, 'PAVANI', 6000);"
insert2 = "INSERT INTO EMP(ENO, ENAME, ESAL) VALUES(2, 'VENKAT', 3000);"

Executing the quires
cursor.execute(insertl)
cursor.execute(insert2)

Commiting the connection then closing it.
connection.commit()
connection.close()

Program 3: Write a python program to update rows of EMP table of
database.

import pymysql

Database connection

connection = pymysqgl.connect(host="localhost", user="root", passwd="",
database="PBS")

cursor = connection.cursor()

updateSql = "UPDATE EMP SET ENAME = 'ABHI' WHERE ENO = '1' ;"
cursor.execute(updateSql)

connection.commit()

connection.close()

Program 4: Write a python program to delete rows from EMP table of
database.

import pymysql

Database connection

connection = pymysqgl.connect(host="localhost", user="root", passwd="",
database="PBS")

cursor = connection.cursor()

deleteSql = "DELETE FROM EMP WHERE ENO = '2'; "
cursor.execute(deleteSql)

connection.commit()

connection.close()

Program 5: Write a python program to drop EMP table of PBS database.
import pymysql

Database connection

connection = pymysql.connect(host="localhost", user="root", passwd="",
database="PBS")

cursor = connection.cursor()

dropSql = "DROP TABLE IF EXISTS EMP;"

cursor.execute(dropSql)

connection.commit()

connection.close()

PBS

PBS

