
P.B. SIDDHARTHA COLLEGE OF ARTS & SCIENCE
Siddhartha Nagar, Vijayawada – 520 010

Autonomous - Re-accredited at ‘A+’ by the NAAC - ISO 9001 – 2015 Certified
College with ---Potential for Excellence-Phase-II (Awarded by the UGC)

2.3.2 - Teachers use ICT-enabled tools including online resources for
effective teaching and learning

LECTURE NOTES

LECTURE NOTES PREPARED BY Dr.T.S.RAVI KIRAN, ASSISTANT

PROFESSOR & HOD DEPARTMENT OF COMPUTER SCIENECE

P.B.SIDDHARHA COLLEE OF ARTS & SCIENECE, VIJAYAWADA, AP, INDIA PIN: 520010

Email: tsravikiran@pbsiddhartha.ac.in Mobile: 9441176980

COURESE: ADVANCED DATABASE MANAGEMENT SYSTEMS

ACADEMIC YEAR: 2021-2012 COURESE CODE: 21DS1T4

 CONTENTS:

1. BASIC & MORE SQL

2. RELATIONAL ALGEBRA & RELATIONAL CALCULUS

3. ER- MODELLING

4. NORMALIZATION

5. TRANSACTION PROCESSING

 6. CONCURRENCY CONTROL

7. DISTRIBUTED DATABASE CONCEPTS

 8. NO SQL

 9. AGGREGATE DATA MODELS

 10. MORE DETAILS ON DATA MODELS

11. DISTRIBUTION MODELS

12. CONSISTENCY

13. MongoDB CRUD OPERATIONS

14. DATA LAKES

1

CHAPTER 1
BASIC & MORE SQL

 Data: Collection of facts (or) raw material for information.

 Information: Processed data.

 Schema: Structure of database (or) Structure of database objects.

 Entity: A thing (or) object which have some implicit meaning.

 Record: The values associated for collection of fields.

 Domain: The range of finite values associated for attributes.

 Database: Collection of files (or) collection of tables (or) collection of database objects.

 Attribute: Property of entity.

 Database management system: Set of software modules used to create database objects

and access the database objects.

TOPIC1: SQL AND SQL DATA TYPES

1.1 SQL

 The name SQL is presently expanded as Structured Query Language.
 Originally, SQL was called SEQUEL (Structured English QUEry Language) and was designed and

implemented at IBM Research as the interface for an experimental relational database system called
SYSTEM R.

 SQL is now the standard language for commercial relational DBMSs.

 The standardization of SQL is a joint effort by the American National Standards Institute (ANSI) and

the International Standards Organization (ISO).

SQL Versions:
1. The first SQL version is SQL-86 or SQL1.
2. The second SQL version is SQL-92 or SQL2
3. The next standard that is well-recognized is SQL:1999 (SQL3)
4. Additional updates to the standard are SQL:2003 and SQL:2006, which added XML features.
5. Another update in 2008 incorporated more object database features into SQL, and a further update

is SQL:2011.

2

1.2 SQL Data Types IMP

 SQL data types can be broadly divided into following categories.

1.2.1 SQL Numeric Data Types

Datatype From To

bit 0 1

tinyint 0 255

smallint -32,768 32,767

int -2,147,483,648 2,147,483,647

bigint -9,223,372,036, 854,775,808 9,223,372,036, 854,775,807

decimal -10^38 +1 10^38 -1

numeric -10^38 +1 10^38 -1

float -1.79E + 308 1.79E + 308

3

1.2.2 SQL Date and Time Data Types

Datatype Description

DATE Stores date in the format YYYY-MM-DD

TIME Stores time in the format HH:MI:SS

DATETIME Stores date and time information in the format YYYY-MM-DD HH:MI:SS

TIMESTAMP Stores number of seconds passed since the Unix epoch (‘1970-01-01 00:00:00’ UTC)

YEAR Stores year in 2 digits or 4 digit format. Range 1901 to 2155 in 4-digit format. Range 70 to
69, representing 1970 to 2069.

1.2.3 SQL Character and String Data Types

Datatype Description

CHAR Fixed length with a maximum length of 8,000 characters

VARCHAR Variable-length storage with a maximum length of 8,000 characters

VARCHAR(max) Variable-length storage with provided max characters, not supported in MySQL

TEXT Variable-length storage with maximum size of 2GB data

Note that all the above data types are for character stream, they should not be used with Unicode data.

real -3.40E + 38 3.40E + 38

4

1.2.4 SQL Unicode Character and String Data Types

Datatype Description

NCHAR Fixed length with maximum length of 4,000 characters

NVARCHAR Variable-length storage with a maximum length of 4,000 characters

NVARCHAR(max) Variable-length storage with provided max characters

NTEXT Variable-length storage with a maximum size of 1GB data

Note that above data types are not supported in MySQL database.

1.2.5 Boolean:

 A Boolean data type has the traditional values of TRUE or FALSE. In SQL, because of the presence of

NULL values, a three-valued logic is used, so a third possible value for a Boolean data type is
UNKNOWN.

TOPIC 2: DBMS LANGUAGES AND INTERFACES IMP

2.1 DDL (Data Definition Language)
 Language used to create database objects.
 Used to create & alter the database objects.
E.g. create, alter commands.

E.g. create table emp

 (empno number(10),
 ename varchar2(15));

E.g. alter table emp

 modify (empno number(15));

2.2 SDL (Data Definition Language)

 SDL (Storage Definition Language): Used to specify the internal schema of database objects.

 When employee table with 3 attributes EMPNO, DEPTNO & PAY is stored in database

persistently the following number of bytes allocated according to the shown format.

 > create table emp

5

 (empno varchar2(5),
 deptno varchar2(10),
 pay number(5));

 STORED EMP LENGTH = 20
 PREFIX TYPE = BYTE(6), OFFSET = 0
 EMPNO TYPE = BYTE(6), OFFSET = 6, INDEX = EMPX
 DEPTNO TYPE = BYTE(4), OFFSET = 12
 PAY TYPE = FULLWORD, OFFSET = 16

 Allocation
Offset = 0 Offset = 6 Offset = 12 Offset = 16

 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 1 2 3 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 From the given example
PREFIX System generated attributed where the values of attributes is fixed.
OFFSET Indicates starting address of next attribute.

2.3 DML (Data Manipulation Language)

 DML (Data Manipulation Language): Used to access database objects.
 E.g. insert, delete, update commands
E.g. insert into emp
 values (&empno,’&ename’);

E.g. update emp
 set ename=’john’
 where empno=1;

E.g. delete from emp;

2.4 DCL (Data Control Language)

 Used to provide persistency and recovery to database objects.
E.g.
Commit; Commits the transaction.
Rollback; Database items acquires previous state.
Savepoint <savepoint_name>; Creates savepoint in a transaction.
Rollback to <savepoint_name>; Databse item acquires savepoint status.

6

2.5 TCL (Transaction Control Language)

E.g. GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;

E.g. GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

E.g. REVOKE SELECT ON EMPLOYEE FROM A2;

TOPIC 3: RELATIONAL CONSTRAINTS VVIMP

 Constraint: A rule at column level or table level.
 Relational constraints
1. Not null (Defined at either column level or table level)
2. Unique (Defined at either column level or table level)
3. Primary key (Defined at either column level or table level)
4. Foreign key (Defined at either column level or table level)
6. Check (Defined at either column level or table level)

1. Not null: Specifies that may not contain null value.
E.g.
SQL> create table emp
 (empno number(4),
 ename varchar2(10) not null);

2. Unique: Every value in a column or set of columns be unique.
E.g.
SQL> create table dept
 (deptno number(2),
 dname varchar2(14),
 constraint dept_dname_uk unique(dname));

(a) Grant option assign privileges to the users.
(b) Revoke option cancel access privileges from the users.

7

3. Primary key: Creates primary key for the table.
 The value assigned for an attribute must satisfy the constraints unique and not null.
E.g.
SQL> create table dept
 (deptno number(2),
 dname varchar2(14),
 constraint dept_dname_pk primary key(dname));

4. Foreign key: The foreign key is defined in the child table, and the table containing the
reference column is in the parent table.
E.g.
SQL> create table emp
 (empno number(2),
 ename varchar2(14) not null,
 deptno number(2),
 constraint emp_dept_fk foreign key(deptno) references dept (deptno));

5. Check: Defines the condition that the each row must satisfy.
E.g.
SQL> create table dept
 (deptno number(2),
 dname varchar2(14),
 constraint emp_dept_ck check (deptno between 10 and 99));

 In SQL, a view is a virtual table based on the result-set of an SQL statement.

 A view contains rows and columns, just like a real table. The fields in a view are fields from

one or more real tables in the database.

 You can add SQL functions, WHERE, and JOIN statements to a view and present the data as

if the data were coming from one single table.

TOPIC 4: VIEW VVIMP

 In SQL, a view is a virtual table based on the result-set of an SQL statement.
 A view contains rows and columns, just like a real table. The fields in a view are fields from

one or more real tables in the database.
 You can add SQL functions, WHERE, and JOIN statements to a view and present the data as

if the data were coming from one single table.

8

Syntax:
CREATE VIEW view_name AS
SELECT column1, column2, ...
FROM table_name
WHERE condition;

Example:
CREATE VIEW [Brazil Customers] AS
SELECT CustomerName, ContactName
FROM Customers
WHERE Country = 'Brazil';

TOPIC 5: CURSORS VIMP

 A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor.
 A cursor holds the rows (one or more) returned by a SQL statement. The set of rows the

cursor holds is referred to as the active set.
1. There are two types of cursors
2. Implicit cursors
3. Explicit cursors

5.1 Implicit Cursors
 Implicit cursors are automatically created by Oracle whenever an SQL statement is

executed, when there is no explicit cursor for the statement.
 Programmers cannot control the implicit cursors and the information in it.
 Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is

associated with this statement. For INSERT operations, the cursor holds the data that needs
to be inserted. For UPDATE and DELETE operations, the cursor identifies the rows that
would be affected.

Example for Implicit Cursor:
DECLARE
 total_rows number(2);
BEGIN
 UPDATE customers
 SET salary = salary + 500;
 IF sql%notfound THEN
 dbms_output.put_line('no customers selected');
 ELSIF sql%found THEN
 total_rows := sql%rowcount;
 dbms_output.put_line(total_rows ||' customers selected ');
 END IF;
END;

9

5.2 Explicit Cursor
 Explicit cursors are programmer-defined cursors for gaining more control over the context

area. An explicit cursor should be defined in the declaration section of the PL/SQL Block. It
is created on a SELECT Statement which returns more than one row.

Example for Explicit Cursor:
DECLARE
 c_id customers.id%type;
 c_name customers.name%type;
 c_addr customers.address%type;
 CURSOR c_customers is
 SELECT id, name, address FROM customers;
BEGIN
 OPEN c_customers;
 LOOP
 FETCH c_customers into c_id, c_name, c_addr;
 EXIT WHEN c_customers%notfound;
 dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);
 END LOOP;
 CLOSE c_customers;
END;

TOPIC 6: TRIGGERS VIMP

 A trigger is a pl/sql block structure which is fired when a DML statements like Insert, Delete, Update

is executed on a database table.
 A trigger is triggered automatically when an associated DML statement is executed.

Example 1:

CREATE OR REPLACE TRIGGER display_salary_changes
BEFORE DELETE OR INSERT OR UPDATE ON customers
FOR EACH ROW
WHEN (NEW.ID > 0)
DECLARE
 sal_diff number;
BEGIN
 sal_diff := :NEW.salary - :OLD.salary;
 dbms_output.put_line('Old salary: ' || :OLD.salary);
 dbms_output.put_line('New salary: ' || :NEW.salary);
 dbms_output.put_line('Salary difference: ' || sal_diff);
END;

1

TOPIC: JOIN OPERATION IN RELATIONAL ALGEBRA VIMP

Join Operation: It is used to combine tuples from multiple relations so that related information can be

presented.

 It is denoted by join symbol ⋈.

Syntax: R ⋈<Join Condition> S

Types of joins:

(a)Theta Join: A general join condition.

 Syntax: Ai θ Bi

 θ is one of the comparison operators of {=,>,>=,<,<=, ≠}

(b)Equi Join: Join based on the common columns in different relations.

Syntax: R ⋈<Column = Column> S

E.g. DEPARTMENT ⋈<MGRSSN = SSN> EMPLOYEE

(c)Non Equi Join: Join of two relations.

 Non equi join always return “Cartesian Product” or “Cross Product”

 It is also known as natural join.

 It is denoted by *

Syntax: R *(<list1> <list2>) S

E.g. DEPARTMENT ⋈ EMPLOYEE

DEPT

ENO DEPTNO DNAME

1 10 RESEARCH

2 20 OPERATIONS

EMP

ENO ENAME

1 KING

2 BLACK

DEPT

ENO ENAME DEPTNO DNAME

1 KING 10 RESEARCH

2 BLACK 20 OPERATIONS

DEPT

DEPTNO DNAME

10 RESEARCH

20 OPERATIONS

EMP

ENO ENAME

1 KING

2 BLACK

EMP_CROSS_DEPT

ENO ENAME DEPTNO DNAME

1 KING 10 RESEARCH

1 KING 10 OPERATIONS

2 BLACK 20 RESEARCH

2 BLACK 20 OPERATIONS

2

(d)Outer Join: Join condition that returns tuples with direct map.

(i) Left Outer Join: Returns the unmatched tuples in the left side relation.

 It is denoted by the symbol ⟕.

Syntax: R ⟕<Condition> S

Note: The tuple with DEPTNO 40 in EMP relation does not participate in the relation.

(ii) Right Outer Join: Join condition that returns tuples in the right side relation.

 It is denoted by the symbol ⟖

Syntax: R ⟖ S

Note: The tuple with DEPTNO 40 in relation DEPT does not participates in relation.

(iii) Full Outer Join: Join condition that returns tuples in both the relations that participates relation.

 It is denoted by the symbol ⟗ .

Syntax: R ⟗ S

(e)Self Join: Joining a relation itself.

EMP

ENAME DEPTNO

KING 10

BLAKE 30

CLARK 10

JONES 20

JAMES 40

DEPT

DEPTNO DNAME

10 ACCOUNTING

20 SALES

30 RESEARCH

EMP

ENAME DEPTNO

KING 10

BLAKE 30

CLARK 10

JONES 20

DEPT

DEPTNO DNAME

10 ACCOUNTING

20 SALES

30 RESEARCH

40 OPERATIONS

DEPT

DEPTNO DNAME

10 ACCOUNTING

20 SALES

30 RESEARCH

40 OPERATIONS

EMP

ENAME DEPTNO

KING 10

BLAKE 30

CLARK 10

JONES 20

JAMES 40

EMP

EMPNO ENAME MGR

7839 KING

7698 BLACK 7839

7782 CLARK 7839

7654 MARTIN 7698

7499 ALLEN 7698

KING

BLACK CLARK

MARTIN ALLEN

RELATIONAL CALCULUS IMP

 Relational calculus is declarative Non-procedural Language based on mathematics.

 Relational calculus are two types (a) Tuple Relational Calculus (b) Domain Relational Calculus.

1.1 TUPLE RELATIONAL CALCULUS

 Tuple Relational Calculus: Tuple Relational Calculus is a Non-procedural Query Language unlike
relational algebra. Tuple Calculus provides only the description of the query but it does not
provide the methods to solve it.

 Tuple Relational Calculus range over tuple.

Syntax: { t | cond(t) }
 T: Tuple
 Cond(t): Formula

Query 0: Find all employees whose salary is above $50000

Relational Calculus Expression:

Q0 : { t | employee(t) and t.salary > $50000}

Note: t is the tuple variable that ranges that ranges over the relation employee.

Query 1: Retrieve the Birthdate and Address of the employee whose name is “John B Smith”

Q1 : {t.Birthdate, t.Address | Employee(t) and t.Fname = ‘John’ t.Minit=’B’ and t.Lname=’Smith’}

1.2 DOMAIN RELATIONAL CALCULUS

 Domain Relation Calculus ranges over finite values assigned for an attributes.

 Domain Relational Calculus provides only the description of the query but it does not provide the
methods to solve it.

Syntax: {x1,x2,…, xn | COND(x1,x2,…, xn, xn+1, xn+2,…, xn+m)}

Note: COND is Condition (or) Formula

A domain relational calculus is of the form

{x1,x2,…, xn | R(x1,x2,x3…, xn)}

Note: R is a relation

Xi is Domain Variable (Attribute)

An ATOM is of the form Xi OP Xj (or) Xi OP C

Note: OP is a operation

ATOM: Relation between two Attributes

C is constant.

Xi, Xj is attributes.

OP: (=,<>,<=,>,>=)

Eg: Xi OP Xj

e.sal > d.sal

Query 0: Retrieve the Birthday and Address of Employee whose Name is ‘John B Smith’.
Note: Use quantifiers to express the formula.

Q0 : { u v | (∃q) (∃r) (∃s) (∃t) (∃w) (∃x) (∃y) (∃z) (Employee (q r s t u v w x y z) AND q=’John’ AND
r=’B’ AND S=’Smith’)}

1

CHAPTER 2
RELATIONAL ALGEBRA & RELATIONAL CALCULUS

TOPIC 1: SELECT OPERATION (σ) VIMP

 Used to select subset of tuples (rows) from relation (table) that satisfies a select condition.
 Syantax: σ <Select Condition>(R)

Syntax for Select Condition:
1.<attribute_name> <comparision_operation><constrant_value>
E.g. sal > 5000;

2.<attribute_name> <comparision_operation><attribute_name>
E.g. e.esal > d.esal
Note: e and d are table aliases

3.<selection_condition><boolean_operator><selection_condition>
E.g. ename= ‘James’ and salary>5000

 Comparison operators: There are normally one of the operations from the set {=, <, >, ≤, ≥,

≠}

 Boolean operators: Boolean operation is normally one of the operations of the set {AND,
OR, NOT}

 Selection operations is commutative:
 σ<cond1>(σ<cond2>(R)) = σ<cond2>(σ<cond1>(R))

 We can always combine a cascade (or sequence) of SELECT operations into a single SELECT

operation with a conjunctive (AND) condition; that is,
 σ<cond1>(σ<cond2>(...(σ<condn>(R)) ...)) = σ<cond1> AND<cond2> AND...AND <condn>(R)

Qeury 0: Select list of employees who work for department number 4

Sql query:
sql> select *
 from employee
 where dno=4 and salary>25000;

Select expression:
σdno=4 and salary>25000 (employee)

--

2

TOPIC 2: PROJECT OPERATION (∏) VIMP

 Selects certain columns from a relation.
 Syntax: ∏<attribute_list>(R)

 Degree of relation: Number of attributes in a relation.

 Duplicate elimination: Duplicate rows are eliminated when projection operation done.

 Super key: Key may have single attribute or group of attributes used to distinguish one

record with another record.

∏<list1> (∏<list2>(R)) = ∏<list1> (R) when list1 and list2 is same.

Qeury 0: List each employee first name, last name and salary from the relation employee.

Sql query:
select fname, lname, salary .
from employee;

Project expression:
∏<fname,lname,salary> (employee)

--

TOPIC 3: RENAME OPERATION (ρ)

 To rename relation and columns of the relation.

Syntax to rename relations and attributes: ρs (B1,B2,B3,…,Bn) (R)

Syntax to rename relation: ρ (R)

Qeury 0: Retrive the first name, last name and salary of employees who work for department 5.

Sql query:
select fname, lname, salary
from employee
where dno=5.

Rename expression:
DEP5_EMPS ← σ dno=5 (EMPLOYEE)
RESULT ← ∏fname,lname,salary (DEP5_EMPS)
--

3

TOPIC 4: SET OPERATIONS VIMP

UNION: Include all the tuples in R and S by eliminating duplicate rows.
 The result of operation is represented by R ∪ S.

R SSN
 123456789

333445555
666884444
453453453

 R∪S R∪S
 123456789

333445555
666884444
453453453
888665555

INTERSECTION: Includes all the tuples that are common in both R and S.
 The result of operation is represented by R ∩ S.

DIFFERENCE: Includes all the tuples that are in ‘R’ but not in ‘S’.
 The result of operation is represented by R – S.

R – S R – S
 123456789

666884444
453453453

--

S SSN
 333445555

888665555

R∩S R∩S
 888665555

4

TOPIC 5: DIVISION OPERATION

 Used to execute special kinds of queries.

 Syntax: R ÷ S

 The division operation can be expressed as follows.
T1 ← ∏y (R)

T2 ← ∏y ((S×T1) – R)

T ← T1 – T2

Step 1: Let us assume that

X = {A}

Y = {B}

Z = {A,B}

Step 2:

T1 ← ∏y (R)

R A B
 a1 b1

a2 b1
a3 b1
a4 b1
a1 b2
a3 b2
a2 b3
a3 b3
a4 b3
a1 b4
a2 b4
a3 b4

S A
 a1

a2
a3

T1 B
 b1

b2
b3
b4

5

Step 3:

T2 ← ∏y ((S×T1) – R)

Step 4:

T ← T1 – T2

S × T1 A B
 a1 b1 ×

a1 b2 ×
a1 b3
a1 b4 ×
a2 b1 ×
a2 b2
a2 b3 ×
a2 b4 ×
a3 b1 ×
a3 b2 ×
a3 b3 ×
a3 b4 ×

R A B
 a1 b1 ×

a2 b1 ×
a3 b1 ×
a4 b1
a1 b2 ×
a3 b2 ×
a2 b3 ×
a3 b3 ×
a4 b3
a1 b4 ×
a2 b4 ×
a3 b4 ×

S × T1 A B
 a1 b3

a2 b2

∏Y (S × T1 – R) B
 b3

b2

T2 B
 b3

b2

T1 B
 b1

b2 ×
b3 ×
b4

T2 B
 b3

b2

T B
 b1

b4

1

 Entity: An object in the real world with an independent existence.

 Attribute: Property that describes an aspect of the entity.

 Attribute types:
(a) Simple: Attribute that is not divisible
E.g. Age
(b) Composite: Attribute that can be divided into smaller parts.
E.g. Address

(c) Single-valued: Attribute containing single value.
E.g. Age, City

(d) Multi-valued: Attribute containing set of values.
E.g. Locations for DEPARTMENT
E.g. College degree

CHAPTER 3
ER- MODELLING

3.1 Entity types, Entity sets, Attributes & Keys IMP

2

(e) Stored: Attribute having fixed value.
E.g. Date Of Birth

(f) Derived: Attribute derived from the value of the existing attribute.
E.g. NumberOfEmployees for DEPARTMENT
E.g. Age

(g) Complex attribute: Composite and multivalued attributes can be nested

in an arbitrary way.

 Enity types : Collection of entities that have the same attributes.

3

 Entity sets: The collection of all entities of a particular entity type in the

database at any point of time.

4

 Value set (or) Domain: Values associated for an attribute of entity.
 NOTE: Value set have lower and upper bounds.

 SECOND

S# STATUS CITY
S1

S2

S3

S4

S5

20

10

10

20

30

LONDON

PARIS

PARIS

LONDON

ATHENS

Domain

5

 Relationship: The reference between two tables.

 Relationship type: Set of associations between n entities .

Note: Relationship type R among n entity types E1, ..., En defines a set of
associations among entities from these types. Each association will be
denoted as (e1, ..., en) where ei belongs to Ei, 1 <= i <= n.

 Relationship degree: The number of entity types participates in a

relationship type.

 Binary Relationship degree: When two entity types participates in a

relationship type.

 Ternary Relationship degree: When three entity types participates in a

relationship type.

A: E P(V)

 A : Attribute
E : Entity set
V : Value set
V = P(V1) x ... x P(Vn) for composite attributes
A(e) denotes the value of attribute A for entity e

6

7

 Role: Each entity participating in a relationship has a role.

E.g. Employee plays the role of worker and department plays the role of
employer in the WORKS_FOR relationship.
Note: Role names are more important in recursive relationships.

 Recursive relationship: If one entity plays two roles then the

relationship is called recursive relation.

8

 Structural constraints on relationships: We have two relationship

constraints.

(a) Cardinality ratio constraint (1-1, 1-N, M-N)
(b) Participation constraint

1. Total participation (existence ependency):All the tuples of the participating
entity relates with the tuples of related entity represented with double line.

2. Partial participation : Some tuples of the participating entity relates with all the

tuples of related entity represented with single line.

 Note: Participation constraint is represented by (min,max) pair.

If min value = 0 then the is patial paticipation.
If min value >= 0 then the is total paticipation.

9

10

11

 Attributes of relationships:

1. Note: Relationship types can have attributes, similar to entity types.

E.g. Hours attribute for WORKS_ON relationship

2. If relationship is 1-N or 1-1, these attributes can be be migrated to the

entity sets involved in the relationship.
a) 1-N: migrate to N side
b) 1-1: migrate to either side

--

 Weak entity: Entity that do not have key attribute.
E.g. DEPENDENT

 Weak entity types: Entity Types that do not have key attributes.

 Weak entities are identified by being related to other entity sets called

identifying owner. This relationship is called identifying relationship.

 Partial key: Attributes that uniquely identify entities within the

identifying relationship.
 (or)

A partial key is a key used to distinguish one record with another record
but not guarentted to be a key when new records are inserted.

 A weak entity type always has TOTAL participation.

3.2 Weak Entity types IMP

12

3.4 ER Schema Constructs (or) Symbols to write ER diagrams IMP

13

 Constraints:
1. An employee work for one department.
2. Department may have any number of employees.
3. Adepartment can be located any number of locations.

14

 Constraints:
1. An employee who is manager is supervisor.
2. Manager supervise any number of employees.
3. A manager is supervised by another manager.

15

 Constraints
1. An employee may not have dependents.
2. An employee may have any number of dependents.
3. Every dependent must belongs to an employee.

16

17

 Relationship attribute: Attribute derived from the relationship.
E.g. Hours, StratDate

DBMS Normalization 1

Functional Dependency: The functional dependency is a relationship that exists between two
attributes of relation.

SCP
S# STATUS CITY P# QTY

S1

S2

S3

S4

{ 20,20,20,20,20,20 }

{10,10 }

10

{ 20,20,20 }

LONDON

PARIS

PARIS

LONDON

{ P1,P2,P3,P4,P5,P6 }

{ P1,P2 }

P2

{ P2,P4,P5 }

{ 200,200,400,200,100,100 }

{ 300,400 }

200

{ 200,300,400 }

Note: The relation should not contain sets

NORMALIZATION

First Normal Form

 First Normal Form: A relation is said to be in first normal form if and only if it contains
atomic or scalar values.

DBMS Normalization 2

 FIRST
S# STATUS CITY P# QTY

S1

S1

S1

S1

S1

S1

S2

S2

S3

S4

S4

S4

P1

P2

P3

P4

P5

P6

P1

P2

P2

P2

P4

P5

200

200

400

200

100

100

300

400

200

200

300

400

 The relation FIRST stated as

 Functional Dependencies in relation FIRST are

STATUS

QTY
CITY

P#

S#

{ S#, P# }  QTY
S#  CITY
CITY  STATUS
By transitivity S#  STATUS

FIRST{ S#, STATUS, CITY, P#, QTY }
PRIMARY KEY { S#, P# }

DBMS Normalization 3

 UPDATE ANOMALIES

INSERT: We can not insert particular suppliers located in particular city until the supplier
supplies at least one part.

UPDATE: If supplier S1 moves from LONDON to AMSTERDAM, we need to change city as
AMSTERDAM for every supplier S1 otherwise the database contains inconsistent values
or data.

DELETE: If we delete first tuple of S1 among six tuples we lost the information of part P1.

 The relation FIRST is projected into two relations SECOND, SP

 SECOND
S# STATUS CITY
S1

S2

S3

S4

S5

20

10

10

20

30

LONDON

PARIS

PARIS

LONDON

ATHENS

Second Normal Form

SECOND { S#, STATUS, CITY }
PRIMARY KEY S#

 The relation SECOND is stated as

STATUS

CITY S#

CITY  STATUS

 S#  CITY

By transitivity S#  STATUS

 Functional Dependencies in relation SECOND are

DBMS Normalization 4

 SP

S# P# QTY

S1

S1

S1

S1

S1

S1

S2

S2

S3

S4

S4

S4

P1

P2

P3

P4

P5

P6

P1

P2

P2

P2

P4

P5

200

200

400

200

100

100

300

400

200

200

300

400

 UPDATE ANOMALIES

INSERT: We can not insert the fact that a particular city have particular status.

E.g. We can not state that any supplier in ROME must have status of 50 until we have
some suppliers actually located in that city.

UPDATE: If we need to change STATUS of LONDON from 20 to 40, we should change for
all the tuples otherwise the database consists inconsistent data.

DELETE: If we delete second tuple of city PARIS, the information of supplier S2 will be
lost.

Second Normal Form: A relation is said to be in 2NF if and only if it is in 1NF and every non
key attribute is irreducibly (loss less) depend on key attribute (Primary key).

 The relation SP is stated as

SP { S#, P#, QTY }
PRIMARY KEY { S#,P# }

QTY

P#

S#

 Functional Dependencies in relation SP are

 { S#, P#}  QTY

DBMS Normalization 5

 Decompose the relation SECOND into two relations SS and CS

 SS

S# STATUS
S1

S2

S3

S4

S5

20

10

10

20

30

 SC

STATUS CITY
20

10

30

LONDON

PARIS

ATHENS

 This decomposition is not correct since the Functional Dependency

produces transitivity.

Third Normal Form

Third Normal Form: A relation is said to be in 3NF if and only if it is in 2NF and every non key
attribute non transitively depend upon the key attribute.

Decomposition - A

SS { S#, STATUS }
PRIMARY KEY S#

 The relation SS is stated as

STATUS S#

 S#  STATUS

 Functional Dependencies in relation SECOND are

SC { STATUS, CITY }
PRIMARY KEY STATUS

 The relation SC is stated as

CITY STATUS

 STATUS  CITY

 Functional Dependencies in relation SC are

S#  STATUS

DBMS Normalization 6

 Decompose the relation SECOND into two relations SC and CS

 SC

S# CITY
S1

S2

S3

S4

S5

LONDON

PARIS

PARIS

LONDON

ATHENS

 CS

CITY STATUS
LONDON

PARIS

ATHENS

20

10

30

 This decomposition is correct .Therefore the relations SC and CS satisfies 3NF.

 UPDATE ANOMALIES

INSERT: We can not insert the fact that a particular city have particular status.

E.g. We can not state that any supplier in ROME must have status of 50 until we have some
suppliers actually located in that city.

UPDATE: If supplier S1 moves from LONDON to AMSTERDAM we need to change city as
AMSTERDAM for every supplier S1 otherwise database contains inconsistent data.

DELETE: If we delete second tuple of city PARIS the information of S2 will be lost.

--

SC { S#, CITY }
PRIMARY KEY S#

 The relation SC is stated as

CITY S#

S#  CITY

 Functional Dependencies in relation SC are

STATUS

SC { CITY, STATUS }
PRIMARY KEY CITY

 The relation CS is stated as

CITY

 CITY  STATUS

 Functional Dependencies in relation CS are

Decomposition - B

DBMS Normalization 7

 Consider the relation SECOND
 SECOND

S# STATUS CITY
S1

S2

S3

S4

S5

20

10

10

20

30

LONDON

PARIS

PARIS

LONDON

ATHENS

 Decompose the relation SECOND into two relations SC and CS

 SC

S# CITY
S1

S2

S3

S4

S5

LONDON

PARIS

PARIS

LONDON

ATHENS

 CS

CITY STATUS
LONDON

PARIS

ATHENS

20

10

30

 Dependency preservation: Functional dependencies of the projected tables are implied by

the dependencies of original table.

Dependency Preservation

SECOND { S#, STATUS, CITY }
PRIMARY KEY S#

 The relation SECOND is stated as

STATUS

CITY S#

CITY  STATUS

 S#  CITY

By transitivity S#  STATUS

 Functional Dependencies in relation SECOND are

SC { S#, CITY }
PRIMARY KEY S#

 The relation SC is stated as

CITY S#

S#  CITY

 Functional Dependencies in relation SC are

STATUS

SC { CITY, STATUS }
PRIMARY KEY CITY

 The relation CS is stated as

CITY

 CITY  STATUS

 Functional Dependencies in relation CS are

DBMS Normalization 8

 From the above tables the FD’s of SC and CS are implied by the FD’s of SECOND. Therefore
dependencies are preserved.

--

 Candidate key : An attribute (or) group of attributes which is used to distinguish one
record with another record.

 Consider the relation SECOND

 SECOND
S# STATUS CITY

S1

S2

S3

S4

S5

20

10

10

20

30

LONDON

PARIS

PARIS

LONDON

ATHENS

 The above relation does not doesn’t satisfies 3NF and all the determinants are not the

candidate keys. Therefore the relation SECOND is not in BCNF.

BCNF (Boycee Code Normal Form)

BCNF: A relation is said to be in BCNF if and only if it is in 3NF and only determents are
candidate keys.

SECOND { S#, STATUS, CITY }
PRIMARY KEY S#

 The relation SECOND is stated as

STATUS

CITY S#

CITY  STATUS

 S#  CITY

By transitivity S#  STATUS

 Functional Dependencies in relation SECOND are

DBMS Normalization 9

 The relation SECOND is projected into two relations SC and CS

 SC

S# CITY
S1

S2

S3

S4

S5

LONDON

PARIS

PARIS

LONDON

ATHENS

 In the relation SC is the only determinant S# is the primary key .

 CS

CITY STATUS
LONDON

PARIS

ATHENS

20

10

30

 In the relation CS is the only determinant CITY is the primary key .

 There fore the relations SC and CS satisfies BCNF and all the determinants are candiadate

keys

--

 Consider the relation UCTX (Un normalized relation)

 UCTX

SC { S#, CITY }
PRIMARY KEY S#

 The relation SC is stated as

CITY S#

S#  CITY

 Functional Dependencies in relation SC are

STATUS

SC { CITY, STATUS }
PRIMARY KEY CITY

 The relation CS is stated as

CITY

 CITY  STATUS

 Functional Dependencies in relation CS are

4NF (Fourth Normal Form)

DBMS Normalization 10

COURSE TEACHER TEXT
PHYSICS

MATHS

{Prof. GREEN,
Prof. BROWN}

{Prof.GREEN}

{ BASIC MECHANICS,
PRINCIPLES OF OPTICS}

{BASIC MECHANICS,
VECTOR ANALYSIS,
TRIGNOMETRY}

 Constraints on table UCTX

1. A specified course can be taught by specified teacher and uses all the specified textbooks as

references.
2. A teacher can teach any number of courses.
3. There are no functional dependencies for the table UCTX.

 Now we are normalizing UCTX table as CTX

 CTX

COURSE TEACHER TEXT
PHYSICS Prof. GREEN BASIC MECHANICS
PHYSICS Prof. GREEN PRINCIPLES OF OPTICS
PHYSICS Prof. BROWN BASIC MECHANICS
PHYSICS Prof. BROWN PRINCIPLES OF OPTICS
MATHS Prof. GREEN BASIC MECHANICS
MATHS Prof. GREEN VECTOR ANALYSIS
MATHS Prof. GREEN TRIGNOMETRY

 The above relation satisfies 1NF,2NF, 3NF and BCNF since the determinant itself is the
candidate key.

 Update anomalies:

To add information about a teacher who teaches a course PHYSICS, it is necessary to
create two tuples one for each of the text books BASIC MECHANICS and PRINCIPLES
OF OPTICS.

 MVD’S: Multi valued dependencies are general dependencies based on the attributes

and their domains.

 Let R be a relation and let A,B,&C be arbitrary subsets of R then we can say that
 if and only if the set B values matching with pair (A,C) dependents only
 on A value independent of C value.

CTX {COURSE, TEACHER,TEXT }
CANDIDATE KEY {COURSE, TEACHER, TEXT}

 The relation CTX is stated as

 >> A

B

 >> COURSE TEXT

 >> COURSE TEACHER

DBMS Normalization 11

 The above MVD’s exits in CTX.

 Consider first two tuples from the relation CTX.

 CTX

COURSE TEACHER TEXT
PHYSICS Prof. GREEN BASIC MECHANICS
PHYSICS Prof. GREEN PRINCIPLES OF OPTICS

 Consider two subsets CT and CX from CTX

 CT
COURSE TEACHER

PHYSICS Prof. GREEN
PHYSICS Prof. GREEN

 Tuple1 = Tuple2

 CX

COURSE TEXT
PHYSICS BASIC MECHANICS
PHYSICS PRINCIPLES OF OPTICS

 Tuple1 = Tuple2

 Therefore the relation CTX violating the condition of FD.

 Project the table CTX into CT and CX

 CT
COURSE TEACHER

PHYSICS Prof. GREEN
PHYSICS Prof. BROWN
MATHS Prof. GREEN

 CX

COURSE TEXT
PHYSICS BASIC MECHANICS
PHYSICS PRINCIPLES OF OPTICS
MATHS BASIC MECHANICS
MATHS VECTOR ANALYSIS
MATHS TRIGNOMETRY

Tuple1
Tuple2

Tuple1
Tuple2

Tuple1
Tuple2

CT {COURSE, TEACHER}
CANDIDATE KEY {COURSE, TEACHER}

 The relation CT is stated as

CTX {COURSE, TEXT }
CANDIDATE KEY {COURSE, TEXT}

 The relation CX is stated as

DBMS Normalization 12

 Therefore the relations CT and CX satisfies 1NF,2NF,3NF,BCNF and preserves MVD’s and

FD’s .

 Therefore the relations CT and CX satisfies 4NF.

444

--

 Consider the following relation
 SPJ

S# P# J#
S1 P1 J2

S1 P2 J1

S2 P1 J1

S1 P1 J1

4NF: The relation is said to be in 4NF if and only it is in BCNF and must have both MVD’s and
FD’s.

Fagin’s theorem: Let R=A,B,C be a relation where A,B,C are set of attributes the R = join of its
projection on {A,B} and {A,C} if and only if R satisfies A >> B and A >> C

5NF (Fifth Normal Form)

SPJ {S#,P#,J#}
CANDIDATE KEY { S#,P#,J#}

 The relation SPJ is stated as

Join Dependencies

 Join Dependencies: Let R be a relation and let A,B,…,Z be arbitrary subsets of set of attributes
of R. Then we can say that R satisfies join dependency *(A,B,…,Z) if and only if R is equal to
join of its projections on A,B,…,Z

DBMS Normalization 13

 Constraint on the following table is

SPJ

S# P# J#
S1 P1 J2

S1 P2 J1

S2 P1 J1

S

S1

S1

S1

S2

P1

P1

P2

P1

P

SPJ

J2

J1

J1

J1

J#

S

S1

S1

S1

S2

S2

P1

P1

P2

P1

P1

P

SP

J2

J1

J1

J2

J1

J#

S1

S1

S2

P1

P2

P1

P

S

SP

P1

P2

P1

J2

J1

J1

J# P

PJ

Join over P#

Sprious tuple

S1

S1

S2

J2

J1

J1

J# S

JS
P

Join over S#, J#

If the pair (S1, P1) appear in SP, the pair (P1 ,J1) appear in PJ the the pair (J1, S1) appear in JS
then the triple (S1, P1 ,J1) appear in SPJ

Table violating the specified constraint

S

S1

S1

S1

S2

P1

P1

P2

P1

P

SPJ

J2

J1

J1

J1

J#

S

S1

S1

S1

S2

S2

P1

P1

P2

P1

P1

P

SP

J2

J1

J1

J2

J1

J#

S1

S1

S2

P1

P2

P1

P

S

SP

P1

P2

P1

J2

J1

J1

J# P

PJ

Join over P#

Spurious tuple

S1

S1

S2

J2

J1

J1

J# S

JS
P

Join over S#, J#

 Spurious tuple

DBMS Normalization 14

 SPJ

S# P# J#
S1 P1 J2

S1 P2 J1

S1 P1 J1

Table satisfying the specified constraint

S1

S1

J2

J1

J# S
JS
P

Join over S#, J# S

S1

S1

S1

P1

P1

P2

P

SP

J2

J1

J1

J#

S1

S1

P1

P2

PS
SP

P1

P2

P1

J2

J1

J1

J# P

PJ

Join over P#

SPJ
S

S1

S1

S1

P1

P1

P2

P

J2

J1

J1

J#

5NF: A relation R is in 5NF is also called PJNF (Projection Join Normal From) if and only if
every join dependency in R is implied by the candidate key of R.

SPJ {S#,P#,J#}
CANDIDATE KEY { S#,P#,J#}

 Consider the relation SPJ

SP {S#,P#}
CANDIDATE KEY { S#,P# }
S#,P#}
PJ {S#,P#}
CANDIDATE KEY { P#,J# }
S#,P#}
JS {J#,S#}
CANDIDATE KEY { J#,S# }
S#,P#}

 SPJ is projected into SP,PJ and JS

DBMS Normalization 15

 Candidate keys of SP, PJ and JS is not implied by the candidate key of SPJ. Therefore SP, PJ
and JS are not satisfies 5NF.

 The above relation satisfies 1NF,2NF, 3NF, BCNF (No need to check 4NF since there are FD’S).

 The relation SUPPLIER is projected into SS and SC.

SS

S# SNAME STATUS
S1 SMITH 20
S2 JOHN 10

S#

S1

S2

SNAME

SMITH
 JOHN

STATUS

20
20

CITY

LONDON
PARIS

SUPPLIER

 Consider the relation

SPJ {S#,SNAME,STAYUS,CITY}
CANDIDATE KEY S#

 The relation SUPPLIER is stated as

 FD’s in relation SUPPLIER

STATUS

CITY

SNAME S#

S#  CITY
S#  STATUS
S#  SNAME

SS{ S#,SNAME,STATUS}
CANDIDATE KEY S#

S#  SNAME
S#  STATUS

S#

STATUS

SNAME

FD’S in SS

DBMS Normalization 16

 SC

 The relations SS and SC satisfies 5NF since the candidate keys of SS and CS is implied
by candidate key of SUPPLIER.

--

1. This is proposed by FAGIN and it is also called FAGIN NF.
2. It is not defined in terms of FD’s ,MVD’s,JD’s .

 Key constraint : The relation must have primary key .

 Domain constraint : The set of values associated for an attribute must have finite values.

--

S# CITY
S1 LONDON
S2 PARIS

Domain Key Normal Form

A relation R is said to be in DKNF if and only if it should contain KEY CONSTRAINT
and DOMAIN CONSTRAINT.

SS{ S#,CITY}
CANDIDATE KEY S#

FD’S in SS
 S# CITY

S#  CITY

 1

� Transaction : Logical unit of sequence of processing.

� Transaction operations: Insert, Delete, Update & Retrieve.

� Transaction boundaries: Begin, End.

� Begin transaction: Transaction begins when user enters into SQL plus environment.

� End transaction: Transaction ends when one of the following statements are executed.

(a) Exit
(b) Commit
(c) Rollback

� Reads a database item into a program variable.

1. Find the address of the disk block that contain data item x.
2. Copy the disk block contain the data item x into primary memory.
3. Copy data item x to program variable named x.

� Writes the value of program variable x into database.

1. Find the address of the disk block that contain data item x.
2. Copy the disk block contain the data item x into primary memory.
3. Copy data item x to program variable named x.
4. Store the updated data item contained in disk block to secondary memory.

� Concurrency : When multiple transactions request single database item simultaneously,

the updations of transactions produce inconsistent data.

TTrraannssaaccttiioonn PPrroocceessssiinngg

TTooppiicc 11:: TTrraannssaaccttiioonn rreeaadd && wwrriittee

rreeaadd__iitteemm((xx))

wwrriittee__iitteemm((xx))

TTooppiicc22:: WWhhaatt aarree tthhee pprroobblleemmss iinn ttrraannssaaccttiioonn pprroocceessssiinngg ((oorr)) WWhhaatt aarree tthhee
pprroobblleemmss dduuee ttoo ccoonnccuurrrreennccyy ((oorr)) WWhhyy ccoonnccuurrrreennccyy ccoonnttrrooll iiss nneeeeddeedd [[VVIIMMPP]]

 2

� The updations of interleaving transactions produce inconsistent data.

� Serial operations of transaction T1 is

� The final result of serial transaction is x=79 but the interleaving transaction operation

shows that x=84.

TThhee lloosstt uuppddaattee pprroobblleemm

 T1 T2

read_item(x) ;

x:=x – 1;
 read_item(x);

 x:=x + m;

write_item(x);

read_item(y);

 write_item(x);

y:= y + n;

write_item(y);

 x n m y
80 5 4 10
84 15 x=80

x=80-1=79
x=80

x=80+4=84

x=84

y=10

xx==8844

y=10+5=15

y=15

 TT11
 rreeaadd__wwrriittee((xx));;

 xx::== xx -- 11;;

 wwrriittee__iitteemm((xx));;

 rreeaadd__iitteemm((yy));;

 yy::==yy++11;;

 wwrriittee__iitteemm((yy));;

xx==8800

xx==8800-- 11==7799

xx==7799

 xx nn yy

8800 55 1100
7799 1111

YY==1100

yy==1100++11==1111

yy==1111

 3

� The problem occurs when one transaction update the database item and then fails

� If transaction T1 fails the database item roll backs to its previous state, but transaction T2

has read the incorrect value of x.

� A transaction T receives different values for two reads on the same data item.

TThhee iinnccoorrrreecctt ssuummmmaarryy pprroobblleemm

TThhee tteemmppoorraarryy uuppddaattee pprroobblleemm ((DDiirrttyy rreeaadd))

 T1 T2

read_item(x) ;

x:=x – n;

write_item(x);
 read_item(x);

 x:=x + m;

 write_item(x);

read_item(x);
 FAIL

x=80

x=80-5=75

x=75

x=75+4=79

x=79

 x n m y

80 5 4 10
75
79

x=75

x=79

 4

--

� Types of failures
(a) Physical (or) Catastrophic
(b) Disk failure
(c) Transaction failure

 y sum x n a

20 0 10 5 5
25 5

 T1 T2

 sum:=0;

 read_item(a);

 sum:=sum +a;
 .
 .
 .

read_item(x);

x:=x - n;

write_item(x);
 read_item(x);

 sum:=sum+x;

 read_item(y);

 sum:=sum+y;
 read_item(y);

y:=y+n;

write_item(y);

aa ==55

ssuumm==00++55==55

x=10

x=10-5=5

x =5
x = 5

sum=0+5=5

y=20

sum=0+20=20

y=20

y=20 +5=25

y=25

TTooppiicc33:: TTyyppeess ooff ttrraannssaaccttiioonn ffaaiilluurreess ((oorr)) WWhhyy rreeccoovveerryy iiss nneeeeddeedd [[IIMMPP]]

 5

1. A/C failure.
2. Theft.
3. Sabotage.
4. Mounting wrong tape.
5. Over riding disks (or) taps.
6. Giving same name to the file.

Read / write head malfunctioning.

1. Operations of transaction may fail due to logical errors.
 E.g. Division by 0.
 Integer over flow.
 Error in parameters.
 Error in control structures.
2. Transactions may fail due to concurrency.
3. Transaction may fail due to S/W, H/W errors during the execution of

transaction.
4. Transaction may fail if the data for the transaction may not be found or

insufficient.
--

Begin_transaction This makes begin the transaction.
Read / Write Specifies either read operation or write operation.
End_transaction Specifies all the read & write operations are commited

(or) Specifies all the read & write operations are
partially commited and aborted.

Commit Indicates successful updation of transaction.

Rollback / Abort Indicates that the transaction ended unsuccessfully.

PPhhyyssiiccaall ((oorr)) CCaattaassttrroopphhiicc ffaaiilluurree

DDiisskk ffaaiilluurree

TTrraannssaaccttiioonn ffaaiilluurree

Topic4: Transaction states

 6

--

� System log: System log is file keep track of all transaction operations on database items.

� Advantages
1. The log file entries used for recovery purpose.
2. The log file is periodically backed up into magnetic tape (Archival storage)
3. Log record: Entry of log file.

� Entries of log file
[start_transaction,T] Indicates that transaction T has

started execution
[write_item,T,X,old_value,new_value] Indicates that transaction T has

changed the value of database item X
from old value to new value.

[read_item,T,X] Indicates the transaction T has read
the value of database item X.

[commit,T] Indicates that transaction T has
completed successfully and effect of
transaction can be recorded
permanently in the database.

[abort,T] Indicates that transaction T has been
aborted.

Topic5: The system log [IMP]

Failed

Active Partially
commited

Commited

Terminated
d

Begin
Transaction

End
Transaction

Abort

Commit

Abort

Read,
write

 7

� The transaction is atomic unit of processing i.e. either performed entirely or none
performed at all.

� A correct execution of transaction must take the database item from one consistent state

to another consistent state.

� A transaction is isolated from other transactions when multiple transactions are accessing

the same data item concurrently in a serial or interleaving fashion.

� The changes applied to the database item by a commited transaction must persistent in the

database.

� Schedule (or) History: The order of execution of operations of serial or interleaving

transactions.

TTooppiicc 66:: DDeessiirraabbllee pprrooppeerrttiieess ooff ttrraannssaaccttiioonn ((oorr)) AACCIIDD pprrooppeerrttiieess ooff ttrraannssaaccttiioonn [[IIMMPP]]

Transaction

Atomicity

Consistency

Isolation

Durability

AAttoommiicciittyy

CCoonnssiisstteennccyy

IIssoollaattiioonn

DDuurraabbiilliittyy

TTooppiicc 77:: SScchheedduulleess && RReeccoovveerraabbiilliittyy

 T1 T2

read_item(x)
x:=x-n;
 read_item(x);
 x:=x+n;
write_item(x);
read_item(y);
y:=y+n;
 write_item(x);
write_item(y);

SA: r1(x); r2(x); w1(x); r1(y); w2(x); w1(y);

 8

--

� Two operations in a schedule are said to be conflict, if they satisfy all three of the following

conditions.
1. They belongs to different transactions.
2. They access the same data item.
3. At least one of the operation is a write operation.

� Consider schedule SA

SA: r1(x); r2(x); w1(x); r1(y); w2(x); w1(y);

� Consider two operations from schedule

 The above two operations are conflict since
The operations belongs to different transactions T1 &T2.
They access the same data item x.
One of the operation is write operation.

� Verify which of the operations are conflict
r2(x) & w1(x); Conflict
w1(x) & w2(x); Conflict
r1(x) & r2(x); Not conflict
w2(x) & w1(y); Not conflict

TTooppiicc88:: CCoonnfflliicctt ooppeerraattiioonnss

r1(x) & w2(x);

SB: r1(x); w1(x) ; r2(x); w2(x); r2(y); a1;

 T1 T2

read_item(x)
x:=x-n;
write_item(x);
 read_item(x);
 x:=x+m;
 write_item(x);

read_item(y);
 Fails

 9

� A sehedule ‘s’ of ‘n’ transactions T1, T2,…,Tn, is said to be a complete schedule if the

following conditions hold.
1.The operations in ‘s’ are exactly those operations in T1, T2,…,Tn, including a
commit or abort operation as the last operation for each transaction in the
schedule.
2. For any pair of operations from the same transaction Ti, their order of

appearance is ‘s’ is the same as their order of appearance in Ti
3. For any two conflicting operations, one of the two must occur before the order
in the schedule.

� Serial schedule: The order of execution of operations of serial transactions.

TTooppiicc 88:: CCoommpplleettee sscchheedduullee

TTooppiicc 99:: SSeerriiaall sscchheedduullee

 T1 T2

 read_item(x) ;
 x:=x +m;
 write_item(x);
 read_item(x);
 x:=x - n;
 write_item(x);
 read_item(y);
 y:=y + n;
 write_item(y);

SB: r2(x); w2(x); r1(x); w1(x); r1(y); w1(y);

 TT11 TT22

 read_item(x) ;
 x:=x – n;
 write_item(x);
 read_item(y);
 y:=y + n;
 write_item(y);
 read_item(x);
 x:=x + m;
 write_item(x);

SA: r1(x); w1(x); r1(y); w1(y); r2(x); w2(x);

 10

� Non serial schedule: The order of execution of operations of interleaving transactions.

TTooppiicc 1100:: NNoonn sseerriiaall sscchheedduullee

 TT11 TT22

 read_item(x) ;
 x:=x + n;
 read_item(x);
 x:= x + m;
 write_item(x);
 read_item(y);
 write_item(x);
 x:=y + n;
 write_item(y);

Sc: r1(x); r2(x); w1(x); r1(y); w2(x); w1(y);

 TT11 TT22

 read_item(x) ;
 x:=x - n;
 write_item(x);
 read_item(x);
 x:=x + m;
 write_item(x);
 read_item(y);
 y:=y + n;
 write_item(y);

SD: r1(x); w1(x); r2(x); w2(x); r1(y); w1(y);

 11

� Two schedules are result equivalent if they produce the same final states of the database

item.

TTooppiicc 1111:: RReessuulltt eeqquuiivvaalleenntt sscchheedduullee

 TT11 TT22

 read_item(x) ;

 x:=x – n;

 write_item(x);

 read_item(y);

 y:=y + n;

 write_item(y);
 read_item(x);

 x:=x + m;

 write_item(x);

 y x n m

90 90 3 2
93 87
 89

x=90

x=90-3=87

x=87

y=90

y=90+3=93

y=93
x=87

x=87+2=89

x=89

Schedule A

 TT11 TT22

 read_item(x) ;

 x:=x – n;

 write_item(x);

 read_item(x);

 x:=x + n;

 write_item(x);
 read_item(y);

 y:=y + n;

 write_item(y);

 y x n m

90 90 3 2
93 89

x=90

x=90-3=87

x=87

x=87

x=87+2=89

y=90
x=89

y=90+3=93

y=93

Schedule C

 12

� Serializability: A schedule ‘s’ of ‘n’ transactions is serializable if it equal to some serial

schedule of same ‘n’ transactions.

TTooppiicc 1122 :: SSeerriiaalliizzaabbllee sscchheedduullee VVIIMMPP

Schedule B

 T1 T2

 read_item(x) ;

 x:=x +m;

 write_item(x);
 read_item(x);

 x:=x - n;

 write_item(x);

 read_item(y);

 y:=y + n;

 write_item(y);

 y x n m

90 90 3 2
93 92
 89

x=90

x=90+2=92

x=92
x=92

x=92-3=89

x=89

y=90

y=90+3=93

y=93

 TT11 TT22

 read_item(x) ;

 x:=x - n;

write-item(x);
 read_item(x);

 x:= x + m;

 write_item(x);
 read_item(y);

 y:=y + n;

 write_item(y);

Schedule D

x=90

 y x n m
 90 90 3 2
 93 89

X=90 -3=87

x=87

X=87 +2=89

x=87

x=89
y=90

y=90 +3=93

y=93

 13

� A non serial schedule , schedule D is serializable to serial schedule schedule B , since they
are equivalent.

� Two schedules are said to be conflict equivalent if the order of any two conflicting

operations is the same in both the schedules.

� Two operations in a schedule are said to be conflict, if they satisfy all three of the

following conditions.
1. They belongs to different transactions.
2. They access the same data item.
3. At least one of the operation is a write operation.

E.g1: S1: r1(x); w2(x)

 S2: w2(x); r1(x)

Both S1 and S2 contains conflict operations but they are NOT CONFLICT equivalent.

E.g2: S1: w1(x); w2(x)

 S2: w2(x); w1(x)
Both S1 and S2 contains conflict operations but they are NOT CONFLICT equivalent.

E.g3: SA: w1(x); r2(x)

 SB: w1(x); r2(x)
Both SA and SB contains conflict operations but they are CONFLICT equivalent.

--

1. A Serializable schedule gives the benefits of concurrent execution

2. The interleaving of operations from concurrent transactions is typically determined by

OS SCHEDULER which allocates resources to all the processes

3. Enforces TWO PHASE LOCKING PROTOCOL (Concurrency control protocol)

4. Ensures TIME STAMP ORDERING PROTOL (Concurrency control protocol)

5. Ensures MULTIVERSION PROTOCOL (Maintains multiple versions of database item)

6. Ensures OPTIMISTIC (or) CERTIFICATION (or) VALIDATION protocol (Concurrency
control protocols)

TTooppiicc1144:: CCoonnfflliicctt EEqquuiivvaalleenntt SScchheedduullee [[IIMMPP]]

Topic 15: Uses Of Serializability

 14

--

Conflict Serializable: A schedule S is conflict serializable if it is conflict equivalent to some
serial schedule SI

� Consider the schedules SA and SD

 SA: r1(x); w1(x); r1(y); w1(y); r2(x); w2(x);

 SD: r1(x); w1(x); r2(x); w2(x); r1(y); w1(y);

� Consider

1. In both the schedules Transaction 2 reads the values after Transaction 1 writes

2. The operations w1(x) ;r2(x) is conflicting operations

3. Last operations are write operation in both the schedules

� Therefore SD is conflict serializable to SA

Consider two schedules S and Sg

� Two schedules S and Sg are said to be view equivalent

1. Bothe schedules have same transactions and same operations

TTooppiicc1166:: CCoonnfflliicctt SSeerriiaalliizzaabbllee SScchheedduullee [[IIMMPP]]

w1(x) ;r2(x) in SA

w1(x) ;r2(x) in SD

TTooppiicc 1177:: VViieeww EEqquuiivvaalleennccee [[IIMMPP]]

 S Sg

 T1,T2,T3 T1,T2,T3
read_item(x)
write_item(x)

read_item(x)
write_item(x)

S: r1(x); w1(x); r1(y); w2(x); w3(x);

Sg: r1(x); w2(x); w1(x); w3(x); c1; c2; c3;

 15

2. The first operation of first schedule should be same as the first operation of second
schedule

3. The last operation of first schedule should be same as the last operation of second

schedule

4. Both the schedules enforce conflict equivalence

� A Schedule Sg is view serializable if it is view equivalent to some serial schedule S

� CONSTRAIND WRITE ASSUMPTION :

Any write operation wi(x) in Ti is preceded by a read operation ri(x).

Note : Read value for data item before writing it.

Note : w1(x) preceded by the r1(x)

Note: In the above schedule w1(x) is preceded by r1(x)

� UN CONSTRAIND WRITE ASSUMPTION (OR) BLIND WRITES

The read operation ri(x) is not preceded by write operation wi(x)

Note: Data item value can’t be read before writing it

Note: w2(x) and w3(x) is not preceded by the read operations r2(x) and r3(x)

TTooppiicc 1188:: VViieeww SSeerriiaalliizzaabbiilliittyy [[IIMMPP]]

S: r1(x); w1(x); r1(y); w2(x); w3(x);

Sg: r1(x); w2(x); w1(x); w3(x); c1; c2; c3;

Non serial schedule Sg is view serializable to serial schedule S

Sg: r1(x); w2(x); w1(x); w3(x); c1; c2; c3;

 16

I

� Transaction: Sequence of statements that performs specified task.
� A single SQL statement always considered to be atomic.

� Characteristics :

Access Mode specified as READ ONLY (or) READ WRITE

READ ONLY: Read the data from database (SELECT)
READ WRITE: INSERT, UPDATE, DELETE

DIAGNOSTIC SIZE N

The integer value N indicating the number of error conditions or exceptions.

These conditions supply feedback information to the users on the most recently
executed SQL statements.

EXEC SQL WHENEVER SQLERROR GOTO UNDO;

EXEC SQL SET TRANSACTION
 READ WRITE
 DIAGNOSTICS SIZE 5
 ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE(Fname,Lname,SSN,Dno,Salary)
VALUES(‘Robert’,’Smith’,’991004321’,2,35000);

EXEC SQL UPDATE EMPLOYEE
 SET Salary = Salary * 1.1 WHERE Dno = 2;

EXEC SQL COMMIT;

UNDO: EXEC SQL ROLLBACK;
THE_END: …;

(a) Access Mode

 TTooppiicc 1199:: TTrraannssaaccttiioonn SSuuppppoorrtt IInn SSQQLL IMP

(b) Diagnostics Area Size

(c) ISOLATION LEVEL

 17

Isolation level specified with option

 ISOLATION LEVEL < ISOLATION>

There may be three of the following violations in SQL TRANSACTIONS

� The problem occurs when one transaction update the database item and then

fails

� If transaction T1 fails the database item roll backs to its previous state, but
transaction T2 has read the incorrect value of x.

ISOLATION:

1. READ UNCOMMITED
2. READ COMMITED
3. REPEATABLE READ
4. SERIALIZABLE

 T1 T2

read_item(x) ;

x:=x – n;

write_item(x);
 read_item(x);

 x:=x + m;

 write_item(x);

read_item(x);
 FAIL

x=80

x=80-5=75

x=75

x=75+4=79

x=79

 x n m y

80 5 4 10
75
79

x=75

x=79

1. Dirty read :

 18

A transaction T1 may read a given value from a table. If another transaction T2 later
updates that value and T1 reads that value again, T1 will see a different values.

1. A transaction T1 may read the rows from table based on the where condition.

2. A transaction T2 inserts a new record that satisfy where condition used in T1.

3. If T1 is repeated, then T1 will see a PHONTOM, a row that previously did not exist.

Possible violations Based on isolation levels as defined in SQL
 TYPE OF VIOLATION
Isolation Level Dirty Read Non repeatable Read Phantom
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

2. Nonrepeatable read

3. Phontoms

4
Read by T2

1
2
3

Read by T1

3

1
2

4

Read by T1

1

Testing Serializability (or) Confilct Serializability
Problem 1: Verify whether the following Transactions ensures serializablity.

 Sc: r1(x) ; r2(x); w1(x); r1(y); w2(x); w1(y);

� Since the Precedence Graph has Cycle, the schedule Sc is not Serializable or

Conflict Serializable.

 x

 T1 → T2

r1 (x) w2 (x)

w1 (x) r2 (x)

w1 (x) w2(x)

 y

 T1 → T2

r1 (y) w2 (y)

w1 (y) r2 (y)

w1 (y) w2(y)

 x

 T2 → T1

r2 (x) w1 (x)

w2 (x) r1 (x)

w2 (x) w1(x)

 y

 T2 → T1

r2 (y) w1 (y)

w2 (y) r1 (y)

w2 (y) w1(y)

T1 T2

x

x

2

Problem 2: Verify whether the following Transactions ensures

serializablity.

 SD: r1(x); w1(x); r2(x); w2(x); r1(y); w1(y);

� Since the Precedence Graph has No Cycle, the schedule SD is Serializable

or Conflict Serializable.

T1 T2

x

 x

 T1 → T2

r1 (x) w2 (x)

w1 (x) r2 (x)

w1 (x) w2(x)

 y

 T1 → T2

r1 (y) w2 (y)

w1 (y) r2 (y)

w1 (y) w2(y)

 x

 T2 → T1

r2 (x) w1 (x)

w2 (x) r1 (x)

w2 (x) w1(x)

 y

 T2 → T1

r2 (y) w1 (y)

w2 (y) r1 (y)

w2 (y) w1(y)

1

Problem 3: Verify whether the following schedule enforces conflict serializability.

SE: r2(z); r2(y); w2(y); r3(y); r3(z); r1(x); w1(x); w3(y); w3(z); r2(x); r1(y); w1(y); w2(x);

 x

 T1 → T2

r1 (x) w2 (x)

w1 (x) r2 (x)

w1 (x) w2(x)

 y

 T1 → T2

r1 (y) w2 (y)

w1 (y) r2 (y)

w1 (y) w2(y)

 z

 T1 → T2

r1 (z) w2 (z)

w1 (z) r2 (z)

w1 (z) w2(z)

 x

 T1 → T3

r1 (x) w3 (x)

w1 (x) r3 (x)

w1 (x) w3(x)

 y

 T1 → T3

r1 (y) w3 (y)

w1 (y) r3 (y)

w1 (y) w3(y)

 z

 T1 → T3

r1 (z) w3 (z)

w1 (z) r3 (z)

w1 (z) w3(z)

2

 x

 T2 → T1

r2 (x) w1 (x)

w2 (x) r1 (x)

w2 (x) w1(x)

 y

 T2 → T1

r2 (y) w1 (y)

w2 (y) r1 (y)

w2 (y) w1(y)

 z

 T2 → T1

r2 (z) w1 (z)

w2 (z) r1 (z)

w2 (z) w1 (z)

 x

 T2 → T3

r2 (x) w3 (x)

w2 (x) r3 (x)

w2 (x) w3(x)

 y

 T2 → T3

r2 (y) w3 (y)

w2 (y) r3 (y)

w2 (y) w3(y)

 z

 T2 → T3

r2 (z) w3 (z)

w2 (z) r3 (z)

w2 (z) w3 (z)

 x

 T3 → T1

r3 (x) w1 (x)

w3 (x) r1 (x)

w3 (x) w1(x)

 y

 T3 → T1

r3 (y) w1 (y)

w3 (y) r1 (y)

w3 (y) w1(y)

 z

 T3 → T1

r3 (z) w1 (z)

w3 (z) r1 (z)

w3 (z) w1 (z)

 x

 T3 → T2

r3 (x) w2 (x)

w3 (x) r2 (x)

w3 (x) w2(x)

 y

 T3 → T2

r3 (y) w2 (y)

w3 (y) r2 (y)

w3 (y) w2(y)

 z

 T3 → T2

r3 (z) w2 (z)

w3 (z) r2 (z)

w3 (z) w2 (z)

3

� Since the precedence has cycles , the schedule SE is not conflict

serializable or serializable.

T3

T1 T2

y
y, z

x

1

� Concurrency: A problem situation as a single data item is required by the multiple

transactions simultaneously.

� Lock: A lock is a variable that prescribe the state of database items.

� A binary lock can have two states or values locked and unlocked (or) 1 and 0.

� States:

1. Lock(x)=0 indicates that the database item is available.

2. Lock(x)=1 indicates that the database item is not available.

� Operations:

1. Lock_item(x);

2. Unlock_item(x):

Note: x is a database item.

� Algorithm:

� Rules for Binary Locking:

Topic 1: Two Phase Locking Techniques for Concurrency Control

CONCURRENCY CONTROL

1.1 Binary Locks

2

1. The read/write operation is preceded by lock operation.

2. A transaction must be unlocked if it is locked.

3. A transaction must not issue lock operation once it is locked.

4. A transaction will not issue unlock if it is not locked.

� Multiple transactions can simultaneously read the data but single transaction exclusively

updates the data while remaining transactions are waiting.

� Operations:

1. read_lock(x): Multiple transactions are allowed simultaneously to read the data base

item.

2. write_lock(x): A single transaction exclusively holds lock on the database item.

3. unlock(x): Release of lock on data base item after completion of transaction.

� Algorithm:

read_lock(x)

read_lock(x)
T1

read_lock(x)
T2

T3

x
read_lock(x)

T4

read_lock(x)
T5

read_lock(x)
T6

T2 T3 T4 T5 T6

x write_lock(x)
T1

Waiting Transactions

1.2 Shared/Exclusive Lock (or) Read/Write Lock

3

� Rules for Shared/Exclusive Locking

1. The read/write operation is preceded by lock operation.

2. A transaction must issue write lock before write operation.

3. A transaction must be unlocked if it is locked.

4. A transaction must not issue lock operation once it is locked.

5. A transaction will not issue unlock if it is not locked.

� Objective: Concurrency Control.

Topic 2: Guaranteeing Serializability by Two-Phase Locking
A

4

� read_lock(x): Multiple transactions are allowed simultaneously to read the data base

item.

� write_lock(x): A single transaction exclusively holds lock on the database item.

� Rule:

� All the locking operations are preceded by the un lock operation.

� Growing Phase:

1. A new lock on data base item can be acquired but none can be released.

2. Up gradation of lock is possible (Changing read lock to write lock)

� Shrinking Phase:

3. Existing locks can be released but no new locks can be acquired.

4. Down gradation of lock is possible (Changing write lock to read lock)

2.1 Static 2PL (or) Conservative 2PL:

� All the locking operations are preceded by the un lock operation.

� Read Set & Write Set for the transactions are formulated.

� Read Set: Set of all the data items that the transaction reads.

� Write Set: Set of all the data items that the transaction writes.

read_lock(x)

read_lock(x)
T1

read_lock(x)
T2

T3

x
read_lock(x)

T4

read_lock(x)
T5

read_lock(x)
T6

T2 T3 T4 T5 T6

x write_lock(x)
T1

Waiting Transactions

5

Example: Find Read Set & Write Set for the following Transaction.

PROBLEMS

Problem 1: Find Read Set & Write Set for the following Transactions.

Read Set

X , Y

Write Set

X

Read Set

X , Y

Write Set

X , Y

6

Problem 2: Verify whether the following transaction ensures 2PL.

Result: The Transaction T2 ensure 2PL since all locking operations precedes un lock

operations.

Problem 3: Verify whether the following transactions ensures 2PL.

Result: The Transaction T2 and T2 ensure 2PL since all locking operations precedes un lock

operations.

1

(i) Time Stamp Ordering Algorithm (TO): The Timestap ordering protocol is a protocol used to

sequence the transactions based on their Timestamps.

� Each transaction must have time stamp when it gets started.

� Time Stamp: The unique identification number assigned for transaction.

� The time stamp of T is also called as TS (T).

Operations:

� read_TS(X): The read timestamp of item X is the largest timestamp among all the timestamps of

transactions that have successfully read item X.

� write_TS(X): The write timestamp of item X is the largest of all the timestamps of transactions that

have successfully written item X.

(ii) Basic Time Stamp Ordering Algorithm: The order of transaction is nothing but the

ascending order of the transaction creation.

� Every transaction is issued a timestamp based on when it enters the system. Suppose, if an old

transaction Ti has timestamp TS(Ti), a new transaction Tj is assigned timestamp TS(Tj) such

that TS(Ti) < TS(Tj).

read_TS(x):

100

101

102

write_TS(x):

100

 101

102

x:

10

11

12

read_TS(x):

100

101

99

101

write_TS(x):

100

 101

x:

10

11

12

11

TS(T1)=100

T1

read_item(x); 10

x:=x+1; 11

write_item(x); 11

TS(T2)=101

T2

read_item(x); 11

x:=x+1; 12

write_item(x); 12

TS(T3)=99

T3

read_item(x); 12

x:=x+1; 13

write_item(x);

aborted;

TS(T1)=100

T1

read_item(x); 10

x:=x+1; 11

write_item(x); 11

TS(T2)=101

T2

read_item(x); 11

x:=x+1; 12

write_item(x); 12

TS(T3)=102

T3

read_item(x); 12

x:=x+1; 13

write_item(x); 13

CONCURRENCY CONTROL BASED ON TIME STAMP ORDERING

2

Condition 1:

� Whenever a transaction T issues a write_item(X) operation, the following is checked:

 99 > 101 101 > 99

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and reject the

operation.

b. If the condition in part (a) does not occur, then execute the write_item(X) operation of T and

set write_TS(X) to TS(T).

Condition 2:

Whenever a transaction T issues a read_item(X) operation, the following is checked:

 101 > 99

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation.

 101 <= 99

b. If write_TS(X) <= TS(T), then execute the read_item(X) operation of T and set read_TS(X) to the

larger of TS(T) and the current read_TS(X).

Condition 3:

Cascading Rollback: If transaction T is aborted and rolled back, any transaction Ti that may have used a

value written by T must also be rolled back.

(iii) Strict Time Stamp Ordering Algorithm (TO): Every transaction must commit when it exits.

read_TS(x):

100

101

102

write_TS(x):

100

 101

102

x:

10

11

12

13

TS(T1)=100

T1

read_item(x); 10

x:=x+1; 11

write_item(x); 11

Failed

TS(T2)=101

T2

read_item(x); 11

x:=x+1; 12

write_item(x); 12

Failed

TS(T3)=102

T3

read_item(x); 12

x:=x+1; 13

write_item(x); 13

Failed;

read_TS(x):

100

101

102

write_TS(x):

100

 101

102

x:

10

11

12

13

TS(T1)=100

T1

read_item(x); 10

x:=x+1; 11

write_item(x); 11

commit;

TS(T2)=101

T2

read_item(x); 11

x:=x+1; 12

write_item(x); 12

commit;

TS(T3)=102

T3

read_item(x); 12

x:=x+1; 13

write_item(x); 13

commit;

3

 102 > 101
� A transaction T that issues a read_item(X) or write_item(X) such that TS(T) > write_TS(X) has its

read or write operation delayed until the transaction T that wrote the value of X has committed

or aborted.

� Thomas’s Write Rule: This is modification of the basic TO algorithm. When the current transaction

(TS(T)) fails then continue the read operation and abort write operation.

 102 > 102

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

 102 > 102

2. If write_TS(X) > TS(T), then do not execute the write operation but continue processing.

read_TS(x):

100

101

102

write_TS(x):

100

 101

102

101

x:

10

11

12

TS(T1)=100

T1

read_item(x); 10

x:=x+1; 11

write_item(x); 11

commit;

TS(T2)=101

T2

read_item(x); 11

x:=x+1; 12

write_item(x); 12

commit;

TS(T3)=102

T3

read_item(x); 12

x:=x+1; 13

write_item(x); 13

Failed;

1

� Version: State of database item after successful updation.

� Temporal Database: Database keeps track of multiple versions of database items.

E.g. xi, xi+1, xi+2, xi+3 etc.

� Advantage: Multiple versions of database items are maintained so that concurrency is avoided to

certain extent.

� Operations:

1. read_TS(Xi): The read timestamp of Xi is the largest of all the timestamps of transactions that have

successfully read version Xi.

2. write_TS(Xi): The write timestamp of Xi is the timestamp of the transaction that wrote the value of

version Xi.

� Serializability in Multiversion Concurrency Control:

To ensure the serializability the follow rules are used

1. If transaction T issues a write_item(X) operation, and version i of X has the highest write_TS(Xi) of

all versions of X that is also less than or equal to TS(T), and read_TS(Xi) > TS(T), then abort and roll

back transaction T; otherwise, create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has the highest

write_TS(Xi) of all versions of X that is also less than or equal to TS(T); then return the value of Xi

to transaction T, and set the value of read_TS(Xi) to the larger of TS(T) and the current

read_TS(Xi).

read_TS(x):

100

101

102

write_TS(x):

100

 101

102

x:

10

11 xi First Version

12 xi+1 Second Version

13 xi+2 Third Version

TS(T1)=100

T1

read_item(x); 10

x:=x+1; 11

write_item(x); 11

commit;

TS(T2)=101

T2

read_item(xi); 11

xi:=xi+1; 12

write_item(xi); 12

commit;

TS(T3)=102

T3

read_item (xi+1); 12

x:=(xi+1)+1; 13

write_item((xi+1)+1); 13

commit;

1.4 Multiversion Concurrency Control Techniques

2

� Multiversion Two-Phase Locking Using Certify Locks:

1. Compatability table for read/write locks:

 Case 1: Case 2:

 Case 3: Case4:

2. Compatability table for read/write/certify locks:

Certify Lock (or) Notify Lock: Certify lock has highest priority. It is the monarch lock where other locks

can not be done.

read_lock(xi)

xi

T1

T2
read_lock(xi)

read_lock(xi)
xi

Cannot impose write_lock(x)

T1

T2

xi

Cannot impose read_lock(x)

T1

T2

write_lock(xi)
xi

Cannot impose read_lock(x)

T2

T1

write_lock(xi)

xi
write_lock(xi)

T1

T2

Xi+1

Xi+2 T3

write_lock(xi+1)

write_lock(xi+2)

1

DISTRIBUTED DATABASE CONCEPTS

TOPIC1: DISTRIBUTED DATABASE CONCEPTS
 Centralized database: Centralized database is a software system that creates & access data base at

central site
 Disadvantage of central site: If central site fails, database is not available for other sites in the

network

Figure 1. Centralized Database Architecture.

 Distributed Database Management System (DDBMS): Distributed database management system is a

software system that creates & access the distributed database over a computer network.

1.1 DIFFERENCES BETWEEN DDB AND MULTIPROCESSOR SYSTEMS

 Connection of database nodes over a computer network: There are multiple computers, called sites

or nodes. These sites must be connected by an underlying communication o transmit data and
commands among sites.

 Logical interrelation of the connected databases: It is essential that the information in the databases
be logically related.

 Absence of homogeneity constraint among connected nodes: It is not necessary that all nodes be
identical in terms of data, hardware, and software.

Communication
Network

Central Site
(Chiocago)

DB1 DB2

 Site 1
(San Francisco)

Site 2
(Texas)

Site 3
(Dallas)

 Site 4
(NewYork)

2

1.2 TRANSPARENCY

(a) Data Organization
Transparency (or)
Distribution or
Network Transparency

This refers the user can access any site across the network.
 Location Transparency: The commands used to perform a task is independent

of the location of data and location of system across the network.
 Naming Transparency: The name of the objects can be accessed

unambiguously without additional specifications.
(b) Replication

Transparency
Copies of data may be stored at multiple sites for better availability, performance,
& reliability.

(c) Fragmentation
Transparency

Two types of fragmentation are possible
1. Horizontal Fragmentation: Distributes the relation into set of tuples (rows).

2. Vertical Fragmentation: Distributes the relation into sub relations where each

sub relation is defined by a subset of the columns of the original relation.

Figure 2. A Truly Distributed Database Architecture

1.3 AUTONOMY

 Autonomy determines the extent to which individual nodes or databases in a connected Distribute

Data Base can operate independently.
 A high degree of autonomy is desirable for increased flexibility and customized maintenance of an

individual node.
 Autonomy can be applied to design, communication, and execution.
1. Design Autonomy: Design autonomy refers to independence of data model usage and transaction

management techniques among nodes.
2. Communication Autonomy: Communication autonomy determines the extent to which each node

can decide on sharing of information with other nodes.
3. Execution Autonomy: Execution autonomy refers to independence of users to act as they please.

3

1.4 RELIABILITY & AVALIABILITY

 Reliability: Reliability is broadly defined as the probability that a system is running (not down) at a

certain time point.

 Availability: The probability that the system is continuously available during a time interval.

1.5 ADVANTAGES OF DISTRIBUTED DATABASE
1. Improved ease and flexibility of application development.

2. Increased reliability and availability

3. Improved performance
 Data localization reduces the contention for CPU and I/O services and reduce access delay.

 Local queries & transactions accessing data at a single site have better performance because of the

smaller local databases.

 Inter query & Intra query parallelism can be achieved by executing multiple queries at different

queries at different sites or by breaking up query into a number of sub queries that execute in
parallel.

4. Easier expansion.

1.6 FUNCTIONS OF DDBMS

2. Keeping Track of Data Distribution: The ability to keep track of the data distribution, fragmentation,

and replication by expanding the DDBMS catalog.

3. Distributed Query Processing: The ability to access remote sites and transmit queries and data
among the various sites via a communication network.

4. Distributed Transaction Management: The ability to access remote sites and transmit queries and
data among the various sites via a communication network.

5. Replicated Data Management: The ability to decide which copy of a replicated data item to access.

6. Distributed Database Recovery: The ability to recover from individual site crashes and from new

types of failures, such as the failure of communication links.

7. Security: Distributed transactions must be executed with the proper management of the security of

the data and the authorization/access privileges of users.

8. Distributed Directory (Catalog) Management: A directory contains information
(metadata) about data in the database. The directory may be global for the entire DDB, or local for
each site.

4

--

TOPIC 2: DATA FRAGMENTATION, REPLICATION, AND ALLOCATION TECHNIQUES FOR
DISTRIBUTED DATABASE DESIGN VIMP

 Fragment: Subset of table.

2.1 DATA FRAGMENTATION

 Fragmentation is the task of dividing a table into a set of smaller tables.

 The subsets of the table are called fragments.

 Fragmentation can be of three types: horizontal, vertical, and hybrid.

2.1.1 Horizontal Fragmentation: A horizontal fragment of a relation is a subset of the tuples in that

relation. The tuples that belong to the horizontal fragment are specified by a condition on one or more

attributes of the relation.

EMPLOYEE
EMPNO ENAME SALARY

1 JOHN 3400
2 MARTIN 4300

2.1.2 Vertical Fragmentation: Vertical fragmentation divides a relation “vertically” by columns. A

vertical fragment of a relation keeps only certain attributes of the relation.

EMPLOYEE

EMPNO ENAME SALARY

1 JOHN 3400

2 MARTIN 4300

3 ELICA 4500

4 MILLER 3400

EMPLOYEE
EMPNO ENAME

1 JOHN
2 MARTIN
3 ELICA
4 MILLER

5

2.1.3 Mixed Fragmentation: We can intermix the two types of fragmentation, yielding a mixed

fragmentation.

2.2 DATA REPLICATION AND ALLOCATION

 Data Replication is the process of storing data in more than one site or node.

 It is useful in improving the availability of data.

 It is simply copying data from a database from one server to another server so that all the users can

share the same data without any inconsistency.

 The most extreme case is replication of the whole database at every site in the distributed system,

thus creating a fully replicated distributed database.

 The other extreme from full replication involves having no replication that is, each fragment is

stored at exactly one site. This is also called non redundant allocation.

TOPIC 3: LOCKS FOR CONCURRENCY CONTROL IN INDEXES

 Types of Locks for Concurrency Control in indexes are IX (Intension Exclusive), IS (Intension Shared),

Shared (S), Exclusive (X).

 All the locking operations must precede with unlock operations in the same order and indexes.

EMPLOYEE
EMPNO ENAME

1 JOHN
2 MARTIN

6

7

TOPIC 4: QUERY PROCESSING AND OPTIMIZATION

 Query Processing and Optimization determines the efficient way to execute a query with

different possible query plans.

 It cannot be accessed directly by users once the queries are submitted to the database
server or parsed by the parser.

 A query is passed to the query optimizer where optimization occurs.
 Main aim of Query Optimization is to minimize the cost function i.e. I/O Cost, CPU Cost,

Communication Cost.
 It defines how an RDBMS can improve the performance of the query by re-ordering the

operations.
 It is the process of selecting the most efficient query evaluation plan from among various

strategies if the query is complex.
 It computes the same result as per the given expression, but it is a least costly way of

generating result.

Advantages:

 It requires less cost per query.

 It gives less stress to the database.

 It provides high performance of the system.

 It consumes less memory.

A distributed database query is processed in stages as follows:

1. Query Mapping: Mapping joins multiple source tables.

2. Localization: Data localization is the practice of keeping data within the region it originated from. For

example, if an organization collects data in the UK, they store it in the UK rather than transferring it

to another country for processing.

3. Global Query Optimization: The tables required in a global query have fragments distributed across

multiple sites. The local databases have information only about local data. The controlling site uses

the global data dictionary to gather information about the distribution and reconstructs the global

view from the fragments.

8

4.1 Data Transfer Costs of Distributed Query Processing

 Suppose that the EMPLOYEE and DEPARTMENT relations are distributed at two sites.

 Consider the query Q: For each employee, retrieve the employee name and the name of the

department for which the employee works. This can be stated as follows in the relational algebra:

 The size of EMPLOYEE relation is 10,000 × 100 = 1,000,000 bytes.

Distributed Query Optimization at Global Level

Distributed Execution Manager at Global Level
Global Level

Local Execution
Manager

Local Query
Optimization

Local Execution
Manager

Local Query
Optimization

Local Execution
Manager

Local Query
Optimization

9

 The size of DEPARTMENT relation is 100 × 35 = 3,500 bytes.

 The size of the attributes Fname, Lname and Dname is 40 bytes.

There are three simple strategies for executing this distributed query:

1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result site, and perform the join

at site 3. In this case, a total of 1,000,000 + 3,500 = 1,003,500 bytes must be transferred.

2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send the result to site 3. The

size of the query result is 40 × 10,000 = 400,000 bytes, so 400,000 + 1,000,000 = 1,400,000 bytes

must be transferred.

3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, and send the result to site 3.

In this case, 400,000 + 3,500 = 403,500 bytes must be transferred.

We choose strategy 3 for optimization criteria.

TOPIC 5: TRANSACTION MANAGEMENT IN DISTRIBUTED DATABASES

 Global Transaction Manager is introduced for supporting distributed transactions.

 Global Transaction Manager coordinate the execution of database operations like

BEGIN_TRANSACTION, READ or WRITE, END_TRANSACTION, COMMIT_TRANSACTION, and

ROLLBACK (or ABORT) across multiple sites.

 The Global Transaction Manager stores bookkeeping information related to each transaction, such

as a Unique Identifier, Originating Site, Name, and so on.

 For READ operations, it returns a local copy if valid and available.

 For WRITE operations, it ensures that updates are visible across all sites containing copies (replicas)

of the data item.

 For ABORT operations, the manager ensures that no effects of the transaction are reflected in

any site of the distributed database.

 For COMMIT operations, it ensures that the effects of a write are persistently recorded on all

databases containing copies of the data item.

 Atomic termination (COMMIT/ ABORT) of distributed transactions is commonly implemented

using the two-phase commit protocol.

10

5.1 ACID properties of Transaction

 Atomicity: The transaction is atomic unit of processing i.e. either performed entirely or none

performed at all.

 Consistency: A correct execution of transaction must take the database item from one consistent

state to another consistent state.

 Isolation: A transaction is isolated from other transactions when multiple transactions are accessing

the same data item concurrently in a serial or interleaving fashion.

 Durability: The changes applied to the database item by a commited transaction must persistent in

the database.

Transaction

Atomicity

Consistency

Isolation

Durability

11

5.2 Two Phase Commit Protocol

If transaction updates data on multiple nodes, this implies

 Either all nodes must omit, or all nodes must abort

 If an node crashes, all must abort

5.3 Three-Phase Commit Protocol

 The biggest drawback of 2PC is that it is a blocking protocol. Failure of the coordinator blocks all

participating sites, causing them to wait until the coordinator recovers.

 This can cause performance degradation, especially if participants are holding locks to shared

resources. Other types of problems may also occur that make the outcome of the transaction

nondeterministic.

12

5.4 Operating System support for Transaction Management

 Semaphore: Semaphore in OS is an integer value that indicates whether the resource required by

the process is available or not. The value of a semaphore is modified by wait () or signal () operation

where the wait () operation decrements the value of semaphore and the signal () operation

increments the value of the semaphore.

 OS supports semaphore to guarantee mutually exclusive access to shared resources.

 Specialized hardware support for locking can be provided.

 Common transaction support operations can be supported.

TOPIC 6: CONCURRENCY CONTROL AND RECOVERY IN DISTRIBUTED DATABASES

 For concurrency control and recovery purposes, numerous problems arise in a distributed DBMS

environment that are not encountered in a centralized DBMS environment. These include the

following.

1. Dealing with multiple copies of the data items.

2. Failure of individual sites.

3. Failure of communication links.

4. Distributed commit.

5. Distributed deadlock.

6.1 Distributed Concurrency Control Based on a Distinguished Copy of a Data Item

Primary Site Technique: In this method, a single primary site is designated to be the coordinator site for

all database items. Hence, all locks are kept at that site, and all requests for locking or unlocking are sent

there.

Primary Site with Backup Site: In this method, all locking information is maintained at both the primary

and the backup sites. In case of primary site failure, the backup site takes over as the primary site, and a

new backup site is chosen.

This simplifies the process of recovery from failure of the primary site, since the backup site takes over

and processing can resume after a new backup site is chosen and the lock status information is copied to

that site.

13

Primary Copy Technique:

 This method attempts to distribute the load of lock coordination among various sites by having the
distinguished copies of different data items stored at different sites. Failure of one site affects any
transactions that are accessing locks on items whose primary copies reside at that site, but other
transactions are not affected. This method can also use backup sites to enhance reliability and
availability.

Choosing a New Coordinator Site in Case of Failure:

 Whenever a coordinator site fails in any of the preceding techniques, the sites that are still running
must choose a new coordinator.

 If a backup site X is about to become the new primary site, X can choose the new backup site from
among the system’s running sites. However, if no backup site existed, or if both the primary and the
backup sites are down, a process called election can be used to choose the new coordinator site.

 In this process, any site Y that attempts to communicate with the coordinator site repeatedly and
fails to do so can assume that the coordinator is down and can start the election process by sending
a message to all running sites proposing that Y become the new coordinator. As soon as Y receives a
majority of yes votes, Y can declare that it is the new coordinator. The election algorithm itself is
complex, but this is the main idea behind the election method. The algorithm also resolves any
attempt by two or more sites to become coordinator at the same time.

6.2 Distributed Concurrency Control Based on Voting:

 If a lock request is sent to all sites that includes a copy of the data item. Each copy maintains its own
lock and can grant or deny the request for it.

 If a transaction that requests a lock is granted that lock by a majority of the copies, it holds the lock
and informs all copies that it has been granted the lock.

 If a transaction does not receive a majority of votes granting it a lock within a certain time-out
period, it cancels its request and informs all sites of the cancellation.

TOPIC7: TYPES OF DISYRIBUTED DATBASES

7.1 FEDERATED DATABASE MANAGEMENT SYSTEMS

 A Federated Database System (FDBS) is a collection of cooperating database systems that are

autonomous and possibly heterogeneous.

 The type of heterogeneity present in FDBSs may arise from several sources.

TYPES OF HETEROGENEITY:

1. Differences in Data Models:

14

 Data is represented using different data models. (Hierarchical, Relational, Network & Object

Oriented data models).

2. Differences in Constraints:

 The global schema must also deal with different constraints. (Not null, Unique, Primary Key, Foreign

Key, Check)

 ER models are represented as referential integrity constraints in the relational model.

 Triggers may have to be used to implement certain constraints in the relational model.

3. Differences in Query Languages:

 Even with the same data model, the languages and their versions vary. For example, SQL has

multiple versions like SQL-89, SQL-92, SQL-99, and SQL: 2008, and each system has its own set of

data types, comparison operators, string manipulation features, and so on.

7.1.2 SEMANTIC HETEROGENEITY.

 Semantic heterogeneity occurs when there are differences in the meaning, interpretation, and

intended use of the same or related data.

1. The universe of discourse from which the data is drawn.

 For example, for two customer accounts, databases in the federation may be from the United States

and Japan and have entirely different sets of attributes about customer accounts required by the

accounting practices. Currency rate fluctuations would also present a problem. Hence, relations in

these two databases that have identical names-CUSTOMER or ACCOUNT-may have some common

and some entirely distinct information.

2. Representation and Naming.

 The representation and naming of data elements and the structure of the data model may be pre

specified for each local database.

3. The understanding, meaning, and subjective interpretation of data.

 This is a chief contributor to semantic heterogeneity.

4. Transaction and Policy Constraints.

 These deal with serializability criteria, compensating transactions, and other transaction policies.

5. Derivation of Summaries.

15

 Aggregation, summarization, and other data processing features and operations supported by the
system.

TOPIC 9: DISTRIBUTED DATABASE ARCHITECTURES IMP

9.1 PARALLEL VERSUS DISTRIBUTED ARCHITECTURES

There are two main types of multiprocessor system architectures that are commonplace:

 Shared Memory (tightly coupled) Architecture: Multiple processors share secondary (disk) storage

and also share primary memory.

 Shared Disk (loosely coupled) Architecture: Multiple processors share secondary (disk) storage but

each has their own primary memory.

Fig 1. Shared nothing architecture.

16

Fig 2. A networked architecture with a centralized database at one of the sites.

Fig 3. A truly distributed database architecture

9.2 GENERAL ARCHITECTURE OF PURE DISTRIBUTED DATABASES

 In this section we discuss both the logical and component architectural models of a DDB.

9.2.1 SCHEMA ARCHITECTURE OF DISTRIBUTED DATABASES.

 Fig 4. Schema Architecture of Distributed Database.

17

 Logical Internal Schema (LIS) specifies physical organization details at that particular site.

 Logical Conceptual Schema (LCS) specifies the logical organization of data at each site is specified by

the local conceptual schema

 The Global Conceptual Scheme (GCS) specifies provides network transparency.

9.2.2 COMPONENT ARCHITECTURE OF DISTRIBUTED DATABASES.

Fig 5. Component architecture of distributed database.

 Query Compiler: Inspects the process of query compilation.

 Query Optimizer: The optimizer selects the minimum cost for execution.

 Transaction Manager: Coordinates and executes the transactions.

18

 System Catalog: The system catalogue stores meta-data including the schemas of the databases.

9.2.3 FEDERATED DATABASE SCHEMA ARCHITECTURE

 Federated Schema is an integration of multiple export schemas.

Fig 6. The five-level schema architecture in a federated database system (FDBS).

 Component DBS: Database control system.

 Local schema: Conceptual schema.

 Component schema: Translates the local schema into common data model.

 Export schema: Subset of component schema.

 Federated schema: The federated schema is the global schema or view, which is the result of

integrating all the shareable export schemas.

 External schema: External schemas define the schema for a user group or an application.

19

9.2.4 THREE-TIER CLIENT-SERVER ARCHITECTURE

In the three-tier client-server architecture, the following three layers exist:

Fig 7. The three tire client server architecture.

1. Presentation Layer (Client):

 This provides the user interface and interacts with the user.

 The programs at this layer present web interfaces or forms to the client in order to interact with the

application.

 Web browsers are often utilize the languages like HTML, XHTML, CSS, Java, JavaScript and others to

perform client side validations.

20

2. Application Layer (Business Logic):

 Application logic is written in this phase.

 Queries can be formulated based on user input from the client.

 Query results can be formatted and sent to the client for presentation.

 Additional application functionality can be handled such as security checks, identity verification, and

other functions.

 The application layer can interact with one or more databases or data sources as needed by

connecting to the database using ODBC, JDBC, SQL/CLI, or other database access techniques.

3. Database server.

 This layer handles query and update requests from the application layer, processes the requests,
and sends the results.

 Usually SQL is used to access the database if it is relational or object-relational and stored

database procedures may also be invoked.

Query results (and queries) may be formatted into XML when transmitted between the application
server and the database ser

--

TOPIC 10: VALIDATION (OPTIMISTIC) CONCURRENCY CONTROL TECHNIQUES

 In all the concurrency control techniques we have discussed so far, a certain degree of checking is

done before a database operation can be executed. For example, in locking, a check is done to

determine whether the item being accessed is locked.

 In timestamp ordering, the transaction timestamp is checked against the read and write timestamps

of the item. Such checking represents overhead during transaction execution, with the effect of

slowing down the transactions.

 In optimistic concurrency control techniques, also known as validation or certification techniques,

no checking is done while the transaction is executing.

 In this scheme, updates in the transaction are not applied directly to the database items until the

transaction reaches its end.

 During transaction execution, all updates are applied to local copies of the data items that are kept

for the transaction.

 At the end of transaction execution, a validation phase checks whether any of the transaction’s

updates violate serializability.

21

 If serializability is not violated, the transaction is committed and the database is updated from the

local copies; otherwise, the transaction is aborted and then restarted later.

There are three phases for this Concurrency Control Protocol:

1. Read phase: A transaction can read values of committed data items from the database. However,

updates are applied only to local copies (versions) of the data items kept in the transaction workspace.

2. Validation phase: Checking is performed to ensure that serializability will not be violated if the

transaction updates are applied to the database.

3. Write phase: If the validation phase is successful, the transaction updates are applied to the database;

otherwise, the updates are discarded and the transaction is restarted.

 The validation phase for Ti checks that, for each such transaction Tj that is either committed or is in

its validation phase, one of the following conditions holds:

1. Transaction Tj completes its write phase before Ti starts its read phase.

2. Ti starts its write phase after Tj completes its write phase, and the read_set of Ti has no items in

common with the write_set of Tj.

3. Both the read_set and write_set of Ti have no items in common with the write_set of Tj, and Tj

completes its read phase before Ti completes its read phase.

TS(Tj)=100
Tj

read_item(x); 10
x:=x+1; 11
write_item(x); 11
commit;

TS(Ti)=101
Ti

read_item(x); 11
x:=x+1; 12
write_item(x); 12
commit;

Write Set of Ti

x

Write Set of Tj

x

Read Set of Ti

x

Read Set of Tj

x

read_TS(x):
100
101

write_TS(x):
100
 101

x:
10
11
12

1

CHAPTER 1
WHY NoSQL?

1.1 WHY NOSQL-INTRODUCTION
 For more than four decades people are using relational databases as a primary data

storage mechanism.
 Structured Query Language (SQL) happens to be the more structured, rigid way of storing

data, like a phone book. They are designed for reliable transactions and follow a proper
structure to store data in a very organized manner.

 Relational databases can handle thousands of queries in just a fraction of seconds but
this is possible at the small scale applications.

 When the application grows relational databases start facing the scalability issue. If we
talk about the big gigantic website (such as Facebook, Google, Amazon) that throws
billions or trillions of queries within a small amount of time then relational databases get
failed in handling the queries.

 To get rid of this limitation in relational databases NoSQL comes in the picture that
mainly focuses on high operations speed and flexibility in storing the data.

Let’s discuss 5 important features of NoSQL databases.

a. Multi-Model

 Relational databases store data in a fixed and predefined structure. It means when you

start development you will have to define your data schema in terms of tables and
columns. You have to change the schema every time the requirements change. This will
lead to creating new columns, defining new relations, reflecting the changes in your
application, discussing with your database administrators, etc.

 NoSQL database provides much more flexibility when it comes to handling data. There
is no requirement to specify the schema to start working with the application. Also, the
NoSQL database doesn’t put a restriction on the types of data you can store together. It
allows you to add more new types as your needs change. These all are the reasons
NoSQL is best suited for agile development which requires fast implementation.
Developers and architects choose NoSQL to handle data easily for various kinds of agile
development application requirements.

b. Easily Scalable

 The primary reason to choose a NoSQL database is easy scalability. Relational databases

can also be scaled but not easily and at a lower cost. Relational databases are built on the

2

concept of traditional master-slave architecture. Scaling up means upgrading your
servers by adding more processors, RAM, and hard-disks to your machine to handle more
load and increase capacity. You will have to divide the databases into smaller chunks
across multiple hardware servers instead of a single large server. This is
called sharding which is very complicated in relational databases. Replacing and
upgrading your database server machines to accommodate more throughput results in
downtime as well. These things become a difficulty for developers and architects.

 NoSQL database built with a masterless, peer-to-peer architecture. Data is partitioned

and balanced across multiple nodes in a cluster, and aggregate queries are distributed by
default. This allows easy scaling in no time. Just executing a few commands will add the
new server to the cluster. This scalability also improves performance, allowing for
continuous availability and very high read/write speeds.

c. Distributed

 Relational databases use a centralized application that is location-dependent (e.g. single

location), especially for write operations. On the other hand, the NoSQL database is
designed to distribute data on a global scale.

 It uses multiple locations involving multiple data centers and/or cloud regions for write

and read operations. This distributed database has a great advantage with master class
architecture. You can maintain continuous availability because data is distributed with
multiple copies where it needs to be.

d. Redundancy and Zero Downtime

 NoSQL is also designed to handle hardware failures. Hardware failure is a serious concern

while building an application. Rather than requiring developers, DBAs, and operations
staff to build their redundant solutions, it can be addressed at the architectural level of
the database in NoSQL. If we talk about Cassandra then it uses several heuristics to
determine the likelihood of node failure. Riak follows the network partitioning approach
(when one or more nodes in a cluster become isolated) and repair itself.

 The masterclass architecture of the NoSQL database allows multiple copies of data to be
maintained across different nodes. If one node goes down then another node will have a
copy of the data for easy and fast access. This leads to zero downtime in the NoSQL
database. The down time of resource is almost zero.

e. Big Data Applications

 NoSQL can handle the Massive Amount of data very quickly and that’s the reason it is

best suited for the big data applications.

3

 NoSQL databases ensure data doesn’t become the bottleneck when all of the other
components of your server-side application are designed to be faultless and fast.

1.2 THE VALUE OF RELATIONAL DATABASES (OR) ADVANTAGES OF
RELATIONAL DATABASES IMP

1.2.1 Getting at Persistent Data

 Data Persistence is a concept that defines a data is going to be saved on media, and
therefore you can recover it even if your computer process is deletes it or corrupts it.

 Traditional Relational Database Management Systems (RDBMS) store persistent data in the
form of records and tables. The records are permanent in the database even hardware or
software changes.

1.2.2 Concurrency Control

 Concurrency: A problem situation as a single data item is required by the multiple
transactions simultaneously.

 In a Database Management System (DBMS), concurrency control manages simultaneous
access to a database. It prevents two users from writing the same data item simultaneously
and also serializes transactions for backup and recovery.

4

1.2.3. Integration

 In shared integration multiple applications store their data in a single database.

1.2.4 A Standard Model

 Developers and Database Professionals can learn the Basic Relational Model and apply it in
many projects.

 Although there are differences between different relational databases, SQL Type System
and Transaction Processing are same for all DBMS’s.

1.2.5 Simple Model

 A Relational Database system is the simplest model, as it does not require any complex
structuring or querying processes. It follows Network Model to establish relationships
between various tables.

5

1.2.6 Data Accuracy

 Various Relational Model Constraints validates the data at time during entry time to ensure
accuracy of data. In the relational database system, there can be multiple tables related to
one another with the use of a primary key and foreign key concepts. This makes the data to
be non-repetitive. There is no chance for duplication of data. Hence the accuracy of data in
the relational database is more than any other database system.

1.2.7. Easy Access to Data

 In the Relational Database System, there is no pattern or pathway for accessing the data, as
to another type of databases can be accessed only by navigating through a tree or
a hierarchical model. Anyone who accesses the data can query any table in the relational
database. Using join queries and conditional statements one can combine all or any number
of related tables in order to fetch the required data. Resulting data can be modified based
on the values from any column, on any number of columns, which permits the user to
effortlessly recover the relevant data as the result. It allows one to pick on the desired
columns to be incorporated in the outcome so that only appropriate data will be displayed.

1.2.8 Data Integrity

The process of ensuring the correct data in the database is called Data Integrity. Integrity
Constraints and relationships can be established to ensure the data integrity to certain extent.

E.g. Number of hours worked per week

EMPNO NHWW
1 160
2 300

1.2.9 Multiple Transactions can be supported. (Multi Transaction System)

E.g. Online transaction processing system (Railway reservation)

 In multi transaction system, a single database item can be accessed by multiple users
simultaneously.

Inconsistent Data

6

1.2.10 Provides Security

 DBA assigns privileges (read, write & modify) to individual users and group of users to
restrict the database access from unauthorized users.

1.2.11 Provide Multiple User Interface
 DBMS provides GUI’s, Query Languages, Application Programs and Menu Driven Interfaces

to users.

1.2.12 Complex relationships can be established between the database objects using
referential integrity.

1.2.13 Integrity constraints can be enforced.

1.2.14 Provides Backup and Recovery

 Using backup & recovery subsystems, software & hardware failures can be recovered.

1.2.15 Standards can be enforced

 DBA ensures all applicable standards while assigning privileges to individual users (or) user

groups.

1.2.16 Conflicting requirements can be balanced

 Knowing the overall requirements of enterprise the DBA structures the system and provides

resources.

1.3 EMERGENCE OF NOSQL
 NO SQL: A NoSQL (originally referring to "non-SQL" or "non-relational") database provides a

mechanism for storage and retrieval of data that is modeled in means other than the
tabular relations used in relational databases.

1.3.1 Brief History of NoSQL Databases:
 1998: Carlo Strozzi use the term NoSQL for his lightweight, open-source relational database.
 2000: Graph database Neo4j is launched
 2004: Google BigTable is launched
 2005: CouchDB is launched
 2007: The research paper on Amazon Dynamo is released
 2008: Facebooks open sources the Cassandra project
 2009: The term NoSQL was reintroduced

7

1.3.2 RDBMS versus NoSQL

 Traditional RDBMS uses SQL syntax to store and retrieve data for further insights. Instead, a
NoSQL database system encompasses a wide range of database technologies that can store
structured, semi-structured, unstructured and polymorphic data.

Note: Polymorphic Data: A single column or field to contain data of different types.

 NoSQL Database is a non-relational Data Management System does not require a fixed
schema. It avoids joins, and is easy to scale. The major purpose of using a NoSQL database is
to process the huge data in distributed environment. NoSQL is used for Big data and Real-
time Web Apps. For example, companies like Twitter, Facebook and Google collect
terabytes of user data every single day.

 Scalability: The ability to expand or contract the capacity of system resources in order to
support the changing usage of application.

 Vertical scaling: Vertical scaling refers to increasing the processing power of a single server
or cluster. Both relational and non-relational databases can scale up, but eventually, there
will be a limit in terms of maximum processing power and throughput.

8

Advantage: No change is required for database infrastructure other than the hardware
specifications of the machine running the database.

Disadvantages:
 More storage and processing power can be a lot more expensive.
 There is a physical limit on the amount of CPUs, memory, network interfaces, and hard-

drives that can be used on a single machine.
 Requires a migration between hardware’s, it could result in downtime or service disruption.

 Horizontal scaling: Horizontal scaling refers to add additional nodes to share the load. This
is difficult with relational databases to distribute the database tables across the network.
With non-relational databases, this is made simpler since collections are self-contained and
not coupled relationally. This allows them to be distributed across nodes more simply, as
queries do not have to “join” them together across nodes.

1.3.3 Polyglot Persistence: Polyglot persistence is a term that refers to using multiple data
storage technologies for varying data storage needs across an application.

9

Example:

1.4 IMPEDANCE MISMATCH PROBLEM
 Impedance mismatch is the term used to refer to the problems that occurs due to

differences between the database model and the programming language model.

Following problems may occur due to the impedance mismatch:

 The Type System of Data Sub Language (SQL Queries) is differs from the Type System of

Host Language (Programming Language).
Note: Type system include
Syntax: Set of rules
Semantics: Meaningful representation of the rule
Pragmatics: Practical approach

 Data type mismatch: The data types of different programming languages are differ.

10

Fig. The Impedance mismatch between Relational Model and Object Oriented Model (The Type
System of Relational Model differs with the Type System of Object Oriented Model).

11

CHAPTER 2

AGGREGATE DATA MODELS

2.1 AGGREGATE DATA MODELS VIMP

 Aggregation refers to the process by which entities are combined to form a single
meaningful entity. The specific entities are combined because they do not make
sense on their own.

 Structural constraints on relationships: We have two relationship constraints.

(a) Cardinality ratio constraint (1-1, 1-N, M-N)
(b) Participation constraint
1. Total participation (existence ependency): All the tuples of the participating entity relates with

the tuples of related entity represented with double line.
2. Partial participation : Some tuples of the participating entity relates with all the tuples of

related entity represented with single line.

 Note: Participation constraint is represented by (min,max) pair.
If min value = 0 then the is patial paticipation.

If min value >= 0 then the is total paticipation.

SYSTEM

 Type
Generation
Manufacturer
Model

SYSTEM

System Name
IP Address
Location

1..*

12

Example of Aggregation.

13

2.2 KEY-VALUE AND DOCUMENT DATA MODELS

 The data is fetched by a unique key or a number of unique keys to retrieve the associated
value with each key.

 The values can be data types like strings and numbers or complex objects.

 Data is accessed (inserted, updated, and deleted) and queried based on the key to
store/retrieve its value.

 Key-value databases use compact, efficient index structures to be able to quickly and
reliably locate a value by its key, making them ideal for systems that need to be able to find
and retrieve data in constant time.

Key 1 Value 1

Key 2 Value 2

Key 3 Value 3

14

2.3 COLUMN-FAMILY STORES

 Column-family stores, such as allow you to store data with keys mapped to values and the
values grouped into multiple column families, each column family being a map of data.

Examples: Cassandra, HBase, Hypertable, and Amazon SimpleDB.

 Column-family databases store data in column families as rows that have many columns associated
with a row key.

 Column families are groups of related data that is often accessed together. For a Customer, we
would often access their profile information at the same time, but not their orders.

Cassandra’s data model with column families.

15

 Skinny rows have few columns with the same columns used across the many different
rows. In this case, the column family defines a record type, each row is a record, and each
column is a field.

 A wide row has many columns (perhaps thousands), with rows having very different
columns. A wide column family models a list, with each column being one element in that
list.

Column family Structure of Database.

16

Example:

//column family
{
//row
"arjun-thatavarthy" : {
firstName: "arjun",
lastName: "thatavarthy",
lastVisit: "2012/12/12"
}
//row
"martin-fowler" : {
firstName: "martin",
lastName: "fowler",
location: "boston"
}
}

Note: We have the pramod-sadalage row and the martin-fowler row with different columns;
both rows are part of the column family.

17

CHAPTER 3
MORE DETAILS ON DATA MODELS

3.1 RELATIONSHIPS

 Relationship: The logical connection between the documents.

 MonagoDb relations are
1. One to One
2. One to Many
3. Many to One
4. Many to Many

 Aggregation: The term aggregate means a collection of objects that we use to treat as a

unit.

Aggregation of different entities.

18

3.2 GRAPH DATABASES

 A graph database is a type of database used to represent the data in the form of a graph.
 It has three components: nodes, relationships, and properties. These components are

used to model the data.
 The concept of a Graph Database is based on the theory of graphs. It was introduced in

the year 2000. They are commonly referred to NoSql databases as data is stored using
nodes, relationships and properties instead of traditional databases. A graph database is
very useful for heavily interconnected data.

The description of components are as follows:
 Nodes: represent the objects or instances. They are equivalent to a row in database. The

node basically acts as a vertex in a graph. The nodes are grouped by applying a label to
each member.

 Relationships: They are basically the edges in the graph. They have a specific direction,
type and form patterns of the data. They basically establish relationship between nodes.

 Properties: They are the information associated with the nodes.
E.g. Neo4j, Oracle NoSQL DB, Graph base etc.

Schema of Graph Databases.

19

When to Use Graph Database?
 Graph databases should be used for heavily interconnected data.
 It should be used when amount of data is larger and relationships are present.
 It can be used to represent the cohesive picture of the data.

How Graph and Graph Databases Work?
 Graph databases provide graph models. They allow users to perform traversal queries

since data is connected. Graph algorithms are also applied to find patterns, paths and
other relationships this enabling more analysis of the data.

Illustration of Graph Databases.

20

Example of Graph Database:
 Recommendation engines in E-Commerce use graph databases to provide customers with

accurate recommendations, updates about new products thus increasing sales and
satisfying the customer’s desires.

 Social media companies use graph databases to find the “friends of friends” or products
that the user’s friends like and send suggestions accordingly to user.

Advantages of Graph Database:
 Establishing the relationships with external sources as well
 No joins are required since relationships is already specified.
 Query is dependent on concrete relationships and not on the amount of data.
 It is flexible and agile.
 it is easy to manage the data in terms of graph.

Disadvantages of Graph Database:
 Often for complex relationships speed becomes slower in searching.
 The query language is platform dependent.
 They are inappropriate for transactional data.
 It has smaller user base.

3.3 SCHEMALESS DB

 Traditional relational databases are well-defined, using a schema to describe tables, rows

views, indexes, and relationships. By exerting a high degree of control, the database
administrator can improve performance and prevent capture of inconsistent or incomplete
data. In a SQL database, the schema is enforced by the Relational Database Management
System (RDBMS) whenever data is written to disk.

 Schemaless databases are designed to store and query unstructured data, they do not

require schemas used by relational databases. Although a schema can be applied at the
application level, NoSQL databases retain all of your unstructured data in its original raw
format.

 Example of Schemaless Database:

 <Person>

<Person>

<Column Family>

<Column Qualifier>

<Value >

<Row>

“Friends”

<History>

“Owns”

<Thing>

<Count>

21

Schemaless Database:
 Does not require conforming to a rigid schema (database, schema, data types, tables, etc.)

that one is required use through the life of a system.
 Does not enforce data type limitations on individual values pertaining to one single column

type.
 Models the business usage and not a database schema, application, or product.
 Can store structured and unstructured data.
 Eliminates the need to introduce additional layers (ORM layer) to abstract the relational

model and expose it in an object-oriented format.

Advantages of Schemaless Databases:

1.Greater flexibility over data types
 By operating without a schema, schemeless databases can store, retrieve, and query any

data type, perfect for big data analytics and similar operations that are powered by
unstructured data. Relational databases apply rigid schema rules to data, limiting what can
be stored.

2.No pre-defined database schemas
The lack of schema means that your NoSQL database can accept any data type, including those
that you do not yet use.

3.No data truncation
 A schemaless database makes almost no changes to your data, each item is saved in its own

document with a partial schema, leaving the raw information untouched. This means that
every detail is always available and nothing is stripped to match the current schema. This is
particularly valuable if your analytics needs to change at some point in the future.

Bob

Alice

“Friends”

2001-2008

Charle

1985-2009

“Owns”

Old Mobile

2

22

4.Suitable for real-time analytics functions
 With the ability to process unstructured data, applications built on NoSQL databases are

better able to process real-time data, such as readings and measurements from IoT sensors.
 Schemaless databases are also ideal for use with machine learning and artificial intelligence

operations, helping to accelerate automated actions in your business.

5.Enhanced scalability and flexibility
 With NoSQL, you can use whichever data model is best suited to the job. Graph databases

allow you to view relationships between data points, or you can use traditional wide table
views with an exceptionally large number of columns. You can query, report, and model
information however you choose. And as your requirements grow, you can keep adding
nodes to increase capacity and power.

3.4. MATERIALIZED VIEWS

 A materialized view is a replica of a target master from a single point in time.
 The master can be either a master table at a master site or a master materialized view at a

materialized view site.
 Whereas in multi master replication tables are continuously updated by other master sites,

materialized views are updated from one or more masters through individual batch
updates, known as a refreshes, from a single master site or master

Example of Materialized View.

23

3.4.1 Advantages of Materialized Views

You can use materialized views to achieve one or more of the following goals

3.4.1.1 Ease Network Loads

 Reduce network loads that is use of materialized views distribute corporate database to

regional sites.
 Instead of the entire company accessing a single database server, user load is distributed

across multiple database servers.
 Materialized views are updated through an efficient batch process from a single master site

or master materialized view site.
 They have lower network requirements and dependencies than multi master replication

because of the point in time nature of materialized view replication.
 Whereas multi master replication requires constant communication over the network,

materialized view replication requires only periodic refreshes.
 Materialized views increase data availability by providing local access to the target data.
 Materialized views greatly enhance the performance and reliability of your replicated

database.

3.4.1.2 Create a Mass Deployment Environment

 Deployment templates create a materialized view environment locally.
 This technology enables efficient and effective use of database infrastructure to hundreds

or thousands of users.

Example of Materialized View.

24

3.4.1.3 Enable Data Subsetting

 Materialized views allow you to replicate data based on column and row level subsetting,

while multimaster replication requires replication of the entire table.
 Data subsetting enables you to replicate information that relates only to a particular site.

For example, if you have a regional sales office, then you might replicate only the data that
is needed in that region, thereby cutting down on unnecessary network traffic.

3.4.1.4 Enable Disconnected Computing

 Materialized views do not require a dedicated network connection. Though you have the

option of automating the refresh process by scheduling a job, you can manually refresh
your materialized view on-demand, which is an ideal solution for sales applications running
on a laptop. For example, a developer can integrate the replication management API for
refresh on-demand into the sales application. When the salesperson has completed the
day's orders, the salesperson simply dials up the network and uses the integrated
mechanism to refresh the database, thus transferring the orders to the main office.

3.4.2 Types of Materialized Views

3.4.2.1 Read-Only Materialized Views: Materialized view read-only during creation.

3.4.2.2 Updatable Materialized Views: Materialized view updatable during creation.

3.4.2.3 Writeable Materialized Views: Created using the FOR UPDATE clause but the updates
are confined to local site. Users can perform DML operations on a writeable materialized view,
when materialized view is refreshed, then these changes are not updated in master site.
Writeable materialized views are typically allowed wherever fast-refreshable read-only
materialized views are allowed.

3.4.3 Required Privileges for Materialized View Operations

Three distinct types of users perform operations on materialized views:
 Creator: The user who creates the materialized view
 Refresher: The user who refreshes the materialized view
 Owner: The user who owns the materialized view. The materialized view resides in this

user's schema.

25

CHAPTER 4
DISTRIBUTION MODELS

4.1. SINGLE SERVER

 In the single server configuration, all server components run on the same computer.

 A single server configuration is useful on multiprocessor computers and in small-scale or

development environments.

4.1.1 Client Responsibilities

 Client interact with sever with Custom Application.

 The applications communicate with the listener that runs on the server by using the SOAP

protocol.
NOTE: SOAP is a messaging protocol specification for exchanging structured information in
the implementation of web services in computer networks.

 The listener forwards the request to the appropriate server component for handling.

 Administration requests are forwarded to the administration process, and runtime requests

on a specific knowledge base or decision plan are routed to the read/write or read-only
instances, depending on the request.

Single server configuration

26

 Read/write requests are forwarded to read/write instances, and read-only requests are
forwarded to read-only instances.

4.1.2 Server responsibilities:

 The function of a computer server is to store, retrieve and send or "serve" files and data to

other computers on its network.

 Monitor whether Load Balancing is to be performed by the listener.

 Load balancing lets evenly distribute network traffic to prevent failure caused by

overloading a particular resource. This strategy improves the performance and availability
of applications, websites, databases, and other computing resources. It also helps process
user requests quickly and accurately.

 Monitor the Route Requests. The routing algorithm that provides the best path from the source

to the destination.

4.2. SHARDING

 Database partitioning in which a large Database is divided or partitioned into smaller data,

also known as shards. These shards are not only smaller, but also faster and hence easily
manageable.

4.2.1 Need for Sharding

 Consider a very large database whose sharding has not been done. For example, let’s take

a database of a college in which all the student’s record the whole college are maintained
in a single database. So, it would contain very large number of data, say 100, 000 records.

 Now when we need to find a student from this database, each time around 100, 000
transactions has to be done to find the student, which is very costly.

 Now consider the same college students records, divided into smaller data shards based
on years. Now each data shard will have around 1000-5000 students records only. So not
only the database became much more manageable, but also the transaction cost of each
time also reduces by a huge factor, which is achieved by Sharding. Hence this is why
Sharding is needed.

27

4.2.2 Features of Sharding

 Sharding makes the database smaller
 Sharding makes the database faster
 Sharding makes the database much more easily manageable
 Sharding can be a complex operation sometimes
 Sharding reduces the transaction cost of the database

Horizontal Sharding : A horizontal sharding is a subset of the tuples in that relation. The tuples
that belong to the horizontal sharding are specified by a condition on one or more attributes of
the relation.

Vertical Sharding: Vertical sharding divides a relation “vertically” by columns. vertical sharding
of a relation keeps only certain attributes of the relation.

Employee
Empno Ename Salary

1 John 3400
2 Martin 4300
3 Elica 4500
4 Miller 3400

Employee
Empno Ename Salary

1 John 3400
2 Martin 4300

Employee
Empno Ename

1 John
2 Martin
3 Elica
4 Miller

28

4.3. MASTER-SLAVE REPLICATION

 In master-slave distribution data can be replicated across multiple nodes.

 One node is designated as the master, or primary. This master is the authoritative source
for the data and is usually responsible for processing any updates to that data.

 The other nodes are slaves, or secondaries.

 The changes made at maser node is replicated in slave node.

 Master-slave replication is most helpful for scaling when you have a read-intensive dataset.

 Horizontal scaling handle more read requests by adding more slave nodes and ensuring that

all read requests are routed to the slaves.

Advantages:
 Master-slave replication is read resilience that is if master fail, the slaves can still handle

read requests.
 Master speed up recovery after a failure of by appointing new master very quickly.

Sharding puts different data on separate nodes, each of which does its own reads and writes.

29

Disadvantages:
 The failure of the master does eliminate the ability to handle writes until either the master

is restored, or a new master is appointed.
 All read and write traffic can go to the master while the slave acts as a hot backup.

4.4. PEER-TO-PEER REPLICATION

 Peer-to-peer replication provides a scale-out and high-availability solution by maintaining

copies of data across multiple server instances, also referred to as nodes.

Data is replicated from master to slaves. The master services all writes; reads may come from
either master or slaves.

30

 With a peer-to-peer replication cluster override node failures without losing access to data.
Furthermore, nodes can be added to improve the performance.

Advantages:
 Reads are spread across multiple nodes. This enables performance to remain consistent as

reads increase.

 If one of the nodes in the system fails, an application layer can redirect the writes for that
node to another node. This maintains availability.

 If a node requires maintenance or the whole system requires an upgrade, each node can be
taken offline and added back to the system without affecting the availability of the
application.

Disadvantage:
 If a row is modified at more than one node, it can cause a conflict or even a lost update

when the row is propagated to other nodes.

Peer-to-peer replication has all nodes applying reads and writes to all the data.

31

 There is always some latency involved when changes are replicated. For applications that
require the latest change to be seen immediately, dynamically load balancing the
application across multiple nodes can be problematic.

32

CHAPTER 5
CONSISTENCY

5.1 READ CONSISTENCY

 Read Consistency: A read operation of data item / object must wait until the write commits

before being able to read the new version.

read_TS(x):
100
101
102

write_TS(x):
100
 101
102

x:
10
11 xi First Version
12 xi+1 Second Version
13 xi+2 Third Version

TS(T1)=100

T1
read_item(x); 10
x:=x+1; 11
write_item(x); 11
commit;

TS(T2)=101
T2

read_item(xi); 11
xi:=xi+1; 12
write_item(xi); 12
commit;

TS(T3)=102
T3

read_item (xi+1); 12
x:=(xi+1)+1; 13
write_item((xi+1)+1); 13
commit;

33

5.2 UPDATE CONSISTENCY
Update Consistency: The database must reflect the latest changes.

Solution for replication inconsistency:
 Read your- writes consistency: The successful updation is visible to other reads.
 Sticky Session: When a client starts a session on one of your web servers, session stays on

that specific server.

An example of replication inconsistency

34

 Version Stamps: Follows Multiversion Concurrency Control Protocol.

5.3. RELAXING CONSISTENCY

 By relaxing consistency, distributed systems can be highly available and durable. It’s

possible for data to be inconsistent; a query might return old or stale data.

 Relaxing consistency is the phenomenon described as being eventually consistent. Over
time, data that is spread across storage nodes will replicate and become consistent.

35

5.3.1 The CAP Theorem

 The CAP theorem applies a similar type of logic to distributed systems—namely, that a

distributed system can deliver only two of three desired
characteristics: Consistency, Availability, and Partition tolerance (the ‘C,’ ‘A’ and ‘P’ in
CAP).

 Consistency: Consistency means that all clients see the same data at the same time, no

matter which node they connect to. For this to happen, whenever data is written to one
node, it must be instantly forwarded or replicated to all the other nodes in the system
before the write is deemed ‘successful.’

With two breaks in the communication lines, the network partitions into two groups.

36

 Availability: Availability means that that any client making a request for data gets a
response, even if one or more nodes are down. Another way to state this—all working
nodes in the distributed system return a valid response for any request, without exception.

 Partition tolerance: A partition is a communications break within a distributed system—a
lost or temporarily delayed connection between two nodes. Partition tolerance means that
the cluster must continue to work despite any number of communication breakdowns
between nodes in the system.

Today, NoSQL databases are classified based on the two CAP characteristics they support:

 CP database: A CP database delivers consistency and partition tolerance at the expense of

availability. When a partition occurs between any two nodes, the system has to shut
down the non-consistent node (i.e., make it unavailable) until the partition is resolved.

 AP database: An AP database delivers availability and partition tolerance at the expense
of consistency. When a partition occurs, all nodes remain available but those at the wrong
end of a partition might return an older version of data than others. (When the partition
is resolved, the AP databases typically resync the nodes to repair all inconsistencies in the
system.)

 CA database: A CA database delivers consistency and availability across all nodes. It can’t
do this if there is a partition between any two nodes in the system, however, and
therefore can’t deliver fault tolerance.

1

MongoDB CRUD OPERATIONS VVIMP

TO SHOW THE DATABASE

> show dbs

admin 0.000GB

config 0.000GB

local 0.000GB

TO CREATE THE DATABASE

> use Employee

switched to db Employee

TO CREATE COLLECTION

> db.createCollection("EmployeeDetails");

{ "ok" : 1 }

TO INSERT DATA INTO COLLECTION

> db.EmployeeDetails.insert({eno:'1',ename:'kiran',esal:'10000'});

WriteResult({ "nInserted" : 1 })

> db.EmployeeDetails.insert({eno:'2',ename:'samrat',esal:'12000'});

WriteResult({ "nInserted" : 1 })

> db.EmployeeDetails.insert({eno:'3',ename:'tulasi',esal:'13000'});

WriteResult({ "nInserted" : 1 })

TO DISPLAY DATA FROM COLLECTION

> db.EmployeeDetails.find().pretty();

{

 "_id" : ObjectId("628840622f3012f1bb3bfc46"),

 "eno" : "1",

2

 "ename" : "kiran",

 "esal" : "10000"

}

{

 "_id" : ObjectId("628840dd2f3012f1bb3bfc47"),

 "eno" : "2",

 "ename" : "samrat",

 "esal" : "12000"

}

{

 "_id" : ObjectId("628841532f3012f1bb3bfc48"),

 "eno" : "3",

 "ename" : "tulasi",

 "esal" : "13000"

}

BATCH INSERTION

db.EmployeeDetails.insertMany([{eno:'4',ename:'raju',esal:'4000'},{eno:'5',ename:'anil',esal:'5000'},{
eno:'4',ename:'padma',esal:'4500'}]);

{

 "acknowledged" : true,

 "insertedIds" : [

 ObjectId("628acca167dc6828a6781837"),

 ObjectId("628acca167dc6828a6781838"),

 ObjectId("628acca167dc6828a6781839")

]

3

}

DISPLAY DATA

> db.EmployeeDetails.find();

{ "_id" : ObjectId("628acca167dc6828a6781837"), "eno" : "4", "ename" : "raju", "esal" : "4000" }

{ "_id" : ObjectId("628acca167dc6828a6781838"), "eno" : "5", "ename" : "anil", "esal" : "5000" }

{ "_id" : ObjectId("628acca167dc6828a6781839"), "eno" : "4", "ename" : "padma", "esal" : "4500" }

>

> db.EmployeeDetails.find().pretty();

{

 "_id" : ObjectId("628acca167dc6828a6781837"),

 "eno" : "4",

 "ename" : "raju",

 "esal" : "4000"

}

{

 "_id" : ObjectId("628acca167dc6828a6781838"),

 "eno" : "5",

 "ename" : "anil",

 "esal" : "5000"

}

{

 "_id" : ObjectId("628acca167dc6828a6781839"),

 "eno" : "4",

 "ename" : "padma",

4

 "esal" : "4500"

}

>

UPDATE DABASE

> db.EmployeeDetails.update({'eno':'4'},{$set:{'ename':"cherry"}});

> db.EmployeeDetails.find().pretty();

{

 "_id" : ObjectId("628acca167dc6828a6781837"),

 "eno" : "4",

 "ename" : "cherry",

 "esal" : "4000"

}

{

 "_id" : ObjectId("628acca167dc6828a6781838"),

 "eno" : "5",

 "ename" : "anil",

 "esal" : "5000"

}

{

 "_id" : ObjectId("628acca167dc6828a6781839"),

 "eno" : "4",

 "ename" : "padma",

 "esal" : "4500"

}

5

>

TO SAVE THE RECORD WITH SPECIFIED OBJECT ID

> db.EmployeeDetails.find();

{ "_id" : ObjectId("628acca167dc6828a6781837"), "eno" : "4", "ename" : "cherry", "esal" : "4000" }

{ "_id" : ObjectId("628acca167dc6828a6781838"), "eno" : "5", "ename" : "anil", "esal" : "5000" }

{ "_id" : ObjectId("628acca167dc6828a6781839"), "eno" : "4", "ename" : "padma", "esal" : "4500" }

> db.EmployeeDetails.save({"_id":new
ObjectId("628acca167dc6828a6781842"),no:"5",name:"ratna",sal:"5600"});

WriteResult({

 "nMatched" : 0,

 "nUpserted" : 1,

 "nModified" : 0,

 "_id" : ObjectId("628acca167dc6828a6781842")

})

TO REMOVE SPECIFIC RECORD

> db.EmployeeDetails.remove({'ename':'cherry'})

TO DROP THE TABLE

> db.EmployeeDetails.drop()

1

 DATA LAKES
TOPIC 1: WHAT IS DATA LAKE

 Data Lake: Data Lake is a single repository for both structured and unstructured data, making
it easy for data scientists to pull exactly what they need for analysis.

IBM Data Lake Architecture

RAW Data Data Lake Formatted and
Processed Data Users

Data Lake Data source. (Azure Data Lake, AWS Data Lake)

2

1.1 Key Features of Data Lake

1. Data Lake is repository of Structured Data (Invoices and Receipts, Sensor Data, Online Forms,
Spread Sheets, CRM Profiles) and Unstructured Data (Social Media Content, Emails, Podcasts
(Voice Recognition), Security Footage, Transcripts).

2. Data Ingestion: Data is gathered from multiple data sources and loaded into the data lake. The
process supports all data structures, including unstructured data. It also supports batch and one-
time ingestion

3. Security: Security Protocols are implemented from loading, search, storage, and accessibility.

Other facets of data security such as data protection, authentication, accounting, and access
control to prevent unauthorized access are also paramount to data lakes.

4. Data quality: Information in a data lake is used for decision making, which makes it important for

the data to be of high quality. Poor quality data can lead to bad decisions, which can be
catastrophic to the organization.

5. Data governance: Administering and managing data integrity, availability, usability, and security

within an organization.

6. Data discovery: Discovering required data is important before data preparation and analysis. It is
the process of collecting data from multiple sources and consolidating it in the lake, making use
of tagging techniques to detect patterns enabling better data understandability.

7. Data exploration: Data exploration starts just before the data analytics stage. It assists in

identifying the right dataset for the analysis.

8. Data storage: Data storage should support multiple data formats, be scalable, accessible easily
and quickly, and be cost-effective.

9. Data auditing: Facilitates evaluation of risk and compliance and tracks any changes made to

crucial data elements, including identifying who made the changes, how data was changed, and
when the changes took place.

10. Data lineage: Concerned with the data flow from its source or origin and its path as it is moved
within the data lake. Data lineage smoothens error corrections in a data analytics process from its
source to its destination.

3

1.2 Key services of Data Lake

 Governance metadata: Metadata management involves managing data about data. Defines
the governance program and the glossaries of business terminology that describes the types of
data held and used by the organization.

 Technical metadata: Provides the inventory of the data assets of the organization. These data
assets are used by numerous run times, such as applications, data movement and transformation
engines, and databases and reporting platforms.

 Operational metadata: Provides transparency on the operation of the information supply chains

as they copy data between the systems and data platforms, which is often referred to as lineage.

 Maintenance and Support: There’s no need to worry about the hardware, software, security, or
compatibility with other systems. This service includes the initial setup of all these elements as
well as any ongoing maintenance and support that is needed.

 Limitless Capacity: When operating an on-prem data lake, user must balance storage space with
hardware availability. When using data lake as a service, however, storage capacity is always
available – you only pay for what you use.

 Active Backups: As with any data storage solution, an effective backup program is critical for loss
avoidance. Data lake as a service includes a full backup of your data that you can rely on.

 Enhanced Business Intelligence: When using data lake as a service on a cloud platform, required
data is available for analytics using modern tools.

Services of Data Lake

4

1.2 Benefits of a Data Lake

2. A data lake is an agile storage platform that can be easily configured for any given data model,

structure, application, or query. Data lake agility enables multiple and advanced analytical
methods to interpret the data.

3. Being a schema on read makes a data lake scalable and flexible.

4. Data lakes support queries that require a deep analysis by exploring information down to its
source to queries that require a simple report with summary data.

5. Most data lakes software applications are open source and can be installed using low-cost

hardware.

6. Schema development is deferred until an organization finds a business case for the data. Hence,
no time and costs are wasted on schema development.

7. Data lakes offer centralization of different data sources. They provide value for all data types as

well as the long-term cost of ownership.

8. Cloud-based data lakes are easier and faster to implement, cost-effective with a pay-as-you-use
model, and are easier to scale up as the need arises. It also saves on space and real estate costs.

1.3 Challenges and Criticism of Data Lakes

1. Data lakes are at risk of losing relevance and becoming data swamps over time if they are not

properly governed.

2. It is difficult to ensure data security and access control as some data is dumped in the lake without
proper oversight.

3. There is no trail of previous analytics on the data to assist new users.

4. Storage and processing costs may increase as more data is added to the lake.

5. On-premises data lakes face challenges such as space constraints, hardware and data center

setup, storage scalability, cost, and resource budgeting.

1.4 Popular Data Lake Technology Vendors

Popular data lake technology providers include the following:
 Amazon S3: Offers unlimited scalability
 Apache: Uses Hadoop open-source ecosystem
 Google Cloud Platform (GCP): Google cloud storage
 Oracle Big Data Cloud
 Microsoft Azure Data Lake and Azure Data Analytics
 Snowflake: Processes structured and semi-structured datasets, notably JSON, XML, and Parquet
--

5

TOPIC 2: THE VALUE OF THE DATA LAKE TO ING

Today, almost any company has the publicly stated ambition to become data driven.

Everybody recognizes the value of data and the potential for data to both transform existing
processes and to create new value.

Facebook, who collectively make billions from data, many organizations are struggling to deliver on
their strategy.

2.1 Problems for companies to become data driven and to obtain value from their data.

1. Historical perspective: Data has never been managed as an asset.

2. Not knowing what data is exchanged is a result of lacking documentation.

3. Many point-to-point connections built over time as “the fastest choice”.

4. Every new interface starts from scratch because we can’t re-use.

5. Conflicting definitions make it difficult to exchange data across domains and countries.

6. The need to go to real time.

7. The big data hype has led to more data that is less understood.

8. Is governance a four-letter word in an agile world?

9. Creating the data lake architecture was a major step in our journey.

10. Selling a complex architecture is more work than creating it.

2.2 ING means Information Governance Catalogue.

1. Understand the meaning of the data

 Understanding data provides a common business language and vocabulary to enable a deeper

understand of data assets (Structured, Semi-structured and Unstructured).

2. Establish a governance framework

Documents governance policies and enacts rules to help you define how information should be
structured, stored, transformed and moved.

3. Explore data lineage

 Enables to understand how data flows across the information landscape, to track where data was

sourced from or being consumed.
 Allows to develop trust and confidence in such data.

4. Benefit from the cloud
 Helps the user to move to the cloud without the need for an on-premises environment and

reduces administration costs.

6

5. Strengthening data access across the organization without any problems.

6. Delivering the right data to the right people at the right time
--

TOPIC 3: THE 5-LEVEL MODEL OF GOVERNANCE MATURITY IMP
Data governance model addresses a total of 11 domains mentioned below:

1. Data Risk Management and Compliance

2. Value Creation

3. Organizational structure and awareness

4. Policy

5. Stewardship (Company executives protect the interests of the owners or shareholders and make

decisions on their behalf.)

6. Data Quality Management

7. Information Lifecycle Management

8. Information Security and Privacy

9. Data Architecture

10. Classification and Metadata

11. Audit Information, Logging, and Reporting

3.1 Structuring the Governance Program

7

3.2 Governance Maturity Model

Maturity Level 1: Cataloging

 Cataloging refers all the data source used by the organization.

 Cataloging stores the information about location, description, and owner of data stored in the

Data Lake.

 Analytical functions can help to identify the logical type and classifications for the data, but the
human expert is needed to confirm the classification is correct based on their understanding of
the business context around the data.

 This is the stage at which a lack of data governance becomes evident. Business and IT leaders start

to understand and acknowledge the value of information and EIM (Enterprise Information
Management).

Maturity Level 2: Defining Governance

 Governance is the collective tools, processes and methodologies that enable an organization to

align business strategy and goals with IT services, infrastructure or the environment

 The next level of maturity is where the governance drivers, requirements, and controls are linked

to the catalog of data stores, typically via the classifications. This process creates an authoritative
definition of how data should be governed.

Maturity Level 3: Operational Governance

 Operational governance is centred on key operating decisions made by executives and managers

and follow-through on the execution of policies. It presents a framework for managers to improve
how decisions are made and carried out.

8

 The IT governance framework highlights the 'who' and 'how' elements of the operating model. It
defines the principles, rules and processes that enable effective decision-making. It provides the
framework to address how decisions are made, who has the authority to make decisions and how
decisions are communicated.

Maturity Level 4: Business-Controlled Governance

 There are seven broad categories of information system management controls in an organization
i.e. top management controls, systems development management controls, programming
management controls, data resources management controls, security management controls,
operations management controls, and quality assurance management controls.

 Top management controls involve activities like planning, organizing, leading, and monitoring /
evaluation.

 Systems development management controls involve activities like feasibility study and project

initiation, system analysis and specifying user requirements, systems design and development,
acceptance testing, implementation and maintenance, and auditing the systems development
management function.

 Programming management controls involve activities like planning, control, design, coding,

testing, and operation and maintenance.

 Data resources management controls include defining, creating, redefining, and retiring data;
making the database available to the users; informing and servicing users; maintaining the
integrity of the database; and monitoring operations and performance.

 Security management control involves conducting security programs.

 Operations management controls include control of computer and network operations;
maintaining data files, program files, and documentation; help desk and technical support; and
management of outsourced operations.

 Quality assurance management controls include establishing quality goals and standards;
checking conformity with QA standards; identifying areas for improvement; reporting to the
management; and training employees in QA standards.

Maturity Level 5: Data Driven Enterprises

 Finally, the data-driven enterprise is one where decisions are routinely made using a wide variety

of data, from both inside and outside of the organization.

 Individuals own and manage data and develop analysis and visualizations of data that is sharable.

They collaborate around the use of data, provide feedback opinions, and share knowledge about
the data they are using.

LECTURE NOTES PREPARED BY

 G.SMART KRISHNA, ASSISTANT PROFESSOR

DEPARTMENT OF COMPUTER SCIENECE

P.B.SIDDHARHA COLLEE OF ARTS & SCIENECE, VIJAYAWADA, AP, INDIA PIN:

520010

COURESE: DATABASE MANAGEMENT SYSTEMS

CONTENTS:

1. Introduction

2. ER Modeling

3. EER Modeling

4. Record Storage

5. Concurrency Control

6. Indexing (B-Trees & B+-Trees)

7. Normalization

8. Relational Algebra Operations

9. Secondary Storage Devices

10.Transaction Processing

11.Triggers, Cursors & Constraints

1

IMP 1.1 How does traditional file processing system differs from DBMS

 Data: Collection of facts (or) raw material for information. 

 Information: Processed data.

 Schema: Structure of database (or) Structure of database objects. 

 Entity: A thing (or) object which have some implicit meaning.

 Record: The values associated for collection of fields.

 Domain: The range of finite values associated for attributes.

 Database: Collection of files (or) collection of tables (or) collection of
database objects. 

 Attribute: Property of entity. 

 Database management system: Set of software modules used to create 

database objects and access the database objects.

--

 In traditional file processing system an entity can be described as a file

using programming language by the application programmer.

 To access the file i.e. to add the data into the file, to delete the data from
the file & to modify the content of the file, the file must be opened and
closed . Only an application programmer can access the file.

 In DBMS an entity is describes as tables. An end user can create & 

access the table by invoking SQL commands.

 An end user having knowledge about SQL can create & access the
table.

 DBMS also provide GUI’s (Graphical User Interfaces) to design front-

end’s.

 An end user who doesn’t having knowledge about SQL can also easily
access the table by operating the controls in the front-end’s.

Introduction to Data Base Management System

2

1.2 Components of DBMS (or) Database System Environment

 Problems with traditional file system 

1. Data redundancy.
E.g. In university database registration personnel and accounting office
maintains separate data files of same data for handling its data processing
applications.
2. Data inconsistency.
E.g. Files may consists inconsistent data since there are no validation
checks while accepting the data .
3. Does not have support for multiple transactions.
4. Security features are limited.
5. Complex relationships can’t be established.
6. Does not have integrity constraints for validation checks.
7. Backup and recovery is difficult

--

 Users: People who access the database. 

 DBA Staff: DBA uses DDL statements and privileged commands to
assign access privileges to end users. 

 DDL Compiler: Compiles DDL statements. 

 Casual users: By invoking interactive queries, users creates & access 

database according to the privileges assigned by DBA.

 Query compiler: Compiles the user queries.

 System catalogue (or) Data dictionary: A catalogue is a table that stores
entire description of database. 

3

4

VV IMP 1.3 Architecture of DBMS

 Application programmers: They access the database by writing
application programs compatible to DBMS. 

 Pre compiler: The pre compiler separates DSL (Data Sub Language) and

Host Language.

 Host languages compiler: Compiles the host language(Programming
language).

 DML compiler : Compiles the DML statements. 

 Runtime database processor: Access the database (insert, delete and

update) when user request is successful.

 Parametric users: The persons who regularly access the database by
invoking transactions.
E.g. Bank clerks.

 Canned transactions: Transactions by parametric end users. 

E.g. Bank credit / debit transactions.

 Store data manager: Manages the data stored persistently in the
database. 

 Concurrency control subsystem: Avoids concurrency of multiple

transactions by enforcing concurrency control techniques.

 Backup subsystem: Provides backup to the database or database
objects. 

 ANSI (American National Standard Institute) / SPARC (Standards
Planning And Requirements Committee) formulated architecture of
DBMS. 

 Architecture is divided into 3 levels 

1. Internal level
2. Conceptual level
3. External level

5

Internal level

 Internal level Indicates number of bytes allocated by the table when it is
stored physically. 

 When employee table with 3 attributes EMPNO, DEPTNO & PAY is

stored in database persistently the following number of bytes allocated
according to the shown format. 

STORED EMP LENGTH = 20

PREFIX TYPE = BYTE(6), OFFSET = 0
EMP# TYPE = BYTE(6), OFFSET = 6, INDEX = EMPX
DEPT# TYPE = BYTE(4), OFFSET = 12
PAY TYPE = FULLWORD, OFFSET = 16

6

Conceptual level

External level

 Allocation

Offset = 0 Offset = 6 Offset = 12 Offset = 16

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 1 2 3 4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 From the given example

PREFIX System generated attributed where the values of attributes is
fixed.

OFFSET Indicates starting address of next attribute.

 Using interactive queries user defines

a. Entities
b. Attributes
c. Datatypes for attributes
d. Constraints imported over the database objects
e. Relationship between the entities

E.g. Create table EMP (EMP_NO varchar2(6),
DEPT_NO varchar2(4),
SAL Number(4));

E.g. Alter table emp

add constraint ENO_PK primary key (EMP_NO);

 Entity can be represented and accessed using different programming
languages by different users. 

 Different Application programmers uses different Programming

languages comptable to DBMS. 

 Programming languages are combination of Host language and DSL
(SQL queries). 

 Embedded SQL: SQL statements embedded in programming languages. 

7

V V IMP 1.4 Data Independence

 Both DSL and Host langage are tightly coupled.

EXTERNAL (PL/I)
DCL 1. EMP

2. EMP# CHAR(6),
3. SAL FIXEDBIN(31);

 COBOL
01 EMP

02
02

EMPNO PIC X(6)
DEPTNO PIC X(4)

CONCEPTUAL
EMP
EMP_NO
DEPT_NO
SAL

CHARACTER(6)
CHARACTER(6)
NUMBER(5)

INTERNAL

STORED EMP LENGTH = 20
PREFIX TYPE = BYTE(6), OFFSET = 0
EMP# TYPE = BYTE(6), OFFSET=6, INDEX = EMPX
DEPT# TYPE = BYTE(4), OFFSET = 12
PAY TYPE = FULLWORD, OFFSET = 16

--

 Data Independence: The immunity of application (components of

DBMS) to change its storage structure and accessing techniques. 

E.g. Create table EMP(empno varchar2(10),
ename varchar2(10));

E.g. Alter table EMP modify ename varchar2(20);

(or)

 The capacity to change schema at one level of a DBMS without having

to change the schema at next higher level. 

8

IMP 1.5 Advantages of DBMS

 Physical data independence: The capacity to change internal schema 

without having to change conceptual and external schemas.

 Logical data independence: The capacity to change conceptual schema 

without having to change external schema.

--

1. Redundancy can be reduced.
Note: Duplication can be reduced by establishing relationship between
tables.

2. Inconsistency can be avoided.

E.g. Number of hours worked per week

Inconsistent data

EMPNO NHWW
1 160
2 300

9

IMP 1.6 Classification of DBMS (or) Different data models of DBMS

3. Multiple transactions can be supported (Multi transaction system).
E.g. Online transaction processing system (Railway reservation)
 In multi transaction system, a single database item can be accessed

by multiple user simultaneously.

4. Concurrency can be avoided.
 When multiple transactions update the single table simultaneously,

then concurrency occurs. DBMS solves the problem of concurrency
by using Concurrency Control Algorithms.

5. DBMS provides security to database items.

 DBA assigns privileges (read, write & modify) to individual users and
group of users to restrict the database access from unauthorized
users.

6. Provide persistent storage to database objects and data structures.

7. Provide multiple user interface.
 DBMS provides

GUIs
Query languages
Application programs
Menu driven interfaces to users

7. Complex relationships can be establish between the database objects
using referential integrity.

8. Integrity constraints can be enforced.

9. DBMS provides backup and recovery.
 Using backup & recovery subsystems, software & hardware failures can

be recovered. 

10. Standards can be enforced.
 DBA ensures all applicable standards while assigning privileges to 

individual users (or) user groups.

11. Conflicting requirements can be balanced.
 Knowing the overall requirements of enterprise the DBA structures the

system and provide resources. 

--

 DBMS are classified into 4 types 

 (a) Hierarchical model

10

1. Hierarchical model

(b) Relational model
(c) Network model
(d) Object oriented model

 Represent data as hierarchical tree structures. 
E.g. Top down approach

 Parent table is represented at Level 0 and child’s are represented at next

higher level. 

 Advantages 

(a) Parent and child relationship is represented as hierarchy.
(b) Easy to represent and simple to construct.
(c) Navigational & procedural nature of processing.

 Disadvantage 

 Represents relationship between tables in the database.

 Referential integrity can be enforced between any number of tables. 

 Query language is used to access the table. 

2. Relational model

There is no structured query language for hierarchical model .

1 N

R E2 E1

11

3. Network model

Student

 Advantages 

 Multiple relations between the multiple tables are formulated. 

Record type A Table is Record type.
Set type 1 : N relationship between tables.

 Example for Record type 

 Example for Set type 

 Advantages

 Disadvantages
(a) Record types and relations can’t be specified exactly.
(b) Navigational & procedural nature of processing.
(c) Database contains complex array of pointers to establish the

relations between the Record type.

(b) Entities (Record types) can be added or deleted from Set type.
(a) Complex relationship between entities should be expressed.

(b) Retrieval scope is more.
(a) Data redundancy can be reduced.

12

 Class : Description of entity in terms of data (attributes) & operations

(functions).
E.g. Class emp

{
int empno;
char ename;
public :
void accept_empno();
void accept_ename();

}
emp x,y,z

 Object: Instance of class (or) runtime entity in the application software

domain.

 OODBMS: Collection of software modules used to create the object ,
provide persistence & access to the object . 

 Features 

(a) Encapsulation Wrapping up of data (attributes) & functions into a
single unit.

(b) Data
Abstraction

Representing essential features without including the
explanation or implementation.
E.g. #include<stdio.h>

(c) Polymorphism Different behaviors of same object.
(d) Inheritance The mechanism of deriving a new class from an

existing class without modifying the original one.
(e) Functional

Programming
Every component (sub module) can be implemented
as functions.

(f) Information
hiding

Hiding implementation and complexity of object.
E.g. Predefined functions like SUM,AVG.

 Advantages 

(a) Complex engineering & scientific applications can be developed.
(b) Support for distributed database environment.
(c) Uses the concepts of artificial intelligence & neural networks.

--

4. Object oriented model

13

DBA(Database Administrator) VIMP

Database Designers

End Users

(a) Responsible for authorizing access to the database.
(b) Formulates software & hardware resources needed in the enterprise.
(c) Verifies system log to keep track activities of users.
(d) Responsible for database security.

 Security can be imposed by assigning access privileges to the users.

 There are two types of access privileges.

1. Discretionary access privileges: Each individual user will be assigned USER ID,
PASSWORD, and ACCESS PRIVILEGES (Read / Write / Update).

2. Mandatory access privileges: Users are classified into user groups
TS(TOPSECRETS), S(SECRETS), C(CLASSIFIED), U(UNCLASSIFIED) and
appropriate access privileges will be assigned.

 Database designer is person 

(a) Responsible for identifying data to be stored in database.
(b) Represent appropriate structure of database.
(c) Database designer interact with users and develop database view

according to users requirement.
(d) Designer must have complete exposure of DBMS architecture.

 End users are the people who access the database.
(a) Casual users  Users who occasionally access the database

using query languages.
E.g. Middle level or high level managers.

(b) Naïve(or) Parametric
end users

 Users who regularly access the database.
E.g. Blank clerks.

 Naive user may or may not have knowledge
about queries.

 Canned transaction: Transaction by Naive
users.

(c) Sophisticated end
users

Users DBMS to facilitate complex operations.
E.g. DBA, DA, Business Analysts, Scientists,
Engineers, Professors etc.

1.7Actors on the scene (or) Important persons involved in RDBMS

14

System Analysts

Application Programmers

Tool Developers

Operator & Maintenance personals

DBMS system designers

(d) Stand alone users  Access database through GUI’s.
 User doesn’t have knowledge about SQL

queries and Programming languages.

(a) Identifies overall requirements to formulate Physical Design.

(a) Responsible for developing applications using programming languages.
(b) Application programmer must be expert in both Host Language and

Data Sub Language.
--

1.7 Workers behind the scene (or) Persons involved in the development RDBMS

 Tool: Tool is a software package. 

 Tool developer: Person who design tools to access the database. 

 Database contain the following tools

Forms Forms used to design GUIs.
Wizards Wizards are windows to facilitate automated tasks.
Prototypes Prototype is resembling model for actual model.
Simulation Simulation is a technique used to transform one object into

another object.
Natural
Languages

Natural languages are high level languages.

Text Data
Generator

Program used to generate data from the database.

 Persons who are responsible for actual running and maintenance of
hardware and software resources of database systems.

 Person who designs the DBMS modules

--

15

VVIMP 1.9 DBMS languages and Interfaces

1. Potential for enforcing standards.
 DBA enforce applicable standards for normal running and maintenance

of system. This facilitates communication and co-operation among
various departments, projects, users within the organization. 

2. Reduces application time.
 Application development time is reduced by 1/6th to 1/4th due to the

usage of forms, wizards, prototypes, simulation and natural languages. 

4. Data retrieval and representation is efficient due to reporting.

5 Flexibility.
 DBMS is flexibility due to data independence (easy to change structure

of database objects). 

6 Reliability.
 Database is available always i.e., lost data can be recovered by

recovery sub system.

7 Economy of sale.
(a) Project development cost will be reduced by using DBMS since

software and hardware resources can be shared.
(b) Operation and maintenance cost can be reduced by adopting advanced

software and hardware technologies.

--

 Language used to create database objects. 
 Used to create & alter the database objects. 

E.g. Create, Alter commands.

E.g. Create table emp
(empno number(10),
ename varchar2(15));

E.g. Alter table emp

modify (empno number(15));

DDL (Data Definition Language)

1.8 Implication of Database Approaches
(or)

Changes occurred when DBMS is introduced

16

DML (Data Manipulation Language)

DCL (Data Control Language)

TCL (Transaction Control Language)

(b) Revoke option cancel access privileges from the users.
(a) Grant option assign privileges to the users.

 SDL (Storage Definition Language): Used to specify the internal
schema of database objects. 

E.g. STORED-EMP LENGTH = 20

PREFIX TYPE = BYTE(6), OFFSET = 0
EMP# TYPE = BYTE(6), OFFSET = 6, INDEX = EMP
DEPT# TYPE = BYTE(4), OFFSET = 12
PAY# TYPE = FULLWORD, OFFSET = 16

 DML (Data Manipulation Language): Used to access database objects. 

E.g. Insert, Delete, Update commands

E.g. Insert into emp
values(&empno,’&ename’);

E.g. Update emp

set ename=’john’
where empno=1;

E.g. Delete from emp;

 Used to provide persistency and recovery to database objects.
E.g.
Commit; Commits the transaction.
Rollback; Database items acquires previous state.
Savepoint <savepoint_name>; Creates savepoint in a transaction.
Rollback to <savepoint_name>; Databse item acquires savepoint status.

E.g. GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT TO A2;

E.g. GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION;

E.g. REVOKE SELECT ON EMPLOYEE FROM A3;

SDL (Data Definition Language)

17

1.11 Database system utilities

Loading

Conversion tool

Back up

--

1. Forms For front-end design using GUI’s.
2. Menu’s (a) Menu’s are command interpreters.

(b) By choosing menu options user can execute commands.
(c) Menu’s are classified into Pull-down menu’s ,Pop-up menu’s.

3. Natural
Languages

RDBMS provides support to multiple programming languages.

4. Wizards Windows used to perform automated tasks.
5. Prototypes Resembling model for actual model.
6. Simulation Transformation of one object into another object.
7. Interfaces to

DBA
DBA creates user accounts and provide security restrictions
over the assets of DBMS.

8. Interfaces to
Parametric
users

User defined packages.

--

 The process of storing data files into database. 
 Data file is represented in internal schema when it is stored physically

in the database.

 Data base objects are represented in physical format (flat files) when
they are stored persistently in the database. 

 Data base objects are represented in logical format (tables) when they

are retrieved into primary memory. 

 Conversion tool converts source format to desired format and vice
versa. 

 The process of taking duplicates for the actual data.

 Entire database is dumped into magnetic tape. 

 Incremental backup: Notes the change since previous backup are
recorded. 

1.10 DBMS Interfaces

18

Performance monitor’s

1.12 Tools , Application environment , Communication facilities

Application environment

Communication facilities

 Reorganizing the data files after they are stored.
E.g. Indexing, Garbage collection

 Performance monitors are programs to determine the performance of 
software , hardware, data, & users and provide statistics to the DBA.

--

1. CASE (Computer Aided
Software Engineering)

Used in the design phase.

2. Data dictionary Stores the
database.

entire description of the

3. Contains (a) Information about designs.
(b) Application program description.
(c) User information.
(d) Usage standards.

 Provide 

(a) Access the data in distributed database environment using
communication software.

(b) Integration of DBMS & Data communication system is also called DB/DC
systems.

--

(b) Queries
E.g. DSL (Data sub language)

(a) Application programs
E.g. Host language

Tools

File reorganization

1

1. Requirements
collection and
analysis

Database designers interview prospective database users
to understand their requirements.

2. Conceptual
design

Data requirements are formulated into entities, relationships
and constraints.

3. Logical design Database schema formulated using data models.

4. Physical model Internal storage structures, access paths, and file
organizations for database files are specified.

3.1 Main phases of database design

Chapter –3
ER Model

2

--

3

 Entity: An object in the real world with an independent existence.

 Attribute: Property that describes an aspect of the entity. 

 Attribute types: 
(a) Simple: Attribute that is not divisible
E.g. Age
(b) Composite: Attribute that can be divided into smaller parts.
E.g. Address

(c) Single-valued: Attribute containing single value.
E.g. Age, City

(d) Multi-valued: Attribute containing set of values.
E.g. Locations for DEPARTMENT
E.g. College degree

IMP 3.2 Entity types, Entity sets, Attributes & Keys

4

 Enity types : Collection of entities that have the same attributes.

(e) Stored: Attribute having fixed value.
E.g. Date Of Birth

(f) Derived: Attribute derived from the value of the existing attribute.
E.g. NumberOfEmployees for DEPARTMENT
E.g. Age

(g) Complex attribute: Composite and multivalued attributes can be nested

in an arbitrary way.

 Entity sets : The collection of all entities of a particular entity type in the

database at any point of time.

5

6

Domain

SECOND

S# STATUS CITY
S1 20 LONDON

S2 10 PARIS

S3 10 PARIS

S4 20 LONDON

S5 30 ATHENS

 Value set (or) Domain: Values associated for an attribute of entity.
NOTE: Value set have lower and upper bounds.

7

 Relationship: The reference between two tables.

 Relationship type: Set of associations between n entities .

Note: Relationship type R among n entity types E1, ..., En defines a set of
associations among entities from these types. Each association will be
denoted as (e1, ..., en) where ei belongs to Ei, 1 <= i <= n.

 Relationship degree: The number of entity types participates in a

relationship type. 

 Binary Relationship degree: When two entity types participates in a
relationship type. 

 Ternary Relationship degree: When three entity types participates in a

relationship type. 

A : Attribute
E : Entity set
V : Value set
V = P(V1) x ... x P(Vn) for composite attributes
A(e) denotes the value of attribute A for entity e

A: E P(V)

8

9

10

 Role: Each entity participating in a relationship has a role.
E.g. Employee plays the role of worker and department plays the role of
employer in the WORKS_FOR relationship.
Note: Role names are more important in recursive relationships.

 Recursive relationship: If one entity plays two roles then the

relationship is called recursive relation.

11

(b) Participation constraint
1. Total participation (existence ependency):All the tuples of the participating

entity relates with the tuples of related entity represented with double line.

2. Partial participation : Some tuples of the participating entity relates with all the
tuples of related entity represented with single line.

 Note: Participation constraint is represented by (min,max) pair.

If min value = 0 then the is patial paticipation.
If min value >= 0 then the is total paticipation.

(a) Cardinality ratio constraint (1-1, 1-N, M-N)

 Structural constraints on relationships: We have two relationship
constraints.

12

13

IMP 3.3 Weak Entity types

 Attributes of relationships:

1. Note: Relationship types can have attributes, similar to entity types.

E.g. Hours attribute for WORKS_ON relationship

2. If relationship is 1-N or 1-1, these attributes can be be migrated to the
entity sets involved in the relationship.
a) 1-N: migrate to N side
b) 1-1: migrate to either side

--

 Weak entity: Entity that do not have key attribute.
E.g. DEPENDENT

 Weak entity types: Entity Types that do not have key attributes. 

 Weak entities are identified by being related to other entity sets called
identifying owner. This relationship is called identifying relationship.

 Partial key: Attributes that uniquely identify entities within the

identifying relationship.
(or)

A partial key is a key used to distinguish one record with another record
but not guarentted to be a key when new records are inserted.

 A weak entity type always has TOTAL participation.

14

IMP 3.4 ER schema constructs (or) Symbols to write ER diagrams

15

 Constraints:
1. An employee work for one department.
2. Department may have any number of employees.
3. Adepartment can be located any number of locations.

16

 Constraints:
1. An employee who is manager is supervisor.
2. Manager supervise any number of employees.
3. A manager is supervised by another manager.

17

2. An employee may have any number of dependents.
3. Every dependent must belongs to an employee.

 Constraints
1. An employee may not have dependents.

18

19

 Relationship attribute: Attribute derived from the relationship.
E.g. Hours, StratDate

1

IMP 4.1 Specialization

 Super class: A parent class is super class. 

 Sub class: A child class is called sub class. 

 Inheritance: The mechanism of applying the properties of super class to
sub class is called inheritance. 

 Specialization: The process of defining a set of subclasses of an entity
type. 
E.g. Top-down hierarchy.

Chapter-4
Enhanced Entity-Relationship & Object Modeling

2

IMP 4.2 Generalization

--

 Generalization: The process of inheriting the features of super class
from the subclass is called generalization. 
E.g. Bottom_up hierachy.

3

IMP 4.3 Constraints on Specialization and Generalization

(a) Disjointness constraint: Subclasses of the specialization must be disjoint.

(b) Completeness constraint: Specifies every entity in the super class must be a
member of some subclass or not.

--

 Completeness constraint may be total or partial. 

1. Total specialization: Every entity in the super class must be a member
of some sub class.

E.g. EMPLOYEE must be either a HOURLY_EMPLOYEE or a
SALARIED_EMPPLOYEE.

2. Partial specialization: An entity not belonging to any of the subclass.

E.g. Some EMPLOYEE entities do not belong to any of subclasses
{ SECRETARY,ENGINEER,TECHNICIAN }.

4

(c) Overlap constraint: Same entity may be member of more than one sub class of the
specialization.

5

4.4 Specialization and Generalization Lattice

 Insertion and deletion rules apply to specialization

1. Deleting an entity from super class implies that it is automatically
deleted from all the subclasses.

2. Inserting an entity in a super class imply that the entity mandatory

inserted in all the subclasses.

3. Inserting an entity in a super class of a total specialization implies that
the entity is mandatory inserted in at least one of the subclasses of the
specialization.

--

 If a subclass itself may have further subclasses specified on it, forming
a hierarchy called lattice of specialization. 

 We have four possible constraints on specialization
(a) Disjoint , total
(b) Disjoint, partial
(c) Overlapping, total
(d) Overlapping, partial

6

--

7

IMP 4.6 Conceptual object modeling using UML class diagrams

SECTION DESCRIPTION
Top Class name
Middle Attribute
Last Operations

--

 UML: Universal Modeling Language.

 In UML class diagram, a class is displayed as a box that includes three

sections.

1

5.1 Memory Hierarchies

5.2 Secondary Storage Devices

1. Magnetic Disk

Priority Device
1 High speed registers
2 Cache (or) Static RAM
3 Main memory (or) DRAM
4 Optical disk (or) CDROM
5 Magnetic disk
6 Magnetic tap

--

 Magnetic disk is a circular plate constructed of metal or plastic coated with magnetized
material 

 Both sides of the disk are used 

 Several disks may be stacked on one spindle with Read/Write heads available on each
surface 

 All disks rotate together at high speed and not stopped or started for access purpose

 Used to store large amount of data .

 Basic unit of storage is BIT . 

 BIT is 1 by magnetizing area on disk .

 Character: Group of bits.

 Capacity: Number of bytes it can store. 

 Number of tracks: ranges from few hundred to few thousand.

 Capacity of each track: ranges from tens of Kbytes to 150 Kbytes. 

 Formatting: Tracks are divided into equal sized disk blocks called sectors. 

 Sector size is fixed range from 512 to 4096 bytes. 

Chapter –5
Record storage & Primary File Organizations

2

tA = Access time

tS = Seek time

 Read/Write head is classified into

1. Fixed head system.
2. Moving head system.

 Rotate disk pack of cylinders ranging from 3600 and 7200 rpm. 

 Access time: Time required to access the data. 

 Seek time: Time required to position the read/write head on the correct track & correct
surface. 

 Latency time: Time required to locate the required disk block from the beginning.

tL = Latency time

tA = tS + tL

3

2. Floppy Disk

 A disk drive with removable disks are called a Floppy Disk 

 The disks used with a Floppy disk drive are small disks made of plastic coated with magnetic

recording material 

 There are two sizes commonly used, with diameters of 5.25 and 3.5 inches

 The 3.5 inch disks are smaller and can store more data than 5.25 inch disks

 Floppy disks extensively used in personal computer as a medium for distributing software to

computer users

 Basic unit of storage is BIT . 

 BIT is 1 by magnetizing area on disk .

4

tA = Access time

 Character: Group of bits.

 Capacity: Number of bytes it can store. 

 Density : Single density and Double density

 Data stored in: Tracks & Sectors

 Track: Data is placed in concentric magnetic circles called tracks

 Sector :Each track is divided into storage units called sectors

 FAT uses 512 byte sectors exclusively

 The number of Sectors per Track vary depending on the media and format

 Physical Sector Numbering starts with the number 1at the beginning of each track and
side

 Number of Tracks: 80 in 3.5 inch floppy disk

Disk Formats - 3.5”
 Low Density High Density
Tracks 80 80
Sectors per track 9 18
Bytes per sector 512 512
Total capacity 720K 1.44M

 Formatting: Tracks are divided into equal sized disk blocks called sectors. 

 Access time: Time required to access the data. 

tA = tS + tL

5

tS = Seek time

3. Magnetic Tape

 Seek time: Time required to position the read/write head on the correct track & correct
surface. 

 Latency time: Time required to locate the required disk block from the beginning.

 Magnetic tape transport consists of the electrical, mechanical and electronic components
provide the parts and control mechanism for magnetic tape unit

 The tape is a strip of plastic coated with magnetic recording media

 Bits are recorded as magnetic spots on the tape along with several tracks 

 Usually, seven or nine bits are recorded simultaneously to form a character together with a

parity bit.

 The information is recorded in blocks referred to as records

 Each record on tape has an identification bit pattern at the beginning and end. By recording

the bit pattern at the beginning, the tape control identifies the record number.

 By reading the bit pattern at the end of the record, the control recognizes the beginning of a
gap

 A tape unit is addressed by specifying the record number and number of characters in the

record 

 Record may be fixed length or variable length

 Sequential access. 

 Read/Write head: Reads or writes data on tape. 

 Strorage: 1600 to 6250 bytes per inch. 

 Inter block gap: 0.6 inches. 

Block

Block

Block

Block

Block

Block

tL = Latency time

6

VIMP 5.3 RAID

 Redundant Array Independent Disk

 RAID Level 0 requires a minimum of 2 drives to implement.

 Characteristics & Advantages: 

1. RAID 0 implements a striped disk array, the data is broken down into blocks and each block
is written to a separate disk drive.

2. I/O performance is greatly improved by spreading the I/O load across many channels and

drives.

3. Best performance is achieved when data is striped across multiple controllers with only one
drive per controller.

4. No parity calculation overhead is involved.

5. Very simple design.

6. Easy to implement.

 Disadvantages 

1. Not a "True" RAID because it is NOT fault-tolerant.

7

2. The failure of just one drive will result in all data in an array being lost.

3. Should never be used in mission critical environments.

 For Highest performance, the controller must be able to perform two concurrent separate
reads per mirrored pair or two duplicate Writes per mirrored pair. 

 RAID Level 1 requires a minimum of 2 drives to implement.

 Characteristics & Advantages: 

1. One Write or two Reads possible per mirrored pair.

2. Twice the Read transaction rate of single disks, same Write transaction rate as single disks.

3. 100% redundancy of data means no rebuild is necessary in case of a disk failure, just a copy

to the replacement disk.

4. Transfer rate per block is equal to that of a single disk.

5. Under certain circumstances, RAID 1 can sustain multiple simultaneous drive failures.

 Disadvantages: 

1. Highest disk overhead of all RAID types (100%) – inefficient

2. Typically the RAID function is done by system software, loading the CPU/Server and possibly
degrading throughput at high activity levels. Hardware implementation is strongly
recommended

8

3. May not support hot swap of failed disk when implemented in "software"

 Characteristics & Advantages: 

1. Each bit of data word is written to a data disk drive (4 in this example: 0 to 3).

2. Each data word has its Hamming Code ECC word recorded on the ECC disks.

3. On Read, the ECC code verifies correct data or corrects single disk errors.

 Disadvantages: 

1. Very high ratio of ECC disks to data disks with smaller word sizes – inefficient.

2. Entry level cost very high - requires very high transfer rate requirement to justify

3. Transaction rate is equal to that of a single disk at best (with spindle synchronization)

4. No commercial implementations exist / not commercially viable.

9

 The data block is subdivided ("striped") and written on the data disks. Stripe parity is
generated on Writes, recorded on the parity disk and checked on Reads. 

 RAID Level 3 requires a minimum of 3 drives to implement.

 Characteristics & Advantages: 

1. Very high Read data transfer rate.

2. Very high Write data transfer rate.

3. Disk failure has an insignificant impact on throughput.

4. Low ratio of ECC (Parity) disks to data disks means high efficiency.

 Disadvantages: 

1. Transaction rate equal to that of a single disk drive at best (if spindles are synchronized).

2. Controller design is fairly complex.

3. Very difficult and resource intensive to do as a "software" RAID.

10

 Each entire block is written onto a data disk. Parity for same rank blocks is generated on
Writes, recorded on the parity disk and checked on Reads. 

 RAID Level 4 requires a minimum of 3 drives to implement.

 Characteristics & Advantages: 

1. Very high Read data transaction rate.

2. Low ratio of ECC (Parity) disks to data disks means high efficiency.

3. High aggregate Read transfer rate.

 Disadvantages: 

1. Quite complex controller design.

2. Worst Write transaction rate and Write aggregate transfer rate.

3. Difficult and inefficient data rebuild in the event of disk failure.

4. Block Read transfer rate equal to that of a single disk.

11

 Each entire data block is written on a data disk; parity for blocks in the same rank is
generated on Writes, recorded in a distributed location and checked on Reads.

 RAID Level 5 requires a minimum of 3 drives to implement.

 Characteristics & Advantages: 

1. Highest Read data transaction rate.

2. Medium Write data transaction rate.

3. Low ratio of ECC (Parity) disks to data disks means high efficiency.

4. Good aggregate transfer rate.

 Disadvantages: 

1. Disk failure has a medium impact on throughput.

2. Most complex controller design.

3. Difficult to rebuild in the event of a disk failure (as compared to RAID level 1).

4. Individual block data transfer rate same as single disk.

12

 Two independent parity computations must be used in order to provide protection against

double disk failure. Two different algorithms are employed to achieve this purpose. 

 RAID Level 6 requires a minimum of 4 drives to implement

 Characteristics & Advantages: 

1. RAID 6 is essentially an extension of RAID level 5 which allows for additional fault tolerance

by using a second independent distributed parity scheme (dual parity).

2. Data is striped on a block level across a set of drives, just like in RAID 5, and a second set of

parity is calculated and written across all the drives; RAID 6 provides for an extremely high

data fault tolerance and can sustain multiple simultaneous drive failures.

3. RAID 6 prodects against a single bad block failure while operating in a degraded mode.

4. Perfect solution for mission critical applications.

 Disadvantages: 

1. More complex controller design.

2. Controller overhead to compute parity addresses is extremely high.

3. Write performance can be brought on par with RAID Level 5 by using a custom ASIC for

computing Reed-Solomon parity.

13

5.4 Buffering of Blocks

4. Requires N+2 drives to implement because of dual parity scheme.

--

 Buffering: The process of employing buffers in main memory to speed up the execution.

 There are three processors in the architecture of computer to speed up the execution

1. Processor

2. Mathematical co processor

3. I/O Processor

 Parallel processing

(a) The process of employing several buffers in main memory to speedup the execution is

called double buffering.

(b) While one buffer is being read (or) written handled by the I/O processor the CPU can

process data in the other buffer.

5.4 Placing File Records on Disk

 Double buffering: VIMP 

(a) Data processing using the CPU and I/O PROCESSOR in multiprocessing system.

(b) The CPU can start processing a block once its transfer to main memory is completed, at

the same time the disk I/O PROCESSOR can be reading and transfer the next block into a

different buffer.

 Data usually stored in the form of records. 

 Record: Collection of related data items.

 Record type: Collection of attributes and their corresponding data types constitutes a

record type (or) record format.

E.g. RECORD TYPE using the C programming language.

14

struct employee {

char name[30];

char ssn[9];

int salary;

int jobcode;

char department[20];

};

15

 File: Sequence of records.

 Records are classified into two types 

(a) Fixed length record: Field length is fixed.

Note: Assign NULL values if no values exists for that field.

(b) Variable length record: Field length may vary.

 Block: Group of records.

16

 When Block Size > Record Size, each block contain numerous records.

 Blocking factor(bfr) : Number of records per block.

 Let B is block size in bytes, R is fixed length record in bytes with condition B >= R, we can 

fit records bfr =  B / R  per block.

 Unused space in block equal to B – (bfr * R) Bytes 

 Number of blocks needed to store r records  B =  (r / bfr)  Blocks

 There are several standard techniques are available for allocating disk blocks

Contiguous allocation Disk blocks are allocated contiguously.

Advantage: Fast reading using double buffering.

Disadvantage: Difficult to expand.

Linked allocation Each file blocks contains pointer to next file block.

Advantage: Easy to expand.

Disadvantage: Slow to read the whole file.

Cluster (or) File segments (or)

Extents

 Group of consecutive disk blocks.

 Cluster are linked.

17

(b) Record format descriptions of block i.e. fixed length (or) variable length (or) spanned (or) un

spanned.

(a) Disk addresses of blocks.

5.5 Operations on Files

 Advantage: Fast reading .

Indexed allocation Index block contain pointer to actual block.

Advantage: Fast accessing.

 File header (or) File descriptor 

 File header : Table that contains information about blocks that is needed by the system

program.

 Includes information of

--

Open Prepares the file for reading (or) writing.

Reset Sets file pointer to the beginning of the file.

Find (or) Locate Searches the first record that satisfies the search condition.

Read (or) Get Reads the content of the file.

Find Next Searches for next record into the file that satisfies the search condition.

Delete Deletes the current record.

Modify Modifies field value for current record.

Close Completes the file access.

Scan If the file has just been opened (or) reset, scan returns the first record,

otherwise it returns the next record.

Record at a time operations

Reset Sets the file pointer to the beginning of the file.

Insert Insert new record in the file

Set at a time operations

Find All Locates all the records in the file that satisfy a search condition.

18

5.6 Heap File (or) Pile File

5.7 Sorted Files (or) Files of Ordered Records

Find Ordered Retrieves all the records in the file in some specified order.

Reorganize Starts the reorganize process i.e. organization of data file into blocks, records.

--

 Heap File: File which stores the record in the order in which they are inserted. 

 New records are inserted at the end of file.

 The last disk block of the file is copied into buffer, the new records are added and the block is

re written back to disk. 

 The address of last file block is kept in the file header. 

 The deletion of record leaves unused space in the disk block. Deleting a large number of

records in this way result in wasted storage space. 

 Periodic reorganization is needed to reclaim the unused space of deleted records.

--

 Blocks are allocated contiguously in the file. 

 Records are ordered based on key field (or) ordering field.

 Advantages: 

(a) Reading become efficient because no sorting is required.

(b) Searching based on key field is faster.

 A Binary search for disk files can be done on the blocks rather than on the records.

19

1

2

3

4

5

Disk Block

50

40

30

20

10

l u u >= 1 i k k < val(i) k > val(i) k = val(i)

1 5 5 >= 1 i = (1+5) div 2=3 40 40 < 30 F 40 > 30 T 40 = 40 T

4

5 >= 4

I = (4+5) div 2=4

40 < 40 F

40 > 40 F

l  1; u  b; (* b is the number of file blocks *)

while (u >= l) do

begin

i  (l + u) div 2;

read block i of the file into the buffer;

if k < (ordering key field value of the first record in the block i) then

u  i – 1
else

if k > (ordering key field value of the first record in the block i) then

l  i + 1

else

if the record with ordering key field value = k is in the buffer then goto

found

else goto notfound;

end;

goto notfound;

20

21

VIMP 5.9 Hashing

Internal Hashing

--

 Hashing : Technique used to provide address to records stored in disk.

 Hash file (or) Direct file : File that implement hashing.

 Hash field (or) Hash key : Single field that hold hash address. 

 Internal Hashing: The process of allocating disk addresses in a hash table is called internal

hashing.

 Hash Table: Hash table is array of records where as array index ranges from 0 to M-1. 

 Hash Function: Function that transforms the hash field value into integer between 0 to M-1. 

22

23

(a) Applying the mod hash function to character string k

temp  1;

for i  1 to 20 do

temp  temp * code(K[i]) mod M;

hash_address  temp mod M;

Note : code returns ASCII value of the key.

(b) Collision resolution by open addressing

i  hash_address(k); a  i;

if location i is occupied then

begin

i  (i+1) mod m;

while (i != a) and location i is occupied

do i  (i+1) mod m;

if (i=a) then all position are full

else new_hash_address  i;

end;

m k i a loc(i)=
occupied

i!= a && loc(i) =occupied

False

 Two simple hash algorithms 

0

1

2

3

4

5

6

7

8

9

7 7

9!=7 && loc(i) =occupied

(8+1)
mod 10
=9

True 8!=7 && loc(i) =occupied (7+1)
mod 10
=8

True 40 10

10

20

40

1

Topic 1: Two Phase Locking Techniques for Concurrency Control

 Concurrency: A problem situation as a single data item is required by the multiple

transactions simultaneously. 

 Lock: A lock is a variable that prescribe the state of database items.

 A binary lock can have two states or values locked and unlocked (or) 1 and 0.

 States:
1. Lock(x)=0 indicates that the database item is available.

2. Lock(x)=1 indicates that the database item is not available.

 Operations:
1. Lock_item(x);

2. Unlock_item(x):

Note: x is a database item.

 Algorithm:

 Rules for Binary Locking:

1.1 Binary Locks

CONCURRENCY CONTROL

2

read_lock(x) read_lock(x)

read_lock(x) read_lock(x)

read_lock(x) read_lock(x)
T6

T5 x
T4

1.2 Shared/Exclusive Lock (or) Read/Write Lock

write_lock(x)
T1 x

1. The read/write operation is preceded by lock operation.

2. A transaction must be unlocked if it is locked.

3. A transaction must not issue lock operation once it is locked.

4. A transaction will not issue unlock if it is not locked.

 Multiple transactions can simultaneously read the data but single transaction exclusively

updates the data while remaining transactions are waiting.

 Operations:
1. read_lock(x): Multiple transactions are allowed simultaneously to read the data base

item.

T1

T2

T3

2. write_lock(x): A single transaction exclusively holds lock on the database item.

Waiting Transactions

3. unlock(x): Release of lock on data base item after completion of transaction.

 Algorithm:

T6 T5 T4 T3 T2

3

 Rules for Shared/Exclusive Locking

1. The read/write operation is preceded by lock operation.

2. A transaction must issue write lock before write operation.

3. A transaction must be unlocked if it is locked.

4. A transaction must not issue lock operation once it is locked.

5. A transaction will not issue unlock if it is not locked.

 Objective: Concurrency Control. 

Topic 2: Guaranteeing Serializability by Two-Phase Locking

4

read_lock(x) read_lock(x)

read_lock(x) read_lock(x)

read_lock(x) read_lock(x)
T6

T5 x
T4

write_lock(x)
T1 x

 read_lock(x): Multiple transactions are allowed simultaneously to read the data base

item.

T1

T2

T3

 write_lock(x): A single transaction exclusively holds lock on the database item.

Waiting Transactions

 Rule:

 All the locking operations are preceded by the un lock operation.

 Growing Phase:
1. A new lock on data base item can be acquired but none can be released.

2. Up gradation of lock is possible (Changing read lock to write lock)

 Shrinking Phase:
3. Existing locks can be released but no new locks can be acquired.

4. Down gradation of lock is possible (Changing write lock to read lock)

2.1 Static 2PL (or) Conservative 2PL:

 All the locking operations are preceded by the un lock operation.
 Read Set & Write Set for the transactions are formulated.
 Read Set: Set of all the data items that the transaction reads.
 Write Set: Set of all the data items that the transaction writes.

T6 T5 T4 T3 T2

5

Example: Find Read Set & Write Set for the following Transaction.

PROBLEMS

Problem 1: Find Read Set & Write Set for the following Transactions.

X , Y

Write Set

X , Y

Read Set

X

Write Set

X , Y

Read Set

6

Problem 2: Verify whether the following transaction ensures 2PL.

Result: The Transaction T2 ensure 2PL since all locking operations precedes un lock

operations.

Problem 3: Verify whether the following transactions ensures 2PL.

Result: The Transaction T2 and T2 ensure 2PL since all locking operations precedes un lock

operations.

1

read_TS(x):

100

101

102

write_TS(x):

100

101

102

x:

10

11

12

TS(T1)=100

T1

read_item(x); 10

x:=x+1; 11

write_item(x); 11

TS(T2)=101

T2

read_item(x); 11

x:=x+1; 12

write_item(x); 12

TS(T3)=102

T3

read_item(x); 12

x:=x+1; 13

write_item(x); 13

read_TS(x):

100

101

99

101

write_TS(x):

100

101

x:

10

11

12

11

(i) Time Stamp Ordering Algorithm (TO): The Timestap ordering protocol is a protocol used to

sequence the transactions based on their Timestamps.

 Each transaction must have time stamp when it gets started.
 Time Stamp: The unique identification number assigned for transaction. 
 The time stamp of T is also called as TS (T).

Operations:

 read_TS(X): The read timestamp of item X is the largest timestamp among all the timestamps of

transactions that have successfully read item X. 
 write_TS(X): The write timestamp of item X is the largest of all the timestamps of transactions that

have successfully written item X. 

(ii) Basic Time Stamp Ordering Algorithm: The order of transaction is nothing but the

ascending order of the transaction creation.

 Every transaction is issued a timestamp based on when it enters the system. Suppose, if an old

transaction Ti has timestamp TS(Ti), a new transaction Tj is assigned timestamp TS(Tj) such

that TS(Ti) < TS(Tj).

TS(T3)=99

T3

read_item(x); 12

x:=x+1; 13

write_item(x);

aborted;

TS(T2)=101

T2

read_item(x); 11

x:=x+1; 12

write_item(x); 12

TS(T1)=100

T1

read_item(x); 10

x:=x+1; 11

write_item(x); 11

CONCURRENCY CONTROL BASED ON TIME STAMP ORDERING

2

read_TS(x): write_TS(x):

100 100

101 101

102 102

x:

10

11

12

13

Condition 1:

 Whenever a transaction T issues a write_item(X) operation, the following is checked:

99 > 101 101 > 99
a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and reject the

operation.

b. If the condition in part (a) does not occur, then execute the write_item(X) operation of T and

set write_TS(X) to TS(T).

Condition 2:

Whenever a transaction T issues a read_item(X) operation, the following is checked:

101 > 99

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation.

101 <= 99

b. If write_TS(X) <= TS(T), then execute the read_item(X) operation of T and set read_TS(X) to the

larger of TS(T) and the current read_TS(X).

Condition 3:

Cascading Rollback: If transaction T is aborted and rolled back, any transaction Ti that may have used a

value written by T must also be rolled back.

TS(T1)=100 TS(T2)=101 TS(T3)=102

T1 T2 T3

read_item(x); 10 read_item(x); 11 read_item(x); 12

x:=x+1; 11 x:=x+1; 12 x:=x+1; 13

write_item(x); 11 write_item(x); 12 write_item(x); 13

Failed Failed Failed;

(iii) Strict Time Stamp Ordering Algorithm (TO): Every transaction must commit when it exits.

read_TS(x):

100

101

102

write_TS(x):

100

101

102

 x:
 10
 11
 12
 13

TS(T3)=102

T3

read_item(x); 12

x:=x+1; 13

write_item(x); 13

commit;

TS(T1)=100

T1

read_item(x);

x:=x+1;

10

11

TS(T2)=101

T2

read_item(x); 11

x:=x+1; 12

write_item(x); 11 write_item(x); 12

commit; commit;

3

read_TS(x):

100

101

102

write_TS(x):

100

101

102

101

x:

10

11

12

102 > 101

 A transaction T that issues a read_item(X) or write_item(X) such that TS(T) > write_TS(X) has its

read or write operation delayed until the transaction T that wrote the value of X has committed

or aborted.

 Thomas’s Write Rule: This is modification of the basic TO algorithm. When the current transaction

(TS(T)) fails then continue the read operation and abort write operation.
102 > 102

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

102 > 102

2. If write_TS(X) > TS(T), then do not execute the write operation but continue processing.

TS(T3)=102

T3

read_item(x); 12

x:=x+1; 13

write_item(x); 13

Failed;

TS(T2)=101

T2

read_item(x); 11

x:=x+1; 12

write_item(x); 12

commit;

TS(T1)=100

T1

read_item(x); 10

x:=x+1; 11

write_item(x); 11

commit;

1

 Version: State of database item after successful updation.

 Temporal Database: Database keeps track of multiple versions of database items.
E.g. xi, xi+1, xi+2, xi+3 etc.

 Advantage: Multiple versions of database items are maintained so that concurrency is avoided to

certain extent.

 Operations:
1. read_TS(Xi): The read timestamp of Xi is the largest of all the timestamps of transactions that have

successfully read version Xi.

2. write_TS(Xi): The write timestamp of Xi is the timestamp of the transaction that wrote the value of

version Xi.

 Serializability in Multiversion Concurrency Control:

To ensure the serializability the follow rules are used

1. If transaction T issues a write_item(X) operation, and version i of X has the highest write_TS(Xi) of

all versions of X that is also less than or equal to TS(T), and read_TS(Xi) > TS(T), then abort and roll

back transaction T; otherwise, create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, find the version i of X that has the highest

write_TS(Xi) of all versions of X that is also less than or equal to TS(T); then return the value of Xi

to transaction T, and set the value of read_TS(Xi) to the larger of TS(T) and the current

read_TS(Xi).

1.4 Multiversion Concurrency Control Techniques

read_TS(x):

100

101

102

write_TS(x):

100

101

102

x:

10

11 xi First Version

12 xi+1 Second Version

13 xi+2 Third Version

TS(T3)=102

T3

read_item (xi+1); 12

x:=(xi+1)+1; 13

write_item((xi+1)+1); 13

commit;

TS(T2)=101

T2

read_item(xi); 11

xi:=xi+1; 12

write_item(xi); 12

commit;

TS(T1)=100

T1

read_item(x); 10

x:=x+1; 11

write_item(x); 11

commit;

2

read_lock(xi)

T2

xi T1

write_lock(xi)

T2

xi T1

write_lock(xi)

T1

xi T2

read_lock(xi)

read_lock(xi)

T2
xi

T1

write_lock(xi)

write_lock(xi+1)

write_lock(xi+2)
T3 Xi+2

Xi+1 T1

xi T2

 Multiversion Two-Phase Locking Using Certify Locks:

1. Compatability table for read/write locks:

Case 1: Case 2:

Cannot impose write_lock(x)

Case 3: Case4:

Cannot impose read_lock(x) Cannot impose read_lock(x)

2. Compatability table for read/write/certify locks:

Certify Lock (or) Notify Lock: Certify lock has highest priority. It is the monarch lock where other locks

can not be done.

1

TOPIC 1: DISTRIBUTED DATABASE CONCEPTS VVIMP

Communication
Network

Site 4
(NewYork)

Site 2
(Texas)

Site 3
(Dallas)

Site 1
(San Francisco)

 Centralized database: Centralized database is a software system that creates

& access data base at central site 

 Disadvantage of central site: If central site fails, database is not available for

other sites in the network

 DB2

Figure 1. Centralized Database Architecture.

 Distributed Database Management System (DDBMS): Distributed database

management system is a software system that creates & access the

distributed database over a computer network. 

1.1 DIFFERENCES BETWEEN DDB AND MULTIPROCESSOR SYSTEMS

 Connection of database nodes over a computer network: There are multiple

computers, called sites or nodes. These sites must be connected by an

underlying communication o transmit data and commands among sites.

 Logical interrelation of the connected databases: It is essential that the

information in the databases be logically related. 

 Absence of homogeneity constraint among connected nodes: It is not

necessary that all nodes be identical in terms of data, hardware, and software.

DISTRIBUTED DATABASES

DB1

Central Site
(Chiocago)

2

1.2 TRANSPARENCY

(a) Data Organization

Transparency (or)

Distribution or

Network

Transparency

This refers the user can access any site across the network.

 Location Transparency: The commands used to perform a

task is independent of the location of data and location of

system across the network.

 Naming Transparency: The name of the objects can be

accessed unambiguously without additional specifications.

(b) Replication

Transparency

Copies of data may be stored at multiple sites for better

availability, performance, & reliability.

(c) Fragmentation

Transparency

Two types of fragmentation are possible

1. Horizontal Fragmentation: Distributes the relation into set of
tuples (rows).

2. Vertical Fragmentation: Distributes the relation into sub

relations where each sub relation is defined by a subset of

the columns of the original relation.

Figure 2. A Truly Distributed Database Architecture

3

1.3 AUTONOMY

 Autonomy determines the extent to which individual nodes or databases in a

connected Distribute Data Base can operate independently. 

 A high degree of autonomy is desirable for increased flexibility and

customized maintenance of an individual node.

 Autonomy can be applied to design, communication, and execution.

1. Design Autonomy: Design autonomy refers to independence of data model

usage and transaction management techniques among nodes.

2. Communication Autonomy: Communication autonomy determines the extent

to which each node can decide on sharing of information with other nodes.

3. Execution Autonomy: Execution autonomy refers to independence of users to

act as they please.

1.4 RELIABILITY & AVALIABILITY

 Reliability: Reliability is broadly defined as the probability that a system is

running (not down) at a certain time point. 

 Availability: The probability that the system is continuously available during a

time interval. 

1.5 ADVANTAGES OF DISTRIBUTED DATABASE

1. Improved ease and flexibility of application development.

2. Increased reliability and availability

3. Improved performance

 Data localization reduces the contention for CPU and I/O services and reduce
access delay. 

 Local queries & transactions accessing data at a single site have better

performance because of the smaller local databases. 

 Inter query & Intra query parallelism can be achieved by executing multiple
queries at different queries at different sites or by breaking up query into a
number of sub queries that execute in parallel.

4

TOPIC 2: TYPES OF DISTRIBUTED DATABASE SYSTEMS

4. Easier expansion.

1.6 FUNCTIONS OF DDBMS

1. Keeping Track of Data Distribution: The ability to keep track of the data

distribution, fragmentation, and replication by expanding the DDBMS catalog.

2. Distributed Query Processing: The ability to access remote sites and transmit

queries and data among the various sites via a communication network.

3. Distributed Transaction Management: The ability to access remote sites and

transmit queries and data among the various sites via a communication

network.

4. Replicated Data Management: The ability to decide which copy of a replicated

data item to access.

5. Distributed Database Recovery: The ability to recover from individual site

crashes and from new types of failures, such as the failure of communication

links.

6. Security: Distributed transactions must be executed with the proper

management of the security of the data and the authorization/access

privileges of users.

7. Distributed Directory (Catalog) Management: A directory contains information

(metadata) about data in the database. The directory may be global for the

entire DDB, or local for each site.

2.1 FEDERATED DATABASE MANAGEMENT SYSTEMS

5

 A Federated Database System (FDBS) is a collection of cooperating database

systems that are autonomous and possibly heterogeneous. 

 The type of heterogeneity present in FDBSs may arise from several sources. 

TYPES OF HETEROGENEITY:

1. Differences in Data Models:

 Data is represented using different data models. (Hierarchical, Relational,

Network & Object Oriented data models).

2. Differences in Constraints:

 The global schema must also deal with different constraints. (Not null,

Unique, Primary Key, Foreign Key, Check) 

 ER models are represented as referential integrity constraints in the relational

model.

 Triggers may have to be used to implement certain constraints in the

relational model. 

3. Differences in Query Languages:

 Even with the same data model, the languages and their versions vary. For

example, SQL has multiple versions like SQL-89, SQL-92, SQL-99, and SQL:

2008, and each system has its own set of data types, comparison operators,

string manipulation features, and so on.

2.1.2 SEMANTIC HETEROGENEITY.

 Semantic heterogeneity occurs when there are differences in the meaning,

interpretation, and intended use of the same or related data. 

1. The universe of discourse from which the data is drawn.

 For example, for two customer accounts, databases in the federation may be

from the United States and Japan and have entirely different sets of attributes

about customer accounts required by the accounting practices. Currency rate

fluctuations would also present a problem. Hence, relations in these two

6

TOPIC 3: DISTRIBUTED DATABASE ARCHITECTURES

databases that have identical names-CUSTOMER or ACCOUNT-may have

some common and some entirely distinct information.

2. Representation and Naming.

 The representation and naming of data elements and the structure of the data

model may be pre specified for each local database. 

3. The understanding, meaning, and subjective interpretation of data.

 This is a chief contributor to semantic heterogeneity. 

4. Transaction and Policy Constraints.

 These deal with serializability criteria, compensating transactions, and other
transaction policies. 

5. Derivation of Summaries.

 Aggregation, summarization, and other data processing features and
operations supported by the system. 

3.1 PARALLEL VERSUS DISTRIBUTED ARCHITECTURES

There are two main types of multiprocessor system architectures that are

commonplace:

 Shared Memory (tightly coupled) Architecture: Multiple processors share

secondary (disk) storage and also share primary memory. 

 Shared Disk (loosely coupled) Architecture: Multiple processors share

secondary (disk) storage but each has their own primary memory. 

7

Fig 1. Shared nothing architecture.

Fig 2. A networked architecture with a centralized database at one of the sites.

Fig 3. A truly distributed database architecture

8

3.2 GENERAL ARCHITECTURE OF PURE DISTRIBUTED DATABASES

 In this section we discuss both the logical and component architectural

models of a DDB.

3.2.1 SCHEMA ARCHITECTURE OF DISTRIBUTED DATABASES.

Fig 4. Schema Architecture of Distributed Database.

 Logical Internal Schema (LIS) specifies physical organization details at that

particular site. 

 Logical Conceptual Schema (LCS) specifies the logical organization of data at

each site is specified by the local conceptual schema 

 The Global Conceptual Scheme (GCS) specifies provides network

transparency. 

9

3.2.2 COMPONENT ARCHITECTURE OF DISTRIBUTED DATABASES.

Fig 5. Component architecture of distributed database.

 Query Compiler: Inspects the process of query compilation. 

 Query Optimizer: The optimizer selects the minimum cost for execution.

 Transaction Manager: Coordinates and executes the transactions. 

10

 System Catalog: The system catalogue stores meta-data including the

schemas of the databases. 

3.2.3 FEDERATED DATABASE SCHEMA ARCHITECTURE

 Federated Schema is an integration of multiple export schemas. 

Fig 6. The five-level schema architecture in a federated database system (FDBS).

 Component DBS: Database control system. 

 Local schema: Conceptual schema. 

 Component schema: Translates the local schema into common data model.

 Export schema: Subset of component schema. 

 Federated schema: The federated schema is the global schema or view, which

is the result of integrating all the shareable export schemas. 

11

 External schema: External schemas define the schema for a user group or an

application.

3.2.4 THREE-TIER CLIENT-SERVER ARCHITECTURE

In the three-tier client-server architecture, the following three layers exist:

Fig 7. The three tire client server architecture.

1. Presentation Layer (Client):

 This provides the user interface and interacts with the user.

 The programs at this layer present web interfaces or forms to the client in

order to interact with the application. 

 Web browsers are often utilize the languages like HTML, XHTML, CSS, Java,

JavaScript and others to perform client side validations.

12

TOPIC 4: DATA FRAGMENTATION, REPLICATION, AND ALLOCATION TECHNIQUES

FOR DISTRIBUTED DATABASE DESIGN

2. Application Layer (Business Logic):

 Application logic is written in this phase. 

 Queries can be formulated based on user input from the client.

 Query results can be formatted and sent to the client for presentation.

 Additional application functionality can be handled such as security checks,

identity verification, and other functions.

 The application layer can interact with one or more databases or data sources

as needed by connecting to the database using ODBC, JDBC, SQL/CLI, or

other database access techniques.

3. Database server.

 This layer handles query and update requests from the application layer,
processes the requests, and sends the results. 

 Usually SQL is used to access the database if it is relational or object-

relational and stored database procedures may also be invoked. 

 Query results (and queries) may be formatted into XML when transmitted
between the application server and the database server. 

--

 Fragment: Subset of table.

3.1 DATA FRAGMENTATION

 Fragmentation is the task of dividing a table into a set of smaller tables. 

 The subsets of the table are called fragments. 

 Fragmentation can be of three types: horizontal, vertical, and hybrid.

13

EMPLOYEE

EMPNO ENAME SALARY

1 JOHN 3400

2 MARTIN 4300

3 ELICA 4500

4 MILLER 3400

3.1.1 Horizontal Fragmentation: A horizontal fragment of a relation is a subset of

the tuples in that relation. The tuples that belong to the horizontal fragment are

specified by a condition on one or more attributes of the relation.

EMPLOYEE

EMPNO ENAME SALARY

1 JOHN 3400

2 MARTIN 4300

3.1.2 Vertical Fragmentation: Vertical fragmentation divides a relation “vertically”

by columns. A vertical fragment of a relation keeps only certain attributes of the

relation.

EMPLOYEE

EMPNO ENAME

1 JOHN

2 MARTIN

3 ELICA

4 MILLER

3.1.3 Mixed Fragmentation: We can intermix the two types of fragmentation, yielding a

mixed fragmentation.

14

EMPLOYEE

EMPNO ENAME

1 JOHN

2 MARTIN

3.2 DATA REPLICATION AND ALLOCATION

 Data Replication is the process of storing data in more than one site or node.

 It is useful in improving the availability of data. 

 It is simply copying data from a database from one server to another server so

that all the users can share the same data without any inconsistency. 

 The most extreme case is replication of the whole database at every site in the

distributed system, thus creating a fully replicated distributed database. 

 The other extreme from full replication involves having no replication that is,

each fragment is stored at exactly one site. This is also called non redundant

allocation.

1

6.1 SINGLE LEVEL ORDERD INDEXES

CHAPTER 6
INDEXING STRUCTURES FOR FILES

 A Primary index is an ordered file whose records are of fixed length with two
fields

6.1.1 PRIMARY INDEXES

2

6.1.2 CLUSTERING INDEXES

 Anchor record: The first record in each block

 Dense index: Index entry for every search key value in the data file. 

 Sparce index: Index entry for some search key value in the data file.

 A clustered index defines the order in which data is physically stored in a

table.

 Clustering field: Field that orders the records physically. 

3

4

 A secondary index provides a secondary means of accessing a file for which
some primary access already exists. 

 The index file has two fields
(a) The first field is Index field value
(b) The second field is Block pointer

6.1.3 SECONDARY INDEXES WITH BLOCK POINTERS (A dense secondary index)

5

--

6.1.4 SECONDARY INDEXES WITH RECORD POINTER

6

 Multilevel indexing is a two-level primary index resembling ISAM (Indexed
Sequential Access Method) organization.

6.2 MULTI LEVEL INDEXES

7

6.3 DYNAMIC MULTI LEVEL INDEXES

--

 B Trees

 B+ Trees

1

2

P1

1 P2 P3 3

B-Trees

 B-Tree: B-Tree is a specialized multi way tree designated especially for the use on disk.

Properties:

1. The root node has at least two children.

2. All the nodes other than root node not have at least m/2 child.

3. All failure nodes at the same level.

4. When a key value is to be inserted in a node which already has the maximum number of

key values, the following steps are to be adopted

a) Insert the value, say ‘x’ into the list of values in the node in ascending order.

b) Split the list of values into three parts P1,P2 and P3

 P1 contains first m/2 - 1 key values. E.g. - 1 = 2 - 1 = 1

 P3 contains m/2 + 1 , … , m
th

 values E.g. + 1 = 2 + 1 = 3

 P2 contains m/2 value E.g. = 2

Note: P1,P2 & P3 must be in ascending order.

3/2

3/2

3/2

2

Problem 1: Construct B-Tree for the following values 10, 20, 30, 40, 50, 60, 70, 80, 90 of order

3.

Step1: Insert 10

 10

Step2: Insert 20

 10 20

Step3: Insert 30

Insert 30 (Bursting)

10,20,30

Step4: Insert 40

 30 40

 10

 30

 10

20

20

 10 20

3

40

40

Bursting
Insert

40

20 60

Step5: Insert 50

30,40,50

Step 6: Insert 60

Step 7: Insert 70

Insert 50 (Bursting)

 30 40

50,60,70

20,40,60

70 (Bursting)

 40

 50 60

 30

 50 60

 30

20

 50

 30

20

20

20

 10

 10

 10

 10

 10

 30

 50

 70

4

20 60

20 80 60

Step 8: Insert 80

 40

Step 9: Insert 90

 40

Insert 90 (Bursting)

70,80, 90

 40

 70 80

 50

 30

 10

 70 80

 50

 30

 10

60 20

 50

 70

 90

 10

 30

B-Trees

Construct B-Tree for the following values 10, 20, 30, 40, 50, 60, 70, 80, 90 of order 3.

Step1: Insert 10

 10

Step2: Insert 20

 10 20

Step3: Insert 30

10,20,30

Step4: Insert 40

Step5: Insert 50

Insert 30 (Bursting)

 10 20

Insert 50 (Bursting)

30,40,50

 30 40

 10

 30

 10

20

20

20

 10

 30 40

40

 10

 30 50

 50 60

 50 60

20

Step 7: Insert 60

Insert 60 (Bursting)

20,40,60

Step 8: Insert 70

Insert 70 (Bursting)

50,60,70

 30

 10

 30

 10

 30 50

 10

40 20

20

20

40

40

 10

 30

 10

 30

 10

 30

60 40

Step 9: Inset 80

Step 10: Insert 90

Insert 90 (Bursting)

70,80,90

40,60,80

Insert 80 (Bursting)

Insert 90 (Bursting)

20

20

60 40

20

60 40

 50

 70 80

 50

 70 80

 50

 70 80

50

90

10

30

20

70

80

70

 40

80 60

20

 10

30

1

Date: 27/05/2020 Subject: MCA II Semester Time: 11A.M to 12.15 A.M

Subject: DBMS Topic: B Trees Examples Total No Students: 21 No of Students Participated: 15

Faculty: Dr.T.S.Ravi Kiran

Problem 2: Construct B-Tree for the following values 10, 15, 20, 25, 30, 35, 40, 45, 50 of order

3.

Step1: Insert 10

 10

Step2: Insert 15

 10 15

Step3: Insert 30

Insert 20 (Bursting)

10,15,20

Step4: Insert 25

Step5: Insert 30

Insert 30 (Bursting)

 20 25

 10

 20 25

 10

 20

 10

15

15

15

 10 15

2

25

30 25

30 25

20,25,30

Step 6: Insert 35
(Bursting)

20,30,35

15,25,30

Step 7: Insert 40

Step 8: Insert 45

Insert 35 (Bursting)

Bursting

Insert 45 (Bursting)

 35 40

 10 15 20

 35 40

 10 15 20

 35

 10 15 20

 20 30

 10

 20 30

 10

15

15 25

30 25

3

35

 20

 10 15

 45

 20

 10 15

 45 50

30

40

30

40

35,40,45

25,30,40

 25

Step 9: Insert 50

 25

1

5

5

B + TREES

 B+ Tree: A B + Tree is a balanced tree in which every path from the root to leaf must have the

same length.

 All the values must present in the leaf nodes in ascending order.

 B+ Tree allow redundant storage of key values.

Example 1: Construct B+ Tree for the following sequence 8, 5, 1, 7, 3, 12, 9 of order 3.

Step 1: Insert 8

 8

Step 2: Insert 5

 5 8

Step 3: Insert 1

1,5,8

Step 4: Insert 7

Step 5: Insert 3

Insert 1 (Bursting)

 5 8

Insert 3 (Bursting)

1,3,5

 7 8

 1 5

 7 8

 1 5

 8

 1 5

5

2

5

5

5

5

8

F F F

6 5

5

F

1

 1
3

 7
8

 1
3

 5

 7
8

F 12

8

Step 6: Insert 12

Insert 12 (Bursting)

7, 8, 12

3, 5, 8

Step 7: Insert 9

Step 8: Insert 6

F F F F F F F

9 8 7

8

5

F

3

3

 9 12

 7 8

 1 3 5

 7
8

 1
3

3

3

3

5

3

5

1

 10 15

 20 25

 10 15

 20 25

15

15

Example 2: Construct B+ Tree for the following sequence 10,15,20,25,30,35,40,45,50 of order 3.

Step 1: Insert 10

Step 2: Insert 15

 10 15

Step 3: Insert 20

10,15,20

Step 4: Insert 25

Step 5: Insert 30

Insert 20 (Bursting)

 10 15

Insert 30 (Bursting)

20, 25, 30

Insert 30 (Bursting)

 20 25

 10 15

 20

 10 15

15

25 15

 10

2

25 20

25

Insert 40 (Bursting)

25 20

25

Insert 40 (Bursting)

25 20

25

15

15

35

35

Step 6: Insert 35

Step 7: Insert 40

15,25,35

30,35,40

Step 7: Insert 45

 40

 30 35

 10 15 20 25

 30 35

 10 15

 30 35

 10 15

15

 30 35

 10 15

15

25

15

25

 10 15 20 25

 30 35

 40 45

3

F F

25 20

25

F

50 45

F F F F

F

10

 10 15 20 25

 30 35

 40 45

F

15

15

F F

40 35 30

45 35

F F F F

Insert 50:

Insert 50 (Bursting)

40,45,50

15

25

35

DBMS Normalization 1

NORMALIZATION

First Normal Form

 First Normal Form: A relation is said to be in first normal form if and only if it contains
atomic or scalar values.

Functional Dependency: The functional dependency is a relationship that exists between two
attributes of relation.

SCP
S# STATUS CITY P# QTY

S1

S2

S3

S4

{ 20,20,20,20,20,20 }

{10,10 }

10

{ 20,20,20 }

LONDON

PARIS

PARIS

LONDON

{ P1,P2,P3,P4,P5,P6 }

{ P1,P2 }

P2

{ P2,P4,P5 }

{ 200,200,400,200,100,100 }

{ 300,400 }

200

{ 200,300,400 }

Note: The relation should not contain sets

DBMS Normalization 2

FIRST{ S#, STATUS, CITY, P#, QTY }
PRIMARY KEY { S#, P# }

{ S#, P# }  QTY
S#  CITY
CITY  STATUS
By transitivity S#  STATUS

FIRST
S# STATUS CITY P# QTY

S1

P1

200

S1 P2 200

S1 P3 400

S1 P4 200

S1 P5 100

S1 P6 100

S2 P1 300

S2 P2 400

S3 P2 200

S4 P2 200

S4 P4 300

S4 P5 400

 The relation FIRST stated as

 Functional Dependencies in relation FIRST are

STATUS

QTY
CITY

P#

S#

DBMS Normalization 3

Second Normal Form

S#  CITY

CITY  STATUS
By transitivity S#  STATUS

 UPDATE ANOMALIES

INSERT: We can not insert particular suppliers located in particular city until the supplier
supplies at least one part.

UPDATE: If supplier S1 moves from LONDON to AMSTERDAM, we need to change city as
AMSTERDAM for every supplier S1 otherwise the database contains inconsistent values
or data.

DELETE: If we delete first tuple of S1 among six tuples we lost the information of part P1.

 The relation FIRST is projected into two relations SECOND, SP

SECOND  The relation SECOND is stated as

 Functional Dependencies in relation SECOND are

STATUS

CITY S#

SECOND { S#, STATUS, CITY }
PRIMARY KEY S#

S# STATUS CITY
S1

S2

S3

S4

S5

20

10

10

20

30

LONDON

PARIS

PARIS

LONDON

ATHENS

DBMS Normalization 4

{ S#, P#}  QTY

SP

S# P# QTY

S1

S1

S1

S1

S1

S1

S2

S2

S3

S4

S4

S4

P1

P2

P3

P4

P5

P6

P1

P2

P2

P2

P4

P5

200

200

400

200

100

100

300

400

200

200

300

400

 UPDATE ANOMALIES

 The relation SP is stated as

 Functional Dependencies in relation SP are

INSERT: We can not insert the fact that a particular city have particular status.

E.g. We can not state that any supplier in ROME must have status of 50 until we have
some suppliers actually located in that city.

UPDATE: If we need to change STATUS of LONDON from 20 to 40, we should change for
all the tuples otherwise the database consists inconsistent data.

DELETE: If we delete second tuple of city PARIS, the information of supplier S2 will be
lost.

QTY

P#

S#

SP { S#, P#, QTY }
PRIMARY KEY { S#,P# }

Second Normal Form: A relation is said to be in 2NF if and only if it is in 1NF and every non
key attribute is irreducibly (loss less) depend on key attribute (Primary key).

DBMS Normalization 5

Decomposition - A

SS { S#, STATUS }
PRIMARY KEY S#

SC { STATUS, CITY }
PRIMARY KEY STATUS

 Decompose the relation SECOND into two relations SS and CS

SS
 The relation SS is stated as

 Functional Dependencies in relation SECOND are

 S#  STATUS

SC
 The relation SC is stated as

 Functional Dependencies in relation SC are

 STATUS  CITY

 This decomposition is not correct since the Functional Dependency
produces transitivity. 

CITY STATUS

STATUS S#

Third Normal Form: A relation is said to be in 3NF if and only if it is in 2NF and every non key
attribute non transitively depend upon the key attribute.

S#  STATUS

Third Normal Form

S# STATUS
S1

S2

S3

S4

S5

20

10

10

20

30

STATUS CITY
20

10

30

LONDON

PARIS

ATHENS

DBMS Normalization 6

SC { S#, CITY }
PRIMARY KEY S#

SC { CITY, STATUS }
PRIMARY KEY CITY

 Decompose the relation SECOND into two relations SC and CS

SC
 The relation SC is stated as

 Functional Dependencies in relation SC are 

 S#  CITY

CS
 The relation CS is stated as

 Functional Dependencies in relation CS are

 CITY  STATUS

 This decomposition is correct .Therefore the relations SC and CS satisfies 3NF.

 UPDATE ANOMALIES 

INSERT: We can not insert the fact that a particular city have particular status.

E.g. We can not state that any supplier in ROME must have status of 50 until we have some
suppliers actually located in that city.

UPDATE: If supplier S1 moves from LONDON to AMSTERDAM we need to change city as
AMSTERDAM for every supplier S1 otherwise database contains inconsistent data.

DELETE: If we delete second tuple of city PARIS the information of S2 will be lost.

--

STATUS CITY

CITY S#

Decomposition - B

S# CITY
S1

S2

S3

S4

S5

LONDON

PARIS

PARIS

LONDON

ATHENS

CITY STATUS
LONDON

PARIS

ATHENS

20

10

30

DBMS Normalization 7

S#  CITY

CITY  STATUS
By transitivity S#  STATUS

SC { S#, CITY }
PRIMARY KEY S#

SC { CITY, STATUS }
PRIMARY KEY CITY

 Consider the relation SECOND
SECOND

 The relation SECOND is stated as

 Functional Dependencies in relation SECOND are 

 Decompose the relation SECOND into two relations SC and CS

SC
 The relation SC is stated as

 Functional Dependencies in relation SC are 

 S#  CITY

CS
 The relation CS is stated as

 Functional Dependencies in relation CS are

 CITY  STATUS
 Dependency preservation: Functional dependencies of the projected tables are implied by

the dependencies of original table.

STATUS CITY

CITY S#

STATUS

CITY S#

SECOND { S#, STATUS, CITY }
PRIMARY KEY S#

Dependency Preservation

S# STATUS CITY
S1

S2

S3

S4

S5

20

10

10

20

30

LONDON

PARIS

PARIS

LONDON

ATHENS

S# CITY
S1

S2

S3

S4

S5

LONDON

PARIS

PARIS

LONDON

ATHENS

CITY STATUS
LONDON

PARIS

ATHENS

20

10

30

DBMS Normalization 8

BCNF (Boycee Code Normal Form)

BCNF: A relation is said to be in BCNF if and only if it is in 3NF and only determents are
candidate keys.

S#  CITY

CITY  STATUS
By transitivity S#  STATUS

 From the above tables the FD’s of SC and CS are implied by the FD’s of SECOND. Therefore
dependencies are preserved. 

--

 Candidate key : An attribute (or) group of attributes which is used to distinguish one
record with another record.

 Consider the relation SECOND

SECOND

 The relation SECOND is stated as

 Functional Dependencies in relation SECOND are 

 The above relation does not doesn’t satisfies 3NF and all the determinants are not the
candidate keys. Therefore the relation SECOND is not in BCNF. 

STATUS

CITY S#

SECOND { S#, STATUS, CITY }
PRIMARY KEY S# S# STATUS CITY

S1

S2

S3

S4

S5

20

10

10

20

30

LONDON

PARIS

PARIS

LONDON

ATHENS

DBMS Normalization 9

SC { S#, CITY }
PRIMARY KEY S#

SC { CITY, STATUS }
PRIMARY KEY CITY

4NF (Fourth Normal Form)

 The relation SECOND is projected into two relations SC and CS

SC
 The relation SC is stated as

 Functional Dependencies in relation SC are 

 S#  CITY

 In the relation SC is the only determinant S# is the primary key .

CS
 The relation CS is stated as

 Functional Dependencies in relation CS are 

 CITY  STATUS

 In the relation CS is the only determinant CITY is the primary key . 

 There fore the relations SC and CS satisfies BCNF and all the determinants are candiadate
keys 

--

 Consider the relation UCTX (Un normalized relation) 

UCTX

STATUS CITY

CITY S#

S# CITY
S1

S2

S3

S4

S5

LONDON

PARIS

PARIS

LONDON

ATHENS

CITY STATUS
LONDON

PARIS

ATHENS

20

10

30

DBMS Normalization 10

CTX {COURSE, TEACHER,TEXT }
CANDIDATE KEY {COURSE, TEACHER, TEXT}

COURSE TEACHER TEXT
PHYSICS {Prof. GREEN,

Prof. BROWN}
{ BASIC MECHANICS,
PRINCIPLES OF OPTICS}

MATHS {Prof.GREEN} {BASIC MECHANICS,
VECTOR ANALYSIS,
TRIGNOMETRY}

 Constraints on table UCTX 

1. A specified course can be taught by specified teacher and uses all the specified textbooks as

references.
2. A teacher can teach any number of courses.
3. There are no functional dependencies for the table UCTX.

 Now we are normalizing UCTX table as CTX

CTX 

 The relation CTX is stated as

 The above relation satisfies 1NF,2NF, 3NF and BCNF since the determinant itself is the
candidate key. 

 Update anomalies:

To add information about a teacher who teaches a course PHYSICS, it is necessary to
create two tuples one for each of the text books BASIC MECHANICS and PRINCIPLES
OF OPTICS.

 MVD’S: Multi valued dependencies are general dependencies based on the attributes

and their domains.

 Let R be a relation and let A,B,&C be arbitrary subsets of R then we can say that 
A >> B if and only if the set B values matching with pair (A,C) dependents only
on A value independent of C value.

COURSE

COURSE

>>TEXT

>>TEACHER

COURSE TEACHER TEXT
PHYSICS Prof. GREEN BASIC MECHANICS
PHYSICS Prof. GREEN PRINCIPLES OF OPTICS
PHYSICS Prof. BROWN BASIC MECHANICS
PHYSICS Prof. BROWN PRINCIPLES OF OPTICS
MATHS Prof. GREEN BASIC MECHANICS
MATHS Prof. GREEN VECTOR ANALYSIS
MATHS Prof. GREEN TRIGNOMETRY

DBMS Normalization 11

CT {COURSE, TEACHER}
CANDIDATE KEY {COURSE, TEACHER}

CTX {COURSE, TEXT }
CANDIDATE KEY {COURSE, TEXT}

The above MVD’s exits in CTX.

 Consider first two tuples from the relation CTX. 

CTX

Tuple1
Tuple2

 Consider two subsets CT and CX from CTX 

CT

Tuple1
Tuple2

Tuple1 = Tuple2

CX

Tuple1
Tuple2

Tuple1 = Tuple2

 Therefore the relation CTX violating the condition of FD.

 Project the table CTX into CT and CX

CT

COURSE TEACHER
PHYSICS Prof. GREEN
PHYSICS Prof. BROWN
MATHS Prof. GREEN

 The relation CT is stated as

CX
 The relation CX is stated as

COURSE TEACHER TEXT
PHYSICS Prof. GREEN BASIC MECHANICS
PHYSICS Prof. GREEN PRINCIPLES OF OPTICS

COURSE TEACHER
PHYSICS Prof. GREEN
PHYSICS Prof. GREEN

COURSE TEXT
PHYSICS BASIC MECHANICS
PHYSICS PRINCIPLES OF OPTICS

COURSE TEXT
PHYSICS BASIC MECHANICS
PHYSICS PRINCIPLES OF OPTICS
MATHS BASIC MECHANICS
MATHS VECTOR ANALYSIS
MATHS TRIGNOMETRY

DBMS Normalization 12

444 4NF: The relation is said to be in 4NF if and only it is in BCNF and must have both MVD’s and
FD’s.

Fagin’s theorem: Let R=A,B,C be a relation where A,B,C are set of attributes the R = join of its
projection on {A,B} and {A,C} if and only if R satisfies A >> B and A >> C

5NF (Fifth Normal Form)

Join Dependencies

SPJ {S#,P#,J#}
CANDIDATE KEY { S#,P#,J#}

 Join Dependencies: Let R be a relation and let A,B,…,Z be arbitrary subsets of set of attributes
of R. Then we can say that R satisfies join dependency *(A,B,…,Z) if and only if R is equal to
join of its projections on A,B,…,Z

 Therefore the relations CT and CX satisfies 1NF,2NF,3NF,BCNF and preserves MVD’s and
FD’s .

 Therefore the relations CT and CX satisfies 4NF.

--

 Consider the following relation

SPJ

S# P# J#
S1 P1 J2

S1 P2 J1

S2 P1 J1

S1 P1 J1

 The relation SPJ is stated as

DBMS Normalization 13

J2

J1

J1

P1

P2

P1

J# P

J2

J1

J1

S1

S1

S2

J# S

J2

J1

J1

P1

P2

P1

J# P

J2

J1

J1

S1

S1

S2

J# S

S1

S1

S2

P1

P2

P1

If the pair (S1, P1) appear in SP, the pair (P1 ,J1) appear in PJ the the pair (J1, S1) appear in JS
then the triple (S1, P1 ,J1) appear in SPJ

S1

S1

S2

P1

P2

P1

SP PJ JS

 Join over P#

SP

Sprious tuple

 Join over S#, J#

SPJ

 Constraint on the following table is

SPJ
S# P# J#
S1 P1 J2

S1 P2 J1

S2 P1 J1

SP PJ JS

 Join over P#

SP
 Join over S#, J#

Spurious tuple

SPJ

Spurious tuple

Table violating the specified constraint

P S

P S

 S P J#

 S1 P1 J2

S1 P1 J1

S1 P2 J1

 S2 P1 J2

 S2 P1 J1

S P J#

S1 P1 J2

S1 P1 J1

S1 P2 J1

S2 P1 J1

 S P J#

 S1 P1 J2

S1 P1 J1

S1 P2 J1

 S2 P1 J2

 S2 P1 J1

 S P J#

 S1 P1 J2

 S1 P1 J1

 S1

S2

P2

P1

J1

J1

DBMS Normalization 14

P1

P2

S1

S1

P S P J#

P1 J2

P2 J1

P1 J1

SP {S#,P#}
CANDIDATE KEY { S#,P# }

JS {J#,S#}
CANDIDATE KEY { J#,S# }

SPJ
S# P# J#
S1 P1 J2

S1 P2 J1

S1 P1 J1

SP PJ JS

 Join over P#

 Consider the relation SPJ

 Join over S#, J#

SPJ

 SPJ is projected into SP,PJ and JS

PJ {S#,P#}
CANDIDATE KEY { P#,J# }

SPJ {S#,P#,J#}
CANDIDATE KEY { S#,P#,J#}

Table satisfying the specified constraint

S J#

S1 J2

S1 J1

SP

5NF: A relation R is in 5NF is also called PJNF (Projection Join Normal From) if and only if
every join dependency in R is implied by the candidate key of R.

S P J#

S1 P1 J2

S1 P1 J1

S1 P2 J1

S P J#

S1 P1 J2

S1 P1 J1

S1 P2 J1

Normalizatio

S#  SNAME
S#  STATUS n

SS{ S#,SNAME,STATUS}
CANDIDATE KEY S#

SPJ {S#,SNAME,STAYUS,CITY}
CANDIDATE KEY S#

S#  CITY
S#  STATUS
S#  SNAME

STATUS

 Candidate keys of SP, PJ and JS is not implied by the candidate key of SPJ. Therefore SP, PJ
and JS are not satisfies 5NF.

 Consider the relation
SUPPLIER

S# SNAME STATUS CITY

S1

S2

SMITH
JOHN

20
20

LONDON
PARIS

 The relation SUPPLIER is stated as 

 FD’s in relation SUPPLIER 

 The above relation satisfies 1NF,2NF, 3NF, BCNF (No need to check 4NF since there are FD’S).

 The relation SUPPLIER is projected into SS and SC.

SS

FD’S in SS

DBMS 15

S#

S#

CITY

STATUS

SNAME

SNAME

S# SNAME STATUS
S1 SMITH 20
S2 JOHN 10

SS{ S#,CITY}
CANDIDATE KEY S#

A relation R is said to be in DKNF if and only if it should contain KEY CONSTRAINT
and DOMAIN CONSTRAINT.

SC

FD’S in SS

 The relations SS and SC satisfies 5NF since the candidate keys of SS and CS is implied
by candidate key of SUPPLIER.

--

1. This is proposed by FAGIN and it is also called FAGIN NF.
2. It is not defined in terms of FD’s ,MVD’s,JD’s .

 Key constraint : The relation must have primary key .

 Domain constraint : The set of values associated for an attribute must have finite values.

--

DBMS Normalization 16

S#  CITY

S#

Domain Key Normal Form

CITY

S# CITY
S1 LONDON
S2 PARIS

RELATIONAL ALGEBRA & RELATIONAL CALCULUS

TOPIC 1: SELECT OPERATION (σ) VIMP

 Used to select subset of tuples (rows) from relation (table) that satisfies a select condition.

Syantax: σ <Select Condition>(R)

Syntax for Select Condition:

1. <attribute_name> <comparision_operation><constrant_value>

E.g. sal > 5000;

2. <attribute_name> <comparision_operation><attribute_name>

E.g. e.esal > d.esal

Note: e and d are table aliases

3.<selection_condition><boolean_operator><selection_condition>

E.g. Ename= ‘James’ and Salary>5000

 Comparison operators: There are normally one of the operations from the set {=, <, >, ≤, ≥, ≠}

 Boolean operators: Boolean operation is normally one of the operations of the set {AND, OR,

NOT}

 Selection operations is commutative:

σ<cond1>(σ<cond2>(R)) = σ<cond2>(σ<cond1>(R))

 We can always combine a cascade (or sequence) of SELECT operations into a single
SELECT operation with a conjunctive (AND) condition; that is,
σ<cond1>(σ<cond2>(...(σ<condn>(R)) ...)) = σ<cond1> AND<cond2> AND...AND <condn>(R)

Qeury 0: Select list of employees who work for department number 4

Sql query:

SELECT *
FROM EMPLOYEE
WHERE dno=4 AND salary>25000;

Select expression:

σDno=4 AND Salary>25000 (EMPLOYEE)

TOPIC 2: PROJECT OPERATION (∏) VIMP

 Selects certain columns from a relation.

Syntax: ∏<attribute_list>(R)

 Degree of relation: Number of attributes in a relation.

 Duplicate elimination: Duplicate rows are eliminated when projection operation done.

 Super key: Key may have single attribute or group of attributes used to distinguish one record

with another record.

∏<list1> (∏<list2>(R)) = ∏<list1> (R) when list1 and list2 is same.

Qeury 0: List each employee first name, last name and salary from the relation employee.

Sql query:

SELECT fname,lname,salary .
FROM EMPLOYEE;

Project expression:

∏<fname,lname,salary> (EMPLOYEE)

TOPIC 3: RENAME OPERATION (ρ)

 To rename relation and columns of the relation.

Syntax to rename relations and attributes: ρs (B1,B2,B3,…,Bn) (R)

Syntax to rename relation: ρ (R)

Qeury 0: Retrive the first name, last name and salary of employees who work for department 5.

Sql query:

SELECT fname,lname,salary
FROM EMPLOYEE
WHERE dno=5.

Rename expression:

DEP5_EMPS ← σ dno=5 (EMPLOYEE)

RESULT ← ∏fname,lname,salary (DEP5_EMPS)

R SSN

 123456789

333445555

666884444

453453453

S SSN

 333445555

888665555

TOPIC 4: SET OPERATIONS VIMP

UNION: Include all the tuples in R and S by eliminating duplicate rows.

 The result of operation is represented by R S.

R S R S

 123456789

333445555

666884444

453453453

888665555

INTERSECTION: Includes all the tuples that are common in both R and S.

 The result of operation is represented by R ∩ S.

R∩S R∩S

 888665555

DIFFERENCE: Includes all the tuples that are in ‘R’ but not in ‘S’.
 The result of operation is represented by R – S.

R – S R – S

 123456789

666884444

453453453

1

DEPT

ENO DEPTNO DNAME

1 10 RESEARCH

2 20 OPERATIONS

EMP

ENO ENAME

1 KING

2 BLACK

EMP

ENO ENAME

1 KING

2 BLACK

DEPT

DEPTNO DNAME

10 RESEARCH

20 OPERATIONS

TOPIC: JOIN OPERATION IN RELATIONAL ALGEBRA VIMP

Join Operation: It is used to combine tuples from multiple relations so that related information can be

presented.

 It is denoted by join symbol ⋈.

Syntax: R ⋈<Join Condition> S

Types of joins:

(a) Theta Join: A general join condition.

 Syntax: Ai θ Bi

 θ is one of the comparison operators of {=,>,>=,<,<=, ≠}

(b) Equi Join: Join based on the common columns in different relations.

Syntax: R ⋈<Column = Column> S

E.g. DEPARTMENT ⋈<MGRSSN = SSN> EMPLOYEE

DEPT

ENO ENAME DEPTNO DNAME

1 KING 10 RESEARCH

2 BLACK 20 OPERATIONS

(c) Non Equi Join: Join of two relations.

 Non equi join always return “Cartesian Product” or “Cross Product”

 It is also known as natural join.

 It is denoted by *

Syntax: R *(<list1> <list2>) S

E.g. DEPARTMENT ⋈ EMPLOYEE

EMP_CROSS_DEPT

ENO ENAME DEPTNO DNAME

1 KING 10 RESEARCH

1 KING 10 OPERATIONS

2 BLACK 20 RESEARCH

2 BLACK 20 OPERATIONS

2

EMP

ENAME DEPTNO

KING 10

BLAKE 30

CLARK 10

JONES 20

JAMES 40

DEPT

DEPTNO DNAME

10 ACCOUNTING

20 SALES

30 RESEARCH

EMP

ENAME DEPTNO

KING 10

BLAKE 30

CLARK 10

JONES 20

DEPT

DEPTNO DNAME

10 ACCOUNTING

20 SALES

30 RESEARCH

40 OPERATIONS

EMP

ENAME DEPTNO

KING 10

BLAKE 30

CLARK 10

JONES 20

JAMES 40

DEPT

DEPTNO DNAME

10 ACCOUNTING

20 SALES

30 RESEARCH

40 OPERATIONS

(d) Outer Join: Join condition that returns tuples with direct map.

(i) Left Outer Join: Returns the unmatched tuples in the left side relation.

 It is denoted by the symbol ⟕.

Syntax: R ⟕<Condition> S

Note: The tuple with DEPTNO 40 in EMP relation does not participate in the relation.

(ii) Right Outer Join: Join condition that returns tuples in the right side relation.

 It is denoted by the symbol ⟖

Syntax: R ⟖ S

Note: The tuple with DEPTNO 40 in relation DEPT does not participates in relation.

(iii) Full Outer Join: Join condition that returns tuples in both the relations that participates relation.

 It is denoted by the symbol ⟗ .

Syntax: R ⟗ S

(e) Self Join: Joining a relation itself.

EMP

EMPNO ENAME MGR

7839 KING

7698 BLACK 7839

7782 CLARK 7839

7654 MARTIN 7698

7499 ALLEN 7698

BLACK

KING

CLARK

ALLEN MARTIN

R A B

 a1 b1

a2 b1

a3 b1

a4 b1

a1 b2

a3 b2

a2 b3

a3 b3

a4 b3

a1 b4

a2 b4

a3 b4

S A

 a1

a2

a3

DIVISION OPERATION

 Used to execute special kinds of queries.

Syntax: R ÷ S

 The division operation can be expressed as follows.

T1 ← ∏y (R)

T2 ← ∏y ((S×T1) – R)

T ← T1 – T2

Step 1: Let us assume that

X = {A}

Y = {B}

Z = {A,B}

Step 2:

T1 ← ∏y (R)

T1 B

 b1

b2

b3

b4

T1 B

 b1

b2 ×

b3 ×

b4

T2 B

 b3

b2

Step 3:

T2 ← ∏y ((S×T1) – R)

Step 4:

T ← T1 – T2

T B

 b1

b4

S × T1 A B

 a1 b1 ×

a1 b2 ×

a1 b3

a1 b4 ×

a2 b1 ×

a2 b2

a2 b3 ×

a2 b4 ×

a3 b1 ×

a3 b2 ×

a3 b3 ×

a3 b4 ×

R A B

 a1 b1 ×

a2 b1 ×

a3 b1 ×

a4 b1

a1 b2 ×

a3 b2 ×

a2 b3

a3 b3 ×

a4 b3

a1 b4 ×

a2 b4 ×

a3 b4 ×

S × T1 A B

 a1 b3

a2 b2

 ∏Y (S × T1 – R) B

 b3

b2

T2 B

 b3

b2

1

Topic 5:Secondary Storage Devices

\

--

 Magnetic disk is a circular plate constructed of metal or plastic coated with magnetized

material 

 Both sides of the disk are used 

 Several disks may be stacked on one spindle with Read/Write heads available on each
surface 

 All disks rotate together at high speed and not stopped or started for access purpose

 Used to store large amount of data .

 Basic unit of storage is BIT . 

 BIT is 1 by magnetizing area on disk .

1. Magnetic Disk

Topic 4: Memory Hierarchies

Priority Device
1 High speed registers
2 Cache (or) Static RAM
3 Main memory (or) DRAM
4 Optical disk (or) CDROM
5 Magnetic disk
6 Magnetic tap

2

tA = Access time

tS = Seek time

 Character: Group of bits.

 Capacity: Number of bytes it can store. 

 Number of tracks: ranges from few hundred to few thousand.

 Capacity of each track: ranges from tens of Kbytes to 150 Kbytes. 

 Formatting: Tracks are divided into equal sized disk blocks called sectors. 

 Sector size is fixed range from 512 to 4096 bytes. 

 Read/Write head is classified into

1. Fixed head system.
2. Moving head system.

 Rotate disk pack of cylinders ranging from 3600 and 7200 rpm. 

 Access time: Time required to access the data. 

 Seek time: Time required to position the read/write head on the correct track & correct
surface. 

tA = tS + tL

3

tL = Latency time

2. Floppy Disk

 Latency time: Time required to locate the required disk block from the beginning.

 A disk drive with removable disks are called a Floppy Disk 

 The disks used with a Floppy disk drive are small disks made of plastic coated with magnetic

recording material 

 There are two sizes commonly used, with diameters of 5.25 and 3.5 inches

 The 3.5 inch disks are smaller and can store more data than 5.25 inch disks

 Floppy disks extensively used in personal computer as a medium for distributing software to

computer users

 Basic unit of storage is BIT . 

4

 BIT is 1 by magnetizing area on disk .

 Character: Group of bits.

 Capacity: Number of bytes it can store. 

 Density : Single density and Double density

 Data stored in: Tracks & Sectors

 Track: Data is placed in concentric magnetic circles called tracks

 Sector :Each track is divided into storage units called sectors

 FAT uses 512 byte sectors exclusively

 The number of Sectors per Track vary depending on the media and format

 Physical Sector Numbering starts with the number 1at the beginning of each track and
side

 Number of Tracks: 80 in 3.5 inch floppy disk

Disk Formats - 3.5”
 Low Density High Density
Tracks 80 80
Sectors per track 9 18
Bytes per sector 512 512
Total capacity 720K 1.44M

 Formatting: Tracks are divided into equal sized disk blocks called sectors. 

 Access time: Time required to access the data. 

5

tS = Seek time

3. Magnetic Tape

 Seek time: Time required to position the read/write head on the correct track & correct
surface. 

 Latency time: Time required to locate the required disk block from the beginning.

 Magnetic tape transport consists of the electrical, mechanical and electronic components
provide the parts and control mechanism for magnetic tape unit

 The tape is a strip of plastic coated with magnetic recording media

 Bits are recorded as magnetic spots on the tape along with several tracks 

 Usually, seven or nine bits are recorded simultaneously to form a character together with a

parity bit.

 The information is recorded in blocks referred to as records

 Each record on tape has an identification bit pattern at the beginning and end. By recording

the bit pattern at the beginning, the tape control identifies the record number.

 By reading the bit pattern at the end of the record, the control recognizes the beginning of a
gap

 A tape unit is addressed by specifying the record number and number of characters in the

record 

 Record may be fixed length or variable length

 Sequential access. 

 Read/Write head: Reads or writes data on tape. 

 Strorage: 1600 to 6250 bytes per inch. 

 Inter block gap: 0.6 inches. 

Block

Block

Block

Block

Block

Block

tL = Latency time

tA = tS + tL

tA = Access time

1

Topic 1: Transaction read & write

rreeaadd__iitteemm((xx))

wwrriittee__iitteemm((xx))

Topic2: What are the problems in transaction processing (or) What are the
problems due to concurrency (or) Why concurrency control is needed [VIMP]

 Transaction : Logical unit of sequence of processing.

 Transaction operations: Insert, Delete, Update & Retrieve. 

 Transaction boundaries: Begin, End.

 Begin transaction: Transaction begins when user enters into SQL plus environment.

 End transaction: Transaction ends when one of the following statements are executed. 
(a) Exit
(b) Commit
(c) Rollback

 Reads a database item into a program variable.

1. Find the address of the disk block that contain data item x.
2. Copy the disk block contain the data item x into primary memory.
3. Copy data item x to program variable named x.

 Writes the value of program variable x into database. 

1. Find the address of the disk block that contain data item x.
2. Copy the disk block contain the data item x into primary memory.
3. Copy data item x to program variable named x.
4. Store the updated data item contained in disk block to secondary memory.

 Concurrency : When multiple transactions request single database item simultaneously,
the updations of transactions produce inconsistent data. 

TTrraannssaaccttiioonn PPrroocceessssiinngg

2

xx==7799

 The updations of interleaving transactions produce inconsistent data. 

 Serial operations of transaction T1 is

xx nn yy

8800 55 1100
7799 1111

 The final result of serial transaction is x=79 but the interleaving transaction operation
shows that x=84.

yy==1111

yy==1100++11==1111

YY==1100

TThhee lloosstt uuppddaattee pprroobblleemm

rreeaadd__wwrriittee((xx));;

xx::== xx -- 11;;

wwrriittee__iitteemm((xx));;

rreeaadd__iitteemm((yy));;

yy::==yy++11;;

wwrriittee__iitteemm((yy));;

TT11

xx==8800-- 11==7799

xx==8800

y=15

y=10+5=15

xx==8844

y=10

x=84

x=80+4=84

x=80
x=80-1=79

x=80

T1 T2

read_item(x) ;

x:=x – 1;

write_item(x);

read_item(y);

y:= y + n;

write_item(y);

read_item(x);

x:=x + m;

write_item(x);

x n m y
80 5 4 10
84 15

3

TThhee iinnccoorrrreecctt ssuummmmaarryy pprroobblleemm

 The problem occurs when one transaction update the database item and then fails

 If transaction T1 fails the database item roll backs to its previous state, but transaction T2
has read the incorrect value of x.

 A transaction T receives different values for two reads on the same data item.

TThhee tteemmppoorraarryy uuppddaattee pprroobblleemm ((DDiirrttyy rreeaadd))

x=79

x=79

x=75+4=79

x=75 x=75

x=80-5=75

x=80

T1 T2

read_item(x) ;

x:=x – n;

write_item(x);

 read_item(x);

x:=x + m;

write_item(x);

read_item(x);

FAIL

x n m y

80
75
79

5 4 10

4

y sum x n a

20 0 10 5 5
25 5

T1 T2

read_item(x);

x:=x - n;

write_item(x);

read_item(y);

y:=y+n;

write_item(y);

sum:=0;

read_item(a);

sum:=sum +a;
.
.
.

read_item(x);

sum:=sum+x;

read_item(y);

sum:=sum+y;

--

Topic3: Types of transaction failures (or) Why recovery is needed [IMP]

 Types of failures

(a) Physical (or) Catastrophic
(b) Disk failure
(c) Transaction failure

y=25

y=20 +5=25

y=20

sum=0+20=20

y=20

sum=0+5=5

x = 5
x =5

x=10-5=5

x=10

ssuumm==00++55==55

aa ==55

5

DDiisskk ffaaiilluurree

Read / write head malfunctioning.

TTrraannssaaccttiioonn ffaaiilluurree

1. A/C failure.
2. Theft.
3. Sabotage.
4. Mounting wrong tape.
5. Over riding disks (or) taps.
6. Giving same name to the file.

1. Operations of transaction may fail due to logical errors.

E.g. Division by 0.
Integer over flow.
Error in parameters.
Error in control structures.

2. Transactions may fail due to concurrency.
3. Transaction may fail due to S/W, H/W errors during the execution of

transaction.
4. Transaction may fail if the data for the transaction may not be found or

insufficient.
--

Topic4: Transaction states

Begin_transaction This makes begin the transaction.
Read / Write Specifies either read operation or write operation.
End_transaction Specifies all the read & write operations are commited

(or) Specifies all the read & write operations are
partially commited and aborted.

Commit Indicates successful updation of transaction.

Rollback / Abort Indicates that the transaction ended unsuccessfully.

PPhhyyssiiccaall ((oorr)) CCaattaassttrroopphhiicc ffaaiilluurree

6

Begin
Transaction

End
Transaction Commit

Active Partially
commited

Commited

Abort

 Abort

Failed Terminated

Topic5: The system log [IMP]

Read,
write

--

 System log: System log is file keep track of all transaction operations on database items. 

 Advantages 

1. The log file entries used for recovery purpose.
2. The log file is periodically backed up into magnetic tape (Archival storage)
3. Log record: Entry of log file.

 Entries of log file

[start_transaction,T] Indicates that transaction T has
started execution

[write_item,T,X,old_value,new_value] Indicates that transaction T has
changed the value of database item X
from old value to new value.

[read_item,T,X] Indicates the transaction T has read
the value of database item X.

[commit,T] Indicates that transaction T has
completed successfully and effect of
transaction can be recorded
permanently in the database.

[abort,T] Indicates that transaction T has been
aborted.

Transaction

Atomicity

Consistency

Isolation

Durability

AAttoommiicciittyy

CCoonnssiisstteennccyy

IIssoollaattiioonn

Topic 7: Schedules & Recoverability

 The transaction is atomic unit of processing i.e. either performed entirely or none

performed at all.

 A correct execution of transaction must take the database item from one consistent state
to another consistent state. 

 A transaction is isolated from other transactions when multiple transactions are accessing
the same data item concurrently in a serial or interleaving fashion.

 The changes applied to the database item by a commited transaction must persistent in the
database. 

 Schedule (or) History: The order of execution of operations of serial or interleaving

transactions.

7

DDuurraabbiilliittyy

Topic 6: Desirable properties of transaction (or) ACID properties of transaction [IMP]

SA: r1(x); r2(x); w1(x); r1(y); w2(x); w1(y);

T1 T2

read_item(x)

x:=x-n;

 read_item(x);
 x:=x+n;

write_item(x);

read_item(y);

y:=y+n;

 write_item(x);
write_item(y);

8

Topic8: Conflict operations

r1(x) & w2(x);

T1 T2

read_item(x)
x:=x-n;
write_item(x);

read_item(y);
Fails

read_item(x);
x:=x+m;
write_item(x);

SB: r1(x); w1(x) ; r2(x); w2(x); r2(y); a1;

--

 Two operations in a schedule are said to be conflict, if they satisfy all three of the following
conditions.

1. They belongs to different transactions.
2. They access the same data item.
3. At least one of the operation is a write operation.

 Consider schedule SA

SA: r1(x); r2(x); w1(x); r1(y); w2(x); w1(y);

 Consider two operations from schedule

The above two operations are conflict since
The operations belongs to different transactions T1 &T2.
They access the same data item x.
One of the operation is write operation.

 Verify which of the operations are conflict
r2(x) & w1(x); Conflict
w1(x) & w2(x); Conflict
r1(x) & r2(x); Not conflict
w2(x) & w1(y); Not conflict

9

Topic 9: Serial schedule

 A sehedule ‘s’ of ‘n’ transactions T1, T2,…,Tn, is said to be a complete schedule if the
following conditions hold.

1.The operations in ‘s’ are exactly those operations in T1, T2,…,Tn, including a
commit or abort operation as the last operation for each transaction in the
schedule.
2. For any pair of operations from the same transaction Ti, their order of
appearance is ‘s’ is the same as their order of appearance in Ti
3. For any two conflicting operations, one of the two must occur before the order
in the schedule.

 Serial schedule: The order of execution of operations of serial transactions.

TT11 TT22

read_item(x) ;
x:=x – n;
write_item(x);
read_item(y);
y:=y + n;
write_item(y);

read_item(x);
x:=x + m;
write_item(x);

SA: r1(x); w1(x); r1(y); w1(y); r2(x); w2(x);

T1 T2

read_item(x);
x:=x - n;
write_item(x);
read_item(y);
y:=y + n;
write_item(y);

read_item(x) ;
x:=x +m;
write_item(x);

SB: r2(x); w2(x); r1(x); w1(x); r1(y); w1(y);

Topic 8: Complete schedule

10

Topic 10: Non serial schedule

 Non serial schedule: The order of execution of operations of interleaving transactions.

TT11 TT22

read_item(x) ;
x:=x + n;

write_item(x);
read_item(y);

x:=y + n;
write_item(y);

read_item(x);
x:= x + m;

write_item(x);

TT11 TT22

read_item(x) ;
x:=x - n;
write_item(x);

read_item(y);
y:=y + n;
write_item(y);

read_item(x);
x:=x + m;
write_item(x);

SD: r1(x); w1(x); r2(x); w2(x); r1(y); w1(y);

Sc: r1(x); r2(x); w1(x); r1(y); w2(x); w1(y);

Schedule C

11

 Two schedules are result equivalent if they produce the same final states of the database
item. 

Topic 11: Result equivalent schedule

y=93

y=90+3=93

y=90
x=89

x=87+2=89

x=87

x=87

x=90-3=87

x=90

x=89

x=87+2=89

x=87
y=93

y=90+3=93

y=90

x=87

x=90-3=87

x=90

TT11 TT22

read_item(x) ;

x:=x – n;

write_item(x);

read_item(y);

y:=y + n;

write_item(y);

 read_item(x);

x:=x + m;

write_item(x);

y x n m

90
93

90
87
89

3 2

 Schedule A

TT11 TT22

read_item(x) ;

x:=x – n;

write_item(x);

read_item(x);

x:=x + n;

write_item(x);
read_item(y);

y:=y + n;

write_item(y);

y x n m

90
93

90
89

3 2

Schedule C

12

VIMP Topic 12 : Serializable schedule

Schedule B

 Serializability: A schedule ‘s’ of ‘n’ transactions is serializable if it equal to some serial

schedule of same ‘n’ transactions. 

y=93

y=90 +3=93

y=90
x=89

X=87 +2=89

x=87

x=87

X=90 -3=87

x=90

y=93

y=90+3=93

y=90

x=89

x=92-3=89

x=92
x=92

x=90+2=92

x=90

y x n m

90
93

90
92
89

3 2

T1 T2

read_item(x) ;

x:=x +m;

 write_item(x);
read_item(x);

x:=x - n;

write_item(x);

read_item(y);

y:=y + n;

write_item(y);

TT11 TT22

read_item(x) ;

x:=x - n;

write-item(x);

 read_item(x);

x:= x + m;

write_item(x);
read_item(y);

y:=y + n;

write_item(y);

y x n m
90
93

90
89

3 2

13

Topic14: Conflict Equivalent Schedule [IMP]

Topic 15: Uses Of Serializability

 A non serial schedule , schedule D is serializable to serial schedule schedule B , since they
are equivalent. 

 Two schedules are said to be conflict equivalent if the order of any two conflicting
operations is the same in both the schedules.

 Two operations in a schedule are said to be conflict, if they satisfy all three of the

following conditions.
1. They belongs to different transactions.
2. They access the same data item.
3. At least one of the operation is a write operation.

E.g1: S1: r1(x); w2(x)

S2: w2(x); r1(x)

Both S1 and S2 contains conflict operations but they are NOT CONFLICT equivalent.

E.g2: S1: w1(x); w2(x)
S2: w2(x); w1(x)

Both S1 and S2 contains conflict operations but they are NOT CONFLICT equivalent.

E.g3: SA: w1(x); r2(x)
SB: w1(x); r2(x)

Both SA and SB contains conflict operations but they are CONFLICT equivalent.

--

1. A Serializable schedule gives the benefits of concurrent execution

2. The interleaving of operations from concurrent transactions is typically determined by

OS SCHEDULER which allocates resources to all the processes

3. Enforces TWO PHASE LOCKING PROTOCOL (Concurrency control protocol)

4. Ensures TIME STAMP ORDERING PROTOL (Concurrency control protocol)

5. Ensures MULTIVERSION PROTOCOL (Maintains multiple versions of database item)

6. Ensures OPTIMISTIC (or) CERTIFICATION (or) VALIDATION protocol (Concurrency
control protocols)

14

Topic16: Conflict Serializable Schedule [IMP]

Topic 17: View Equivalence [IMP]

S: r1(x); w1(x); r1(y); w2(x); w3(x);

--

Conflict Serializable: A schedule S is conflict serializable if it is conflict equivalent to some
serial schedule SI

 Consider the schedules SA and SD

SA: r1(x); w1(x); r1(y); w1(y); r2(x); w2(x);

SD: r1(x); w1(x); r2(x); w2(x); r1(y); w1(y);

 Consider

1. In both the schedules Transaction 2 reads the values after Transaction 1 writes

2. The operations w1(x) ;r2(x) is conflicting operations

3. Last operations are write operation in both the schedules

 Therefore SD is conflict serializable to SA

Consider two schedules S and Sg

 Two schedules S and Sg are said to be view equivalent

1. Bothe schedules have same transactions and same operations

S Sg

T1,T2,T3 T1,T2,T3

read_item(x)
write_item(x)

read_item(x)
write_item(x)

Sg: r1(x); w2(x); w1(x); w3(x); c1; c2; c3;

w1(x) ;r2(x) in SA

w1(x) ;r2(x) in SD

15

Topic 18: View Serializability [IMP]

S: r1(x); w1(x); r1(y); w2(x); w3(x);

Sg: r1(x); w2(x); w1(x); w3(x); c1; c2; c3;

Non serial schedule Sg is view serializable to serial schedule S

Sg: r1(x); w2(x); w1(x); w3(x); c1; c2; c3;

2. The first operation of first schedule should be same as the first operation of second
schedule

3. The last operation of first schedule should be same as the last operation of second

schedule

4. Both the schedules enforce conflict equivalence

 A Schedule Sg is view serializable if it is view equivalent to some serial schedule S

 CONSTRAIND WRITE ASSUMPTION :

Any write operation wi(x) in Ti is preceded by a read operation ri(x).

Note : Read value for data item before writing it.

Note : w1(x) preceded by the r1(x)

Note: In the above schedule w1(x) is preceded by r1(x)

 UN CONSTRAIND WRITE ASSUMPTION (OR) BLIND WRITES

The read operation ri(x) is not preceded by write operation wi(x)

Note: Data item value can’t be read before writing it

Note: w2(x) and w3(x) is not preceded by the read operations r2(x) and r3(x)

16

I IMP Topic 19: Transaction Support In SQL

(a) Access Mode

(b) Diagnostics Area Size

(c) ISOLATION LEVEL

 Transaction: Sequence of statements that performs specified task. 
 A single SQL statement always considered to be atomic.

 Characteristics : 

Access Mode specified as READ ONLY (or) READ WRITE

READ ONLY: Read the data from database (SELECT)
READ WRITE: INSERT, UPDATE, DELETE

DIAGNOSTIC SIZE N

The integer value N indicating the number of error conditions or exceptions.

These conditions supply feedback information to the users on the most recently
executed SQL statements.

EXEC SQL WHENEVER SQLERROR GOTO UNDO;

EXEC SQL SET TRANSACTION
READ WRITE
DIAGNOSTICS SIZE 5
ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE(Fname,Lname,SSN,Dno,Salary)
VALUES(‘Robert’,’Smith’,’991004321’,2,35000);

EXEC SQL UPDATE EMPLOYEE

SET Salary = Salary * 1.1 WHERE Dno = 2;

EXEC SQL COMMIT;

UNDO: EXEC SQL ROLLBACK;
THE_END: …;

17

1. Dirty read :

Isolation level specified with option

ISOLATION LEVEL < ISOLATION>

ISOLATION:

1. READ UNCOMMITED
2. READ COMMITED
3. REPEATABLE READ
4. SERIALIZABLE

There may be three of the following violations in SQL TRANSACTIONS

 The problem occurs when one transaction update the database item and then

fails

 If transaction T1 fails the database item roll backs to its previous state, but
transaction T2 has read the incorrect value of x.

x=79

x=79

x=75+4=79

x=75
x=75

x=80-5=75

x=80

T1 T2

read_item(x) ;

x:=x – n;

write_item(x);

 read_item(x);

x:=x + m;

write_item(x);

read_item(x);

FAIL

x n m y

80
75
79

5 4 10

18

3. Phontoms

Read by T1
1
2
3

4
Read by T2

Read by T1
1
2
3
4

A transaction T1 may read a given value from a table. If another transaction T2 later
updates that value and T1 reads that value again, T1 will see a different values.

1. A transaction T1 may read the rows from table based on the where condition.

2. A transaction T2 inserts a new record that satisfy where condition used in T1.

3. If T1 is repeated, then T1 will see a PHONTOM, a row that previously did not exist.

Possible violations Based on isolation levels as defined in SQL
TYPE OF VIOLATION

Isolation Level Dirty Read Non repeatable Read Phantom
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

2. Nonrepeatable read

1

x

T1 → T2

r1 (x) w2 (x)

w1 (x) r2 (x)

w1 (x) w2(x)

y

T1 → T2

r1 (y) w2 (y)

w1 (y) r2 (y)

w1 (y) w2(y)

x

T2 → T1

r2 (x) w1 (x)

w2 (x) r1 (x)

w2 (x) w1(x)

y

T2 → T1

r2 (y) w1 (y)

w2 (y) r1 (y)

w2 (y) w1(y)

x

T1 T2
x

Testing Serializability (or) Confilct Serializability
Problem 1: Verify whether the following Transactions ensures serializablity.

Sc: r1(x) ; r2(x); w1(x); r1(y); w2(x); w1(y);

 Since the Precedence Graph has Cycle, the schedule Sc is not Serializable or
Conflict Serializable.

2

x

T1 → T2

r1 (x) w2 (x)

w1 (x) r2 (x)

w1 (x) w2(x)

y

T1 → T2

r1 (y) w2 (y)

w1 (y) r2 (y)

w1 (y) w2(y)

Problem 2: Verify whether the following Transactions ensures

serializablity.

SD: r1(x); w1(x); r2(x); w2(x); r1(y); w1(y);

x y

T2 → T1 T2 → T1

r2 (x) w1 (x) r2 (y) w1 (y)

w2 (x) r1 (x)

w2 (x) w1(x)

 w2 (y) r1 (y)

w2 (y) w1(y)

 x

T1 T2

 Since the Precedence Graph has No Cycle, the schedule SD is Serializable
or Conflict Serializable.

1

SE: r2(z); r2(y); w2(y); r3(y); r3(z); r1(x); w1(x); w3(y); w3(z); r2(x); r1(y); w1(y); w2(x);

x

T1 → T2

r1 (x) w2 (x)

w1 (x) r2 (x)

w1 (x) w2(x)

y

T1 → T2

r1 (y) w2 (y)

w1 (y) r2 (y)

w1 (y) w2(y)

z

T1 → T2

r1 (z) w2 (z)

w1 (z) r2 (z)

w1 (z) w2(z)

Problem 3: Verify whether the following schedule enforces conflict serializability.

z

T1 → T3

r1 (z) w3 (z)

w1 (z) r3 (z)

w1 (z) w3(z)

y

T1 → T3

r1 (y) w3 (y)

w1 (y) r3 (y)

w1 (y) w3(y)

x

T1 → T3

r1 (x) w3 (x)

w1 (x) r3 (x)

w1 (x) w3(x)

2

x

T3 → T2

r3 (x) w2 (x)

w3 (x) r2 (x)

w3 (x) w2(x)

y

T3 → T2

r3 (y) w2 (y)

w3 (y) r2 (y)

w3 (y) w2(y)

z

T3 → T2

r3 (z) w2 (z)

w3 (z) r2 (z)

w3 (z) w2 (z)

x

T2 → T1

r2 (x) w1 (x)

w2 (x) r1 (x)

w2 (x) w1(x)

y

T2 → T1

r2 (y) w1 (y)

w2 (y) r1 (y)

w2 (y) w1(y)

z

T2 → T1

r2 (z) w1 (z)

w2 (z) r1 (z)

w2 (z) w1 (z)

x

T2 → T3

r2 (x) w3 (x)

w2 (x) r3 (x)

w2 (x) w3(x)

y

T2 → T3

r2 (y) w3 (y)

w2 (y) r3 (y)

w2 (y) w3(y)

z

T2 → T3

r2 (z) w3 (z)

w2 (z) r3 (z)

w2 (z) w3 (z)

z

T3 → T1

r3 (z) w1 (z)

w3 (z) r1 (z)

w3 (z) w1 (z)

y

T3 → T1

r3 (y) w1 (y)

w3 (y) r1 (y)

w3 (y) w1(y)

x

T3 → T1

r3 (x) w1 (x)

w3 (x) r1 (x)

w3 (x) w1(x)

3

 Since the precedence has cycles , the schedule SE is not conflict

serializable or serializable.

x

T1 T2

y
y, z

T3

 A trigger is a pl/sql block structure which is fired when a DML statements like
Insert, Delete, Update is executed on a database table.

 A trigger is triggered automatically when an associated DML statement is
executed.

Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

Declaration-statements

BEGIN

Executable-statements

EXCEPTION

Exception-handling-statements

END;

Example:

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

sal_diff number;

BEGIN

sal_diff := :NEW.salary - :OLD.salary;

dbms_output.put_line('Old salary: ' || :OLD.salary);

dbms_output.put_line('New salary: ' || :NEW.salary);

dbms_output.put_line('Salary difference: ' || sal_diff);

END;

1. TRIGGER VVIMP

P/L SQL

 A cursor is a pointer to this context area. PL/SQL controls the context

area through a cursor. 

 A cursor holds the rows (one or more) returned by a SQL statement. The

set of rows the cursor holds is referred to as the active set.

 There are two types of cursors
1. Implicit cursors

2. Explicit cursors

1. Implicit Cursors

 Implicit cursors are automatically created by Oracle whenever an SQL statement is

executed, when there is no explicit cursor for the statement. Programmers cannot

control the implicit cursors and the information in it.
 Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is

associated with this statement. For INSERT operations, the cursor holds the data that

needs to be inserted. For UPDATE and DELETE operations, the cursor identifies the rows

that would be affected.
 In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which

always has attributes such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The

SQL cursor has additional attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS,

designed for use with the FORALL statement. 

DECLARE

total_rows number(2);

BEGIN

UPDATE customers

SET salary = salary + 500;

IF sql%notfound THEN

dbms_output.put_line('no customers selected');

ELSIF sql%found THEN

total_rows := sql%rowcount;

dbms_output.put_line(total_rows || ' customers
selected ');

END IF;

END;

2. CURSORS VVIMP

2. Explicit Cursors

 Explicit cursors are programmer-defined cursors for gaining more control over

the context area. An explicit cursor should be defined in the declaration section of the

PL/SQL Block. It is created on a SELECT Statement which returns more than one row.

DECLARE

c_id customers.id%type;

c_name customers.name%type;

c_addr customers.address%type;

CURSOR c_customers is

SELECT id, name, address FROM customers;

BEGIN

OPEN c_customers;

LOOP

FETCH c_customers into c_id, c_name, c_addr;

EXIT WHEN c_customers%notfound;

dbms_output.put_line(c_id || ' ' || c_name || ' ' ||
c_addr);

END LOOP;

CLOSE c_customers;

END;

/

4. RELATIONAL CONSTRAINTS VVIMP

 In SQL, a view is a virtual table based on the result-set of an SQL statement.

 A view contains rows and columns, just like a real table. The fields in a view are fields from

one or more real tables in the database.

 You can add SQL functions, WHERE, and JOIN statements to a view and present the data as

if the data were coming from one single table.

Syntax:

CREATE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

Example:

CREATE VIEW [Brazil Customers] AS

SELECT CustomerName, ContactName

FROM Customers

WHERE Country = 'Brazil';

--

 Constraint: A rule at column level or table level.

 Relational constraints

1. Not null (Defined at either column level or table level)

2. Unique (Defined at either column level or table level)

3. Primary key (Defined at either column level or table level)

4. Foreign key (Defined at either column level or table level)

6. Check (Defined at either column level or table level)

3. VIEW VVIMP

1. Not null: Specifies that may not contain null value.

E.g.

SQL> create table emp

(empno number(4),

ename varchar2(10) not null);

2. Unique: Every value in a column or set of columns be unique.

E.g.

SQL> create table dept

(deptno number(2),

dname varchar2(14),

constraint dept_dname_uk unique(dname));

3. Primary key: Creates primary key for the table.

 The value assigned for an attribute must satisfy the constraints unique and not null.

E.g.

SQL> create table dept

(deptno number(2),

dname varchar2(14),

constraint dept_dname_pk primary key(dname));

4. Foreign key: The foreign key is defined in the child table, and the table containing the

reference column is in the parent table.

E.g.

SQL> create table emp

(empno number(2),

ename varchar2(14) not null,

deptno number(2),

constraint emp_dept_fk foreign key(deptno) references dept (deptno));

5. Check: Defines the condition that the each row must satisfy.

E.g.

SQL> create table dept

(deptno number(2),

dname varchar2(14),

constraint emp_dept_ck check (deptno between 10 and 99));

LECTURE NOTES PREPARED BY

Dr.T.S.RAVI KIRAN, ASSISTANT PROFESSOR & HOD

DEPARTMENT OF COMPUTER SCIENECE

P.B.SIDDHARHA COLLEE OF ARTS & SCIENECE, VIJAYAWADA, AP, INDIA PIN:
520010

Email: tsravikiran@pbsiddhartha.ac.in

Mobile: 9441176980

COURESE: OPERATING SYSATEMS

CONTENTS:

1. Introduction
2. OS Structure
3. Process
4. Threads
5. Synchronization
6. CPU Scheduling
7. Deadlocks
8. Memory Management
9. Virtual Memory
10. Mass Storage Structure
11. File Systems Interface
12. File System Implementation

1

CHAPTER 1

INTRODUCTION

1. 1 WHAT OPERATING SYSTEMS DO (OR) FUNCTIONS OF OS

 Operating system: An operating system is a program that acts as an interface between the user

and the computer hardware and controls the execution of all kinds of programs.

 Following are some of important functions of an Operating System.

1. Memory Management.

2. Processor Management.

3. Device Management.

4. File Management.

5. Security.

6. Control over system performance.

7. Job accounting.

8. Error detecting aids.

9. Coordination between other software and users.

Memory Management:

 Memory management refers to management of primary memory. An operating system

performs the following activities for memory management.

CPU RAM I/O HARDWARE

SOFEWARE

Operating System

System

Soft wares

Application

Soft wares

User 1 User 1 User 1 User n . . .

Fig 1.1: Abstract View of OS.

2

1. Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part are not

in use.

2. In multiprogramming, the operating system decides which process will get memory when

and how much.

3. Allocates the memory when a process requests it to do so.

4. De-allocates the memory when a process no longer needs it or has been terminated.

Processor Management:

 In multiprogramming environment, the OS decides which process gets the processor when

and for how much time. This function is called process scheduling. An Operating System

does the following activities for processor management.

1. Keeps tracks of processor and status of process. The program responsible for this task is

known as traffic controller.

2. Allocates the processor (CPU) to a process.

3. De-allocates processor when a process is no longer required.

Device Management:

 An Operating System manages device communication via their respective drivers. It does

the following activities for device management.

1. Keeps tracks of all devices. Program responsible for this task is known as the I/O controller.

2. Decides which process gets the device when and for how much time.

3. Allocates the device in the efficient way.

4. De-allocates devices.

File Management:

 A file system is normally organized into directories for easy navigation and usage. These

directories may contain files and other directions.

 An Operating System does the following activities for file management

1. Keeps track of information, location, uses, status etc. The collective facilities are often

known as file system.

2. Decides who gets the resources.

3. Allocates the resources.

4. De-allocates the resources.

Other Important Activities:

 Following are some of the important activities that an Operating System performs −

1. Security: By means of password and similar other techniques, it prevents unauthorized

access to programs and data.

2. Control over system performance: Recording delays between request for a service and

response from the system.

3

3. Job accounting: Keeping track of time and resources used by various jobs and users.

4. Error detecting aids: Production of dumps, traces, error messages, and other debugging

and error detecting aids.

5. Coordination between other softwares and users: Coordination and assignment of

compilers, interpreters, assemblers and other software to the various users of the

computer systems.

1.2 COMPUTER-SYSTEM ORGANIZATION

 Computer Organization: Computer organization concerned with the way the hardware

components operate and the way they are connected to and from the computer.

1.2.1 Computer-System Operation

 A modern general-purpose computer system consists of one or more CPUs and a number of

device controllers connected through a common bus that provides access to shared

memory.

 Each device controller is incharge of a specific type of device (for example, disk drives, audio

devices,or video displays).

 The CPU and the device controllers can execute in parallel, competing for memory cycles. A

memory controller synchronizes access to the memory.

 Bootstrap: A bootstrap is the program that initializes the operating system (OS) during startup.

 When power is on, the bootstrap program loads the operating-system kernel in to memory. Once

the kernel is loaded and executing, it can start providing services to the system and its users.

.
 On UNIX, the first system process is “init,” and it starts many other back ground processes. The

process invoked by hardware or software request the service of CPU by passing an interrupt (system

Fig 1.2: A modern computer system.

4

call). When CPU is interrupted, it stops execution of current process temporarily and immediately

provides service to the requested process and CPU resumes the stopped process later.

 When the CPU is interrupted, it stops what it is doing and immediately transfers the control to

interrupt vector. The interrupt vector is an array that contains address of unique device numbers

that request service.

1.2.2 Storage Structure

 The CPU can load instructions only from memory, so any programs to run must be stored there.

 RAM: RAM (Random Access Memory) is the internal memory of the CPU for storing data, program,

and program result. It is a read/write memory which stores data until the machine is working. As

soon as the machine is switched off, data is erased.

 Dynamic random access memory (DRAM) is a type of semiconductor memory that is typically used

for the data or program code needed by a computer processor to function. DRAM is a common type

of RAM that is used in personal computers (PCs), workstations and servers.

 Memory hierarchy: In computer architecture, the memory hierarchy separates computer

storage into a hierarchy based on response time.

Fig1.3: Interrupt timeline for a single process doing

output.

5

1.2.3 I/O Structure

 A general-purpose computer system consists of CPUs and multiple device controllers that are

connected through a common bus. Each device controller is in charge of a specific type of device.

For instance, seven or more devices can be attached to the small computer-systems interface (SCSI)

controller.

 The device controller is responsible for moving the data between the peripheral devices that it

controls and its local buffer storage. Typically, operating systems have a device driver for each

device controller. This device driver understands the device controller and provides the rest of the

operating system with a uniform interface to the device.

 DMA (Direct Memory Access): Direct memory access (DMA) is a method that allows an

input/output (I/O) device to send or receive data directly to or from the main memory, bypassing

the CPU to speed up memory operations. The process is managed by a chip known as a DMA

controller (DMAC).

Fig 1.4: Storage Device Hierarchy.

6

1.3 COMPUTER-SYSTEM ARCHITECTURE

 Computer System Architecture: Computer System Architecture refers to how a computer system is

designed and what technologies it is compatible with.

 A computer system can be organized in a number of different ways, which we can

categorize roughly according to the number of general-purpose processors used.

1.3.1 Single Processor System:

 A single processor system contains only one processor. So only one process can be executed at a

time and then the process is selected from the ready queue. Even if there are multiple applications

need to be executed, since the system contains a single processor and only one process can be

executed at a time.

Fig 1.5: Storage Device Hierarchy.

7

1.3.2 Multi Processor System

 A Multiprocessor is a computer system with two or more central processing units (CPUs) share full

access to a common RAM. The main objective of using a multiprocessor is to boost the system’s
execution speed, with other objectives being fault tolerance and application matching.

Multiprocessor systems have three main advantages:

1. Increased throughput: By increasing the number of processors, we expect to get more work done in less

time.

2. Economy of scale: Multiprocessor systems can cost less than equivalent multiple single-processor

systems, because they can share peripherals, mass storage, and power supplies.

3. Increased reliability: The failure of one processor will not halt the system, only slow it down since the

functions are distributed to multiple processes. If we have ten processors and one fails, then each of the

remaining nine processors can pick up a share of the work of the failed processor. Thus, the entire

system runs only 10 percent slower, rather than failing altogether.

 Increased reliability of a computer system is crucial in many applications. Graceful degradation is

the ability of a computer to maintain limited functionality even when a large portion of it has been

destroyed or rendered inoperative. Some systems go beyond graceful degradation and are called

fault tolerant, because they can suffer a failure of any single component and still continue

operation.

 There are two main types of multiprocessor operating systems. The first one is Asymmetric

Multiprocessing System (AMP or ASMP) and second one is Symmetric Multiprocessing (SMP).

 Asymmetric Multiprocessing system: Asymmetric Multiprocessing has the master-slave relationship

among the processors. There is one master processor that controls remaining slave processor.

The master processor allots processes to slave processor, or they may have some predefined task to

perform. The master processor runs the tasks of the operating system.

User 1 User 2 User 3 User n . . .

Operating System

CPU

Fig 1.6: Single Processor System.

8

 Symmetric Multiprocessing system: In symmetric multiprocessing, all the processors are treated

equally. All processors communicate with another processor by a shared memory.

 A recent trend in CPU design is to include multiple computing cores on a single chip. Such

multiprocessor systems are termed multicore.

Asymmetric Multiprocessing

Slave1 P1

Master

Slave 2

Slave3

P2

P3

P4

(No Shared Memory)
(Shared Memory)

Symmetric Multiprocessing

CPU 1

CPU2

CUP3

CPU4

P1

P2

P3

P4

Fig 1.7: Symmetric and Asymmetric Multiprocessing.

Fig 1.8: Symmetric multiprocessing architecture.

Fig 1.9: A dual-core design with two cores placed on the same chip.

9

1.3.3 Clustered Systems

 Cluster Systems: Cluster systems refer to a group or cluster of computers working together. This can

be considered as a single system. The computer cluster can be lightly or loosely connected. The

cluster systems are divided into nodes and each node have a specific task to accomplish. The task to

be performed is assigned using the specially designed software.

 Clustering can be structured asymmetrically or symmetrically.

 Asymmetric Cluster System:

In asymmetric clustering, one machine is in hot-standby mode while the other is running the

applications. The hot-standby host machine does nothing but monitor the active server. If that server

fails, the hot-standby host becomes the active server.

 Symmetric Clustering System

In symmetric clustering system two or more nodes all run applications as well as monitor each other.

This is more efficient than asymmetric system as it uses all the hardware and doesn't keep a node

merely as a hot standby.

1.3.3.1 Attributes of Clustered Systems

 There are many different purposes that a clustered system can be used for. Some of these can be

scientific calculations, web support etc. The clustering systems that embody some major attributes

are

 Load Balancing Clusters

In this type of clusters, the nodes in the system share the workload to provide a better performance. For

example: A web based cluster may assign different web queries to different nodes so that the system

performance is optimized. Some clustered systems use a round robin mechanism to assign requests to

different nodes in the system.

Fig 1.10: General Structure of Clustered System.

10

 High Availability Clusters

These clusters improve the availability of the clustered system. They have extra nodes which are only

used if some of the system components fail. So, high availability clusters remove single points of failure

i.e. nodes whose failure leads to the failure of the system. These types of clusters are also known as

failover clusters or HA clusters.

Advantages of clustered system:

The difference benefits of clustered systems are as follows

 Performance: Clustered systems result in high performance as they contain two or more individual

computer systems merged together. These work as a parallel unit and result in much better

performance for the system.

 Fault Tolerance: Clustered systems are quite fault tolerant and the loss of one node does not result

in the loss of the system. They may even contain one or more nodes in hot standby mode which

allows them to take the place of failed nodes.

 Scalability: Clustered systems are quite scalable as it is easy to add a new node to the system. There

is no need to take the entire cluster down to add a new node.

1.4 OPERATING-SYSTEM STRUCTURE VVIMP

 Operating system can be implemented with the help of various structures.

 The structure of the OS depends mainly on how the various common components of the

operating system are interconnected and melded into the kernel. Depending on this we have

following structures of the operating system.

1.4.1 Simple Structure:

 Operating systems do not have well defined structure and offers limited features.

 MS-DOS is an example of such operating system. In MS-DOS application programs are able to

access the basic I/O routines. These types of operating system cause the entire system to crash if

one of the user programs fails.

 Diagram of the structure of MS-DOS is shown below.

Application Program

Resident System Programs

MS-DOS Device Drivers

ROM BIOS Device Drivers

Fig 1.11: Simple structure of MS DOS Operating System.

11

Advantages:

 It delivers better application performance because of the few interfaces between the application

program and the hardware.

 Easy for kernel developers to develop such an operating system.

Disadvantages:

 The structure is very complicated as no clear boundaries exist between modules.

 It does not enforce data hiding in the operating system.

1.4.2 Layered Structure:

 In this structure operating system is broken into number of layers (levels). The bottom layer (layer

0) is the hardware and the topmost layer (layer N) is the user interface.

 These layers are so designed that each layer uses the functions of the lower level layers only. This

simplifies the debugging process since the error occurs in the higher level does not affect the

lower level as the lower level layers have already been debugged.

Advantages:

 Layering makes it easier to enhance the operating system as implementation of a layer can be

changed easily without affecting the other layers.

 It is very easy to perform debugging and system verification.

Disadvantage:

 In this structure the application performance is degraded as compared to simple structure.

 It requires careful planning for designing the layers as higher layers use the functionalities of only

the lower layers.

Fig 1.12: Layers of Operating System .

12

1.4.3 Micro-kernel:

 Microkernel is the minimum amount of software that can provide the mechanisms needed to

implement services of an operating system (OS).

 These mechanisms include low-level address space management, thread management, and inter-

process communication (IPC).

Advantages:

 It makes the operating system portable to various platforms.

 As micro kernels are small so these can be tested effectively.

Disadvantages:

 Increased level of inter module communication degrades system performance.

1.4.4 Modular Structure:

 A modular operating system is built with its various functions broken up into distinct processes,

each with its own interface. The main elements of a modular operating system are a kernel and a

set of dynamically loadable applications with their own discrete memory spaces.

Features of Modular Operating System:

 Multiprogramming: Several programs are run at the same time.

 Time Sharing: Time Sharing is a technique which enables many people, located at various terminals,

to use a particular computer system at the same time. Time-sharing or multitasking is a logical

extension of multiprogramming. Processor's time which is shared among multiple users

simultaneously is termed as time-sharing.

 Job Scheduling: Job Scheduling is the process of allocating system resources to many different tasks by

an operating system (OS). The system handles prioritized job queues that are awaiting CPU time and it

should determine which job to be taken from which queue and the amount of time to be allocated for

the job.

Core Solaris

Kernel

Scheduling

Classes

Executable

Formats

File Systems

Loadable

System Calls

STREAMS

Modules

Miscellaneous

Modules

Device & Bus

Drivers

Fig 1.13: Solaris modular Structure.

13

 Swapping: Swapping is a mechanism in which a process can be swapped temporarily out of main

memory (or move) to secondary storage (disk) and make that memory available to other processes. At

some later time, the system swaps back the process from the secondary storage to main memory.

1.5 OPERARING SYSTEM OPERATIONS

1.5.1 Dual-Mode and Multimode Operation

 In order to ensure the proper execution of the operating system, we must be able to distinguish

between the execution of operating-system code and user defined code.

 There are two separate modes of operation the first one is user mode and the second one is kernel

mode (also called supervisor mode, system mode, or privileged mode).

 A bit, called the mode bit, is added to the hardware of the computer to indicate the current mode. If

mode bit is 0 then the operating system is in kernel mode. If the mode bit is 1 then operation system

is in user mode.

 When the computer system is executing on behalf of a user application, the system is in user mode.

However, when a user application requests a service from the operating system (via a system call),

the system must transition from user to kernel mode to fulfill the request.

1.5.2 Timer

 We must ensure that the operating system maintains control over the CPU.

 We cannot allow a user program to get stuck in an infinite loop or to fail to call system services
and never return control to the operating system. To accomplish this goal, we can use a timer.

 A timer can be set to interrupt the computer after a specified period. The period may be fixed (for

example, 1/60 second) or variable (for example, from 1 millisecond to 1 second).

Fig 1.14 Transition from user to kernel mode.

14

1.6 PROCESS MANAGEMENT

 Process: A process is a program in execution.

 A process needs certain resources including CPU time, memory, files, and I/O devices to
accomplish its task.

 The operating system is responsible for the following activities in connection with process
management.

1. Allocation of Process to Processor to perform its execution.

2. Deallocation of Process from Processor after its job is over.

3. Scheduling processes and threads on the CPUs.

4. Creating and deleting both user and system processes.

5. Suspending and resuming processes.

6. Providing mechanisms for process synchronization.

7. Providing mechanisms for process communication.

1.7 MEMORY MANAGEMENT

The operating system is responsible for the following activities in connection with memory management.

1. Allocation of memory to Process.

2. Deallocaton of Process from Memory.

3. Keeping track of which parts of memory are currently being used and who is using them.

4. Allocating and deallocating memory space as needed.

1.8 STORAGE MANAGEMENT

 The basic storage unit is File.

1.8.1 File System Management

 The operating system is responsible for the following activities in connection with file management

1. Creating and deleting files.

2. Creating and deleting directories to organize files.

3. Supporting primitives for manipulating files and directories.

4. Mapping files onto secondary storage.

5. Backing up files on stable (nonvolatile) storage media.

1.8.2 Mass Storage Management

 Most modern computer systems use disks as the principal online storage medium for both programs

and data.

 Hence, the proper management of disk storage is of central importance to a computer system.

 The operating system is responsible for the following activities in connection with disk management.

1. Free-space Management

15

2. Storage Allocation

3. Disk Scheduling

1.8.3 Caching

 The process of storing and accessing data from the cache is known as Caching.

 A cache is a type of memory that is used to increase the speed of data access. In other words, a

cache is a region of fast memory that holds copies of data.

 Access to the cached copy is more efficient than access to the original.

 The Cache Coherence Problem: In a multiprocessor system, data inconsistency may occur among

adjacent levels or within the same level of the memory hierarchy. For example, the cache and the

main memory may have inconsistent copies of the same object.

 As multiple processors operate in parallel, and independently multiple caches may possess different

copies of the same memory block, this creates cache coherence problem. Cache coherence

schemes help to avoid this problem by maintaining a uniform state for each cached block of data.

Fig 1.15: Migration of integer A from disk to register.

 P1 P2

 X X

 X

Processor 1

Caches

Bus

Bus Update

Before Update

 P1 P2

 X1 X

 X1

Processor 1

Caches

Bus

Bus Update

Write-through

 P1 P2

 X1 X

 X

Processor 1

Caches

Bus

Bus Update

Write-back

Fig 1.16: Illustration of Cache Coherence Problem.

16

 Let X be an element of shared data which has been referenced by two processors, P1 and P2. In the

beginning, three copies of X are consistent. If the processor P1 writes a new data X1 into the cache,

by using write-through policy, the same copy will be written immediately into the shared memory.

In this case, inconsistency occurs between cache memory and the main memory. When a write-back

policy is used, the main memory will be updated when the modified data in the cache is replaced or

invalidated.

1.8.4 I/O Systems

 One of the purposes of an operating system is to hide the peculiarities of specific hardware devices

from the user.

 The I/O subsystem consists of several components

1. A memory-management component that includes buffering, caching, and spooling.

2. A general device-driver interface.

3. Drivers for specific hardware devices.

1.9 PROTECTION & SECURITY

 When the data is shared by multiple users simultaneously, it must be regulated.

 Protection: Protection refers to a mechanism which controls the access of programs, processes, or users

to the resources defined by a computer system.

 Security: Operating system security is the process of ensuring operating system integrity,

confidentiality and availability.

 Most operating systems maintain a list of user names and associated user identifiers (user IDs)

 Group functionality can be implemented as a system-wide list of group names and group identifiers.

 A user can be in one or more groups, depending on operating-system design decisions. The user’s
groups IDs are also included in every associated process and thread.

 However, a user sometimes needs to escalate privileges to gain extra permissions for an activity.

 The process runs with this effective UID until it turns off the extra privileges or terminates.

17

1.10 KERNEL DATA STRUCTURES

1.10.1 Lists, Stacks, and Queues

 The most common method for implementing this structure is a linked list, in which items are linked

to one another.

 In a singly linked list, each item points to its successor

 In a doubly linked list, a given item can refer either to its predecessor or to its successor.

 In a circularly linked list, the last element in the list refers to the first element, rather than to null.

1.10.2 Trees

 A tree is a data structure that can be used to represent data hierarchically.

 Data values in a tree structure are linked through parent-child relationships.

 In a general tree, a parent may have an unlimited number of children.

 In a binary tree, a parent may have at most two children, which we term the left child and the right

child.

 A binary search tree additionally requires an ordering between the parent’s two children in which le
ft child <= right child.

Fig 1.17: Singly Linked Lists.

Fig 1.18: Doubly Linked Lists.

Fig 1.19 Circular Linked List.

18

1.10.3 Hash Functions and Maps

 A hash function takes data as its input, performs a numeric operation on this data, and returns a numeric

value.
 This numeric value can then be used as an index into a table (typically an array) to quickly retrieve the

data.

 Whereas searching for a data item through a list of size n can require up to O(n) comparisons in the

worst case, using a hash function for retrieving data from table can be as good as O(1) in the best case,

depending on implementation details. Because of this performance, hash functions are used extensively

in operating systems.

 One potential difficulty with hash functions is that two inputs can result in the same output value that is,

they can link to the same table location. We can accommodate this hash collision by having a linked list

at that table location that contains all of the items with the same hash value. Of course, the more

collisions there are, the less efficient the hash function is.

Fig 1.20 Binary Search Tree.

Fig 1.21 Hash map.

19

1.10.4 Bitmaps

 A bitmap is a string of n binary digits that can be used to represent the status of n items. For

example, suppose we have several resources, and the availability of each resource is indicated by

the value of a binary digit: 0 means that the resource is available,while 1 indicates that it is

unavailable (or vice-versa).

 The value of the ith position in the bitmap is associated with the ith resource. As an example,

consider the bitmap shown below:

Resources 2, 4, 5, 6, and 8 are unavailable; resources 0, 1, 3, and 7 are available.

1.11 COMPUTING ENVIRNMENT

1.11.1 Traditional Computing

 This environment consisted of PCs connected to a network, with servers providing file and print

services.

 Terminals attached to mainframes were common at many companies.

 Web Computing: Companies establish portals, which provide Web accessibility to their internal

servers. Network computers (or thin clients) access the web portals.

 Mobile computers can also connect to wireless networks and cellular data networks to use the

company’s Web portal.

 Firewalls are used to protect networks from security breaches.

1.11.2 Mobile Computing

 Mobile Computing is a technology that allows transmission of data, voice and video via a computer

or any other wireless enabled device without having to be connected to a fixed physical link.

 The main concept involves

1. Mobile communication

2. Mobile hardware

3. Mobile software

Mobile communication:

 The mobile communication in this case, refers to the infrastructure put in place to ensure that

seamless and reliable communication goes on.

0 1 0 0 1 1 1 0 1

0 2 1 3 4 5 6 7 8

20

 These would include devices such as protocols, services, bandwidth, and portals necessary to

facilitate and support the stated services.

 The data format is also defined at this stage. This ensures that there is no collision with other

existing systems which offer the same service.

 Since the media is unguided / unbounded, the overlaying infrastructure is basically radio wave-

oriented. That is, the signals are carried over the air to intended devices that are capable of

receiving and sending similar kinds of signals.

 Mobile Hardware:

 Mobile Hardware includes mobile devices or device components that receive or access the service

of mobility.

E.g. Portable Laptops, Smartphones, Tablet Pc's, Personal Digital Assistants.

 Mobile Software: Mobile software is the actual program that runs on the mobile hardware.

E.g. Apple iOS, Google Android.

1.11.3 Distributed Systems

 A distributed system is a computing environment in which various resources are spread across

multiple computers (or other computing devices) on a network.

 Access to a shared resource increases computation speed, functionality, data availability, and

reliability.

 A network operating system allows file sharing across the networks.

1.11.4 Client-Server Computing

 Client-server computing is a distributed computing model in which client applications request

services from server processes. Clients and servers typically run on different computers

interconnected by a computer network

 Server systems can be broadly categorized as compute servers and file servers.

Computer server system: The compute server system provides an interface to which a client can send a

request to perform an action (for example, read data). In response, the server executes the action and

sends the results to the client. A server running a database that responds to client requests for data is an

example of such a system.

File server system: The file-server system provides a file-system interface where clients can create,

update, read, and delete files. An example of such a system is a web server that delivers files to clients

running web browsers.

21

1.11.5 Peer-to-Peer Computing

 In peer-to-peer (P2P) networking, a group of computers are linked together with equal permissions

and responsibilities for processing data. Unlike traditional client-server networking, no devices in a

P2P network are designated solely to serve or to receive data. Each connected machine has the

same rights as its “peers”, and can be used for the same purposes.

 Skype is an example of peer-to-peer computing. It allows clients to make voice calls and video calls

and to send text messages over the Internet using a technology known as voice over IP (VoIP).

1.11.6 Virtualization

 Virtualization is a technology that allows operating systems to run as applications within other

operating systems.

Fig 1.22 General structure of a client-server system.

Fig 1.23 Peer-to-peer system with no centralized service.

22

 Windows was the host operating system, and the VMware application was the virtual machine

manager VMM. The VMM runs the guest operating systems, manages their resource use, and

protects each guest from the others.

1.11.7 Cloud Computing:

 Cloud is a model of computing where servers, networks, storage, development tools, and even

applications (apps) are enabled through the internet. Instead of organizations having to make major

investments to buy equipment, train staff, and provide ongoing maintenance, some or all of these

needs are handled by a cloud service provider.

There are actually many types of cloud computing, including the following:

 Public cloud: A cloud available via the Internet to anyone willing to pay for the services.

 Private cloud: A cloud run by a company for that company’s own use.

 Hybrid cloud: A cloud that includes both public and private cloud components.

 Software as a service (SaaS): One or more applications (such as word processors or spreadsheets)

available via the Internet.

 Platform as a service (PaaS): A software stack ready for application use via the Internet (for example,

a database server).

1.25 VM Ware.

23

 Infrastructure as a service (IaaS): Servers or storage available over the Internet (for example, storage

available for making backup copies of production data).

1.11.7 Real-Time Embedded Systems

 An embedded system is a combination of computer hardware and software designed for a specific

function.

 Embedded systems may also function within a larger system.

 The systems can be programmable or have a fixed functionality.

 Industrial machines, consumer electronics, agricultural and processing industry devices,

automobiles, medical equipment, cameras, digital watches, household appliances, airplanes,

vending machines and toys, as well as mobile devices, are possible locations for an embedded

system.

 A real-time system has well-defined, fixed time constraints. Processing must be done within the

defined constraints, or the system will fail. For instance, it would not do for a robot arm to be

instructed to halt after it had smashed into the car it was building.

1.26 Cloud computing.

24

1.12 OPEN-SOURCE OPERATING SYSTEMS

 Open source software is code that is designed to be publicly accessible-anyone can see, modify, and

distribute the code as they see fit.

1.12.1 Linux

 Linux is a free, open source operating system, released under the GNU General Public License (GPL).

Anyone can run, study, modify, and redistribute the source code, or even sell copies of their

modified code, as long as they do so under the same license.

Features:

 Portable

 Open Source

 Multi-User

 Multiprogramming Hierarchical File System

 Shell

 Security

 Major distributions include RedHat, SUSE, Fedora, Debian, Slackware, and Ubuntu.

1.12.2 BSD UNIX

 BSD UNIX stands for Berkeley Software Distribution UNIX, a version of UNIX that originated many

common UNIX features such as the vi editor, C shell, and TCP/IP networking.

Features:

 TCP/IP

 Virtual Memory,

 Berkeley Fast File System.

1.12.4 Solaris

 Solaris is the commercial UNIX-based operating system of Sun Microsystems.

Features:

 Hardware Support.

 I/O Management

 Provide Device Drivers.

 Process Scheduling.

 Process Management.

 Memory Management.

 File System Implementation.

 Provide I/O Services.

1

CHAPTER 2
OPERRATING SYSTEM STRUCTURE

2.1 OPERATING SYSTEM SERVICES VIMP

 Operating system provides certain services to programs and to the users of those programs.

2.1.1 User Interface

 Almost all operating systems have a user interface (UI). This interface can take several

forms. The first one is a command-line interface (CLI), which uses text commands.

 The second one is a batch interface, in which commands and directives to control those commands

are entered into files, and those files are executed.

 The third one is a graphical user interface (GUI). Menus allow the user to execute commands by

selecting from a list of choices. Options are selected with a mouse or other pointing device within a

GUI. A keyboard may also be used. Menus are convenient because they show what commands are

available within the software.

2.1 Overview of OS Services.

2

2.1.2 Program execution

 The system must be able to load a program into memory and to run that program. The program

must be able to end its execution, either normally or abnormally (indicating error).

2.1.3 File-system manipulation

 File: A file is a collection of related information that is recorded on secondary storage.

 File Directories: Collection of files is a file directory.

 The directory contains information about the files, including attributes, location and ownership.

 Much of this information, especially that is concerned with storage, is managed by the operating

system.

2.1.4 Communications

 Inter-process communication (IPC) is a mechanism that allows processes to communicate with each

other and synchronize their actions.

 Processes can communicate with each other through both:

Shared Memory

Message Passing

2.1.5 Error detection

 The operating system needs to be detecting and correcting errors constantly.

 Errors may occur in the CPU and memory hardware (such as a memory error or a power failure), in I/O

devices (such as a parity error on disk, a connection failure on a network, or lack of paper in the printer),

and in the user program (such as an arithmetic overflow, an attempt to access an illegal memory

location, or a too-great use of CPU time).

2

Process A

Shared Memory

Process B

Kernel

1

2

Shared Memory
Communication

Kernel

Process A

Process B

M

M

M

1 2

Message Passing
Communication

3

 For each type of error, the operating system should take the appropriate action to ensure correct and

consistent computing. Sometimes, it has no choice but to halt the system. At other times, it might

terminate an error-causing process or return an error code to a process for the process to detect and

possibly correct.

2.1.6. Resource allocation

 The Operating System allocates resources when a program needs them. When the program terminates,

the resources are de-allocated, and allocated to other programs that need them.

 There are two Resource allocation techniques:

(a) Resource Partitioning Approach: In this approach, the operating system decides beforehand, that what

resources should be allocated to which user program. It divides the resources in the system to

many resource partitions, where each partition may include various resources.

(b) Pool Based Approach: In this approach, there is a common pool of resources. The operating System

checks the allocation status in the resource table whenever a program makes a request for a resource. If

the resource is free, it allocates the resource to the program.

2.1.7 Accounting

 Operating system keeps track of time and resources used by various tasks and users, this information can

be used to track resource usage for a particular user or group of user.

2.1.8 Protection & Security

 Protection involves ensuring that all access to system resources is controlled.

 Security of the system from outsiders is also important. Such security starts with requiring each

user to authenticate by means of a password, to gain access to system resources.

2.2 SYSTEMS CALLS VVIMP
 System Call: A system call is the programmatic way in which a computer program requests a

service from the kernel of the operating system it is executed on.

 A computer program makes a system call when it makes a request to the operating system’s

kernel.

 System call provides the services of the operating system to the user programs via Application

Program Interface (API).

2.2.1 Services Provided by System Calls:
1. Process Creation and Management
2. Main Memory Management
3. File Access, Directory and File System Management

4

4. Device Handling(I/O)
5. Protection
6. Networking, etc.

2.2.2 Types of System Calls
There are 5 different categories of system calls:
1. Process Control: end, abort, create, terminate, allocate and free memory.
2. File Management: create, open, close, delete, read file etc.
3. Device Management
4. Information Maintenance
5. Communication

2.2 Example of how system calls are used.

5

2.3 The handling of a user application invoking the open()

2.4 Passing of parameters as a table.

6

2.3 SYSTEM PROGRAMS
 The system program serves as a part of the operating system.

 System programs can be divide into seven categories

File management. These programs create, delete, copy, rename, print,
dump, list, and generally manipulate files and directories.

2.5 System call interface of C Standard Library.

7

2.4 TYPES OF SYSTEM CALLS VVIMP
 System calls can be grouped roughly into six major categories: Process Control, File Manipulation,

Device Manipulation, Information Maintenance, Communications, and Protection.

PROCESS CONTROL
 end, abort
 load, execute
 create process, terminate process
 get process attributes, set process attributes
 wait for time
 wait event, signal event
 allocate and free memory
FILE MANAGEMENT
 create file, delete file
 open, close
 read, write, reposition
 get file attributes, set file attributes
DEVICE MANAGEMENT
 request device, release device
 read, write, reposition
 get device attributes, set device attributes
 logically attach or detach devices
INFORMATION MAINTENANCE
 get time or date, set time or date
 get system data, set system data
 get process, file, or device attributes
 set process, file, or device attributes
COMMUNICATIONS
 create, delete communication connection
 send, receive messages
 transfer status information
 attach or detach remote devices

1

CHAPTER 3
PROCESSES

3.1 PROCESS CONCEPT IMP

 Process: A process is basically a program in execution.

3.1.2 Process States
A process may be in one of the following states.
New: The process is being created.
Running: Instructions are being executed.
Waiting: The process is waiting for some event to occur.
Ready: The process is waiting to be assigned to a processor.
Terminated: The process has finished execution.

3.1.3 Process Control Block
 Each process is represented in the operating system by a Process Control Block (PCB).

3.1 Process States.

3.2 Process Control Block.

2

 Process State: The state may be new, ready, running, waiting, halted, and so on.
 Program Counter: The counter indicates the address of next instruction to be executed for this

process.
 CPU Registers: The registers may vary in number and type, depending on the computer architecture.

They include Accumulator, Index Registers, Stack Pointers and General Purpose Registers.
 CPU Scheduling Information: This information includes a Process Priority.

 Memory Management Information: Include the value of the base and limit registers and the page

tables.

 Accounting Information: This information includes the amount of CPU time used, time limits,

account numbers, job or process numbers, and so on.

 I/O Status Information: This information includes the list of I/O devices allocated to the process, a

list of open files, and so on.

3.1.4 Threads
 A thread is a path of execution within a process.
 A thread is also called a lightweight process.

3.2 PROCESS SCHEDULING VIMP

 Process Scheduling: The act of determining which process is in the ready state, and should be

moved to the running state is known as Process Scheduling.

 The prime aim of the process scheduling system is to keep the CPU busy all the time and to deliver
minimum response time for all programs.

 Scheduling fell into one of the two general categories:
1. Non Pre-emptive Scheduling: The currently executing process releases the CPU voluntarily, after its

job is over.
2. Pre-emptive Scheduling: The operating system allocates process to the CPU by pre-empting the

currently executing process.

3.2.1 Scheduling Queues

 A new process is initially put in the ready queue. It waits in the ready queue until it is selected for

execution. Once the process is assigned to the CPU and is executing, one of the following several
events can occur.

1. The process could issue an I/O request, and then be placed in the I/O queue.
2. The process could create a new sub process and wait for its termination.
3. The process could be removed forcibly from the CPU, as a result of an interrupt, and be put back in

the ready queue.

3

 The process scheduler selects an available process for program execution on the CPU.

3.3 Queueing-diagram representation of process scheduling.

3.4 The ready queue and various I/O device queues.

4

3.2.2 Schedulers

 A scheduler is a type of system software that allows you to handle process scheduling.

 There are three types of schedulers available

1. Long Term Scheduler
2. Short Term Scheduler
3. Medium Term Scheduler

Long Term Scheduler: Long term scheduler is also known as a job scheduler. This scheduler regulates the
program and select process from the queue and loads them into memory for execution. It also regulates the
degree of multi-programing.

Medium Term Scheduler: Medium term is also called swapping scheduler. It handle the swapped out-
processes. In this scheduler, a running process can become suspended, which makes an I/O request.

Short Term Scheduler: The primary aim of this scheduler is to enhance CPU performance and increase
process execution rate. Short term scheduling is also known as CPU scheduler. This helps you to select from
a group of processes that are ready to execute and allocates CPU to one of them. The dispatcher gives
control of the CPU to the process selected by the short term scheduler.

3.2.3 Context Switch

 In computing, a context switch is the process of storing the state of a process or thread, so that it can be

restored and resume execution at a later point. This allows multiple processes to share a single central
processing unit (CPU), and is an essential feature of a multitasking operating system.

3.5 Addition of medium-term scheduling to the queueing diagram.

5

3.3 OPERATIONS ON PROCESSES IMP

 Process: A process is an activity of executing a program. Basically, it is a program under execution. Every
process needs certain resources to complete its task.

 Operation on a Process: The execution of a process is a complex activity. It involves various operations.
Following are the operations that are performed while execution of a process.

3.6 Diagram showing CPU switch from Process to Process.

3.7 Diagram of Process State.

6

3.3.1 Process Creation

 This is the initial step of process execution activity.
 During the execution, a process may create several new processes.
 The creating process is called a parent process, and the new processes are called the children of that

process. Each of these new processes may in turn create other processes, forming a tree of
processes.

 Most operating systems (including UNIX, Linux, and Windows) identify processes according to a
unique process identifier (or pid), which is typically an integer number. The pid provides a unique
value for each process in the system, and it can be used as an index to access various attributes of a
process within the kernel.

 When a process creates a new process, two possibilities for execution exist:
1. The parent continues to execute concurrently with its children.
2. The parent waits until some or all of its children have terminated.

3.8 A tree of processes on a typical Linux

7

Program: Process creation using fork() system call.

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main()
{
pid t pid;

/* fork a child process */
pid = fork();
if (pid < 0)
{

 /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0)
{

 /* child process */
execlp("/bin/ls","ls",NULL);

}
else
{

/* parent process */
/* parent will wait for the child to complete */
wait(NULL);
printf("Child Complete");

}
return 0;

}

Process Termination
 A process terminates when operating system executes exit() system call.

/* exit with status 1 */

exit(1);

 At that point, the process may return a status value (typically an integer) to its parent process (via
the wait() system call) if its process is not completed.


 pid t pid;

 int status;
pid = wait(&status);

 All the resources are deallocated when process terminates.
 A parent may terminate the execution of one of its children for a variety of reasons, such as these:
1. The child has exceeded its usage of some of the resources that it has been allocated.
2. The task assigned to the child is no longer required.
3. The parent is exiting, and the operating system does not allow a child to continue if its parent terminates.

8

3.4 INTERPROCESS COMMUNICATION VVIMP

 Inter process communication is the mechanism provided by the operating system that allows

processes to communicate with each other.

Reasons for providing Inter Process Communication:
1. Information Sharing: Several processes may share the same information; we must provide an

environment to allow concurrent access to same information.
2. Computation Speedup: If we want a particular task to run faster, we must break it into subtasks,

each of which will be executing in parallel with the others.
3. Modularity: Dividing the system functions into separate processes or threads.
4. Convenience: Even an individual user may work on many tasks at the same time.

3.9 Process creation using the fork() system call.

3.10 Communications models. (a) Message passing. (b) Shared memory

9

3.4.1 Shared Memory Systems

 Shared memory is a memory shared between two or more processes.

PROCEDURE-CONSUMER PROBLEM

 A producer process produces information that is consumed by a consumer process.

#define BUFFER SIZE 5

typedef struct {

. . .

}item;

item buffer[BUFFER SIZE];

int in = 0;

int out = 0;

 The producer process using shared memory

item next produced;

while (true)

{

/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out);

/* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

}

 E 4

 D 3

 C 2

 B 1

 A 0

(1+1) % BUFFER SIZE
2 % 5 = 2

0 (0 + 1) % 5 == 0
 1 == 0 False

 1

(in+1) % BUFFER SIZE in (in + 1) % BUFFER SIZE == OUT next produced

Buffer [0] = A

Buffer [in]

1 Buffer [1] = B (1 + 1) % 5 == 0
 2 == 0 False

 2 (2+1) % BUFFER SIZE
3 % 5 = 3

1

in

2

2 Buffer [2] = C (2 + 1) % 5 == 0
 3 == 0 False

 3 3 (3+1) % BUFFER SIZE
4 % 5 = 4

3 Buffer [3] = D (3 + 1) % 5 == 0
 4 == 0 False

 4 4

4 Buffer [4] = E (4 + 1) % 5 == 0
 0 == 0 True

(4+1) % BUFFER SIZE
5 % 5 = 0

10

 The consumer process using shared memory

item next consumed;

while (true)

{

while (in == out);

 /* do nothing */

next consumed = buffer [out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

}

3.4.2 Message-Passing Systems

 Message passing model allows multiple processes to read and write data to the message

queue without being connected to each other.

 A message passing facility provides at least two operations:
1. send(message)
2. receive(message)

 There are three methods for logically implementing a link and the send() / receive() operations:
1. Direct or indirect communication
2. Synchronous or asynchronous communication
3. Automatic or explicit buffering

 E 4

 D 3

 C 2

 B 1

 A 0

4 == 4 True

Buffer [out] next
consumed

in while (in == out) out (out+1)%BUFFER SIZE

 4 0 4 == 0 False Buffer [0] =A 1 (0+1)%5 = 1

1 4 == 1 False Buffer [1] = B 2 (1+1)%5 = 2

2 4 == 2 False Buffer [2] = C 3 (2+1)%5 = 3

3 4 == 3 False Buffer [3] = D 4 (3+1)%5 = 4

4 Buffer [4] = E

11

3.4.2.1 Naming

Direct Communication:

 Under direct communication the send() and receive() primitives are defined as:

Send (P, message): Send a message to process P.
Receive (Q, message): Receive a message from process Q.

 This scheme exhibits symmetry in addressing.
 A communication link in this scheme has the following properties:

1. A link is established automatically between every pair of processes that want to communicate.
2. A link is associated with exactly two processes.
3. Between each pair of processes, there exists exactly one link.

 A variant of this scheme employs asymmetry in addressing.
 Here, only the sender names the recipient; the recipient is not required to name the sender.
 In this scheme, the send() and receive() primitives are defined as follows:

Send (P, message): Send a message to process P.
Receive (id, message): Receive a message from any process.

 The variable id is set to the name of the process with which communication has taken place.

Indirect Communication:

 With indirect communication, the messages are sent to and received from mailboxes, or ports.
 The send() and receive() primitives are defined as follows:

Send (A, message): Send a message to mailbox A.
Receive (A, message): Receive a message from mailbox A.

3.4.2.2 Synchronization

 Communication between processes takes place through calls to send() and receive() primitives.

There are different design options for implementing each primitive.
 Message passing may be either blocking or nonblocking also known as synchronous and

asynchronous.
Blocking send: The sending process is blocked until the message is received by the receiving process
or by the mailbox.
Non blocking send: The sending process sends the message and resumes operation.
Blocking receive: The receiver blocks until a message is available.
Non blocking receive: The receiver retrieves either a valid message or a null.

3.4.2.3 Buffering

 Whether communication is direct or indirect, messages exchanged by communicating processes

reside in a temporary queue.
 Basically, such queues can be implemented in three ways:
1. Zero Capacity: The queue has a maximum length of zero; thus, the link cannot have any messages

waiting in it. In this case, the sender must block until the recipient receives the message.

12

2. Bounded Capacity: The queue has finite length n; thus, at most n messages can reside in it. If the
queue is not full when a new message is sent, the message is placed in the queue, and the sender
can continue execution without waiting. The link’s capacity is finite, however. If the link is full, the
sender must block until space is available in the queue.

3. Unbounded Capacity: The queue’s length is potentially infinite; thus, any number of messages can
wait in it. The sender never blocks.

3.5 COMMUNICATION IN CLIENT SERVER SYSTEMS

 Client-server Architecture: Architecture of a computer network in which
many clients (remote processors) request and receive service from a
centralized server (host computer).

 In this section, we explore three other strategies for communication in client–server
systems: sockets, remote procedure calls (RPCs), and pipes.

3.5.1 Sockets:

 A socket is one endpoint of a two way communication link between two programs running

on the network.
 The socket mechanism provides a means of Inter-Process Communication (IPC) by

establishing named contact points between which the communication takes place.
 A socket is identified by an IP Address concatenated with a Port Number.
 In general, sockets use client–server architecture. The server waits for incoming client

requests by listening to a specified port.
 Once a request is received, the server accepts a connection from the client socket to

complete the connection.

Example: Data Server

3.12 Communication using sockets.

13

import java.net.*;
import java.io.*;
public class DateServer
{

public static void main(String[] args)
 {
 Try
 {
 ServerSocket sock = new ServerSocket(6013);

 /* now listen for connections */
 while (true)
 {
 Socket client = sock.accept();
 PrintWriter pout = new PrintWriter(client.getOutputStream(), true);

 /* write the Date to the socket */
 pout.println(new java.util.Date().toString());

 /* close the socket and resume */
 /* listening for connections */
 client.close();
 }
 }
 catch (IOException ioe)
 {
 System.err.println(ioe);
 }
 }
 }

3.5.2 Remote Procedure Calls

 A remote procedure call is an inter process communication technique that is used for client-server

based applications.
 A client has a request message that the RPC translates and sends to the server. This request may be

a procedure or a function call to a remote server.
 When the server receives the request, it sends the required response back to the client. The client is

blocked while the server is processing the call and only resumed execution after the server is
finished.

14

3.13 Execution of a remote procedure call (RPC).

15

3.5.3 Pipes

 Pipe: Pipe is a connection between two processes, such that the standard output from
one process becomes the standard input of the other process.

 Pipe is one-way communication only i.e we can use a pipe such that one process write to

the pipe, and the other process reads from the pipe. It opens a pipe, which is an area of
main memory that is treated as a “virtual file”.

 On UNIX systems, ordinary pipes are constructed using the function pipe(int fd[])
 This function creates a pipe that is accessed through the int fd[] file descriptors: fd[0] is the read-end of

the pipe, and fd[1] is the write-end.

3.14 File descriptors for an ordinary pipe.

3.15 File Descriptor for parent-child processes.

1

CHAPTER 4
THREADS

4.1 THREAD OVER VIEW

 Thread: A thread is a path of execution within a process.
 A thread is a basic unit of CPU utilization; it comprises a thread ID, a program counter, a register

set, and a stack.
 It shares with other threads belonging to the same process its code section, data section, and

other operating-system resources, such as open files and signals.
 A process can contain multiple threads.

4.1.1 Motivation

 Most software applications that run on modern computers are multithreaded. An application

typically is implemented as a separate process with several threads of control.
 A web browser might have one thread display images or text while another thread retrieves data

from the network, for example.
 A word processor may have a thread for displaying graphics, another thread for responding to

keystrokes from the user, and a third thread for performing spelling and grammar checking in the
background.

 Finally, most operating-system kernels are now multithreaded. Several threads operate in the
kernel, and each thread performs a specific task, such as managing devices, managing memory, or
interrupt handling.

4.1 Single-threaded and multithreaded processes.

2

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four major categories
1. Responsiveness: If the process is divided into multiple threads, if one thread completes its

execution, then its output can be immediately returned.
2. Faster context switch: Context switch time between threads is lower compared to process

context switch. Process context switching requires more overhead from the CPU.
3. Effective utilization of multiprocessor system: If we have multiple threads in a single process,

then we can schedule multiple threads on multiple processor. This will make process execution
faster.

4. Resource sharing: Resources like code, data, and files can be shared among all threads within a
process.
Note: stack and registers can’t be shared among the threads. Each thread has its own stack and
registers.

5. Communication: Communication between multiple threads is easier, as the threads shares
common address space. While in process we have to follow some specific communication
technique for communication between two processes.

6. Economy: Because threads share the resources of the process to which they belong, it is more
economical to create and context-switch threads.

7. Scalability: Threads may be running in parallel on different processing cores.

4.2 MULTICORE PROGRAMMING

4.2.1 Single Core Systems

 Single Core System: A single core system contains only one processor. So only one process can be

executed at a time and then the process is selected from the ready queue. Most general purpose
computers contain the single processor systems as they are commonly in use.

4.2.2 Multicore Programming

 A processor that has more than one core is called Multicore Processor. Nowadays, most of systems

have four cores (Quad-core) or eight cores (Octa-core).

 These cores can individually read and execute program instructions, giving feel like computer system

has several processors but in reality, they are cores and not processors.

4.2 Concurrent execution on a single-core system.

3

 Instructions can be calculation, data transferring instruction, branch instruction, etc.
Processor can run instructions on separate cores at same time. This increases overall
speed of program execution in system. Thus heat generated by processor gets reduced
and increases overall speed of execution.

 Multicore systems support Multi Threading and Parallel Computing.

 Multicore processors are widely used across many application domains, including general-

purpose, embedded, network, digital signal processing (DSP), and graphics (GPU).

 Efficient software algorithms should be used for implementation of cores to achieve higher
performance. Software that can run parallelly is preferred because we want to achieve parallel
execution with the help of multiple cores.

Advantages:
 These cores are usually integrated into single IC (integrated circuit) die, or onto multiple dies but

in single chip package.Thus allowing higher Cache Coherency.
 These systems are energy efficient since they allow higher performance at lower energy.
 It will have less traffic (cores integrated into single chip and will require less time).

4.2.3 Programming Challenges: In general, five areas present challenges in programming for multicore

systems:

 Identifying tasks: Tasks are independent of one another and thus can run in parallel on individual
cores.

 Balance: While identifying tasks that can run in parallel, programmers must also ensure that the
tasks perform equal work of equal value.

 Data Splitting: Just as applications are divided into separate tasks, the data accessed and
manipulated by the tasks must be divided to run on separate cores.

 Data Dependency: The data accessed by the tasks must be examined for dependencies between

two or more tasks. When one task depends on data from another, programmers must ensure that
the execution of the tasks is synchronized to accommodate the data dependency.

4.3 Parallel execution on a multicore system.

4

 Testing and Debugging: Testing and debugging such concurrent programs is inherently more
difficult than testing and debugging single-threaded applications.

4.2.4 Types of Parallelism

 Data Parallelism: Data Parallelism means concurrent execution of the same task on each multiple

computing core.
 Consider, for example, summing the contents of an array of size N. On a single-core system, one thread

would simply sum the elements [0] . . . [N − 1].
 On a single-core system, one thread would simply sum the elements [0] . . . [N − 1]. On a dual-core

system, however, thread A, running on core 0, could sum the elements [0] . . . [N/2 − 1] while thread B,
running on core 1, could sum the elements [N/2] . . . [N − 1]. The two threads would be running in
parallel on separate computing cores.

 Task Parallelism: Task Parallelism means concurrent execution of the different task on multiple

computing cores.
 Consider again our example above, an example of task parallelism might involve two threads, each

performing a unique statistical operation on the array of elements. Again the threads are operating in
parallel on separate computing cores, but each is performing a unique operation.

4.3 MULTITHREADING MODELS

 Multi Threading: It is a process of multiple threads executes at same time.

 Many operating systems support kernel thread and user thread in a combined way.

 Multi threading model are of three types.
Many to many model.
Many to one model.
One to one model.

Data

Core 1 Core 2 Core 3 Core 4

Data

Core 1 Core 2 Core 3 Core 4

5

4.3.1 Many-to-One Model

 The many to one model maps many of the user threads to a single kernel thread. This
model is quite efficient as the user space manages the thread management.

 A disadvantage of the many to one model is that a thread blocking system call blocks the
entire process. Also, multiple threads cannot run in parallel as only one thread can access
the kernel at a time.

4.3.2 One-to-One Model

 The one to one model maps each of the user threads to a kernel thread. This means that many
threads can run in parallel on multiprocessors and other threads can run when one thread makes a
blocking system call.

 A disadvantage of the one to one model is that the creation of a user thread requires a
corresponding kernel thread. Since a lot of kernel threads burden the system, there is restriction on
the number of threads in the system.

4.3.3 Many-to-Many Model

 The many to many model maps many of the user threads to a equal number or lesser kernel
threads. The number of kernel threads depends on the application or machine.

4.4 Many to one thread model.

4.5 One to Many thread model.

6

 The many to many does not have the disadvantages of the one to one model or the many to
one model. There can be as many user threads as required and their corresponding kernel
threads can run in parallel on a multiprocessor.

4.4 THREAD LIBRARIES

 A thread library provides the programmer an API for creating and managing threads.

 There are two primary ways of implementing a thread library. The first approach is to

provide a library entirely in user space with no kernel support.

 All code and data structures for the library exist in user space. This means that invoking a
function in the library results in a local function call in user space and not a system call.

 The second approach is to implement a kernel-level library supported directly by the
operating system. In this case, code and data structures for the library exist in kernel space.

 Invoking a function in the API for the library typically results in a system call to the kernel.

 Three main thread libraries are in use today:
1. Pthreads
2. Windows Threads
3. Java Threads

Example of Pthread: A multithreaded program that calculates the summation of
a nonnegative integer in a separate thread.

4.6 Many to Many Thread Model

7

#include <pthread.h>

#include <stdio.h>

int sum; /* this data is shared by the thread(s) */

void *runner(void *param); /* threads call this function */

int main(int argc, char *argv [])

{

Pthread_t tid; /* the thread identifier */

Pthread_attr_t attr; /* set of thread attributes */

if (argc != 2)

{

fprintf(stderr,"usage: a.out <integer value>\n");

return -1;

}

if (atoi(argv[1]) < 0)

{

fprintf(stderr,"%d must be >= 0\n",atoi(argv[1]));

return -1;

}

/* get the default attributes */

pthread_attr_init(&attr);

/* create the thread */

pthread_create(&tid,&attr,runner,argv[1]);

/* wait for the thread to exit */

pthread_join(tid,NULL);

printf("sum = %d\n",sum);

}

/* The thread will begin control in this function */

void *runner(void *param)

{

int i, upper = atoi(param);

sum = 0;

for (i = 1; i <= upper; i++)

8

sum += i;

pthread exit(0);

}

Example of Windows Thread: A multithreaded program that calculates the
summation of a nonnegative integer in a separate thread.

#include <windows.h>
#include <stdio.h>

DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPI Summation(LPVOID Param)
{
DWORD Upper = *(DWORD*)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += i;
return 0;
}

int main(int argc, char *argv[])
{
DWORD ThreadId;
HANDLE ThreadHandle;
int Param;
if (argc != 2) { fprintf(stderr,"An integer parameter is required\n");
return -1;
}
Param = atoi(argv[1]);
if (Param < 0)
{ fprintf(stderr,"An integer >= 0 is required\n");
return -1;
}

/* create the thread */
ThreadHandle = CreateThread(
NULL, /* default security attributes */
0, /* default stack size */
Summation, /* thread function */
&Param, /* parameter to thread function */
0, /* default creation flags */
&ThreadId); /* returns the thread identifier */

if (ThreadHandle != NULL)
{
/* now wait for the thread to finish */
WaitForSingleObject(ThreadHandle,INFINITE);

9

/* close the thread handle */
CloseHandle(ThreadHandle);
printf("sum = %d\n",Sum);
}
}

Example of Java Thread: A multithreaded program that calculates the
summation of a nonnegative integer in a separate thread.

class Sum
{
private int sum;
public int getSum() { return sum;
}
public void setSum(int sum) { this.sum = sum;
}
}

class Summation implements Runnable
{
private int upper;
private Sum sumValue;

public Summation(int upper, Sum sumValue)
{
this.upper = upper;
this.sumValue = sumValue;
}

public void run()
{
int sum = 0;
for (int i = 0; i <= upper; i++)
sum += i;
sumValue.setSum(sum);
}
}

public class Driver
{
public static void main(String[] args)
{
if (args.length > 0)
{
if (Integer.parseInt(args[0]) < 0)
System.err.println(args[0] + " must be >= 0.");

10

Else
{
Sum sumObject = new Sum();
int upper = Integer.parseInt(args[0]);
Thread thrd = new Thread(new Summation(upper, sumObject));
thrd.start();
try
{
thrd.join();
System.out.println
("The sum of "+upper+" is "+sumObject.getSum());
} catch (InterruptedException ie) { }
}
}
else
System.err.println("Usage: Summation <integer value>");
}
}

1

CHAPTER 5
PROCESS

SYNCHRONIZATION

5.1 PROCESS SYNCHRONIZATION

 Process Synchronization: Process Synchronization is the task of coordinating the execution of

processes in a way that no two processes can have access to the same shared data and resources.

 It is specially needed in a multi-process system when multiple processes are running together, and
more than one processes try to gain access to the same shared resource or data at the same time.

 This can lead to the inconsistency of shared data. So the change made by one process not

necessarily reflected when other processes accessed the same shared data. To avoid this type of
inconsistency of data, the processes need to be synchronized with each other.

5.1.1 How Process Synchronization Works?

 For Example, process A changing the data in a memory location while another process B is trying to
read the data from the same memory location. There is a high probability that data read by the
second process will be erroneous.

Example: Producer-Consumer Problem.

 A producer process produces information that is consumed by a consumer process.

#define BUFFER SIZE 5

typedef struct {

. . .

}item;

item buffer[BUFFER SIZE];

int in = 0;

int out = 0;

READ WRITE
DATA ITEM

X=10

PROCESS A
X=X+1
X=11

COMMITED

PROCESS B
X=10

2

 The producer process using shared memory

while (true)

{

/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out);

/* do nothing */

buffer[in] = next produced;

in = (in + 1) % BUFFER SIZE;

}

(1+1) % BUFFER SIZE
2 % 5 = 2

0 (0 + 1) % 5 == 0
 1 == 0 False

 1

(in+1) % BUFFER SIZE in (in + 1) % BUFFER SIZE == OUT next produced

Buffer [0] = A

Buffer [in]

1 Buffer [1] = B (1 + 1) % 5 == 0
 2 == 0 False

 2 (2+1) % BUFFER SIZE
3 % 5 = 3

1

in

2

2 Buffer [2] = C (2 + 1) % 5 == 0
 3 == 0 False

 3 3 (3+1) % BUFFER SIZE
4 % 5 = 4

3 Buffer [3] = D (3 + 1) % 5 == 0
 4 == 0 False

 4 4

4 Buffer [4] = E (4 + 1) % 5 == 0
 0 == 0 True

(4+1) % BUFFER SIZE
5 % 5 = 0

 E 4

 D 3

 C 2

 B 1

 A 0

Item Index

3

 The consumer process using shared memory

while (true)

{

while (in == out);

 /* do nothing */

next consumed = buffer [out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

}

 The statement “counter++” may be implemented follows:

register1 = counter

register1 = register1 + 1

counter = register1

 Similarly, the statement “counter--” is implemented as follows:

register2 = counter

register2 = register2 − 1

counter = register2

4 == 4 True

Buffer [out] next
consumed

in while (in == out) out (out+1)%BUFFER SIZE

 4 0 4 == 0 False Buffer [0] =A 1 (0+1)%5 = 1

1 4 == 1 False Buffer [1] = B 2 (1+1)%5 = 2

2 4 == 2 False Buffer [2] = C 3 (2+1)%5 = 3

3 4 == 3 False Buffer [3] = D 4 (3+1)%5 = 4

4 Buffer [4] = E

 E 4

 D 3

 C 2

 B 1

 A 0

Item Index

4

 The in interleaving of counter++ and counter-- produces data inconsistency:

 Finally producer process updates Register 1 as 6 and Counter as 6. Consumer process updates
Register 2 as 4 and Counter as 4.

 Race Condition: A race condiƟon occurs when several processes access a shared variable at the
same Ɵme.

5.1.2 Process Synchronization using Critical Section

 Critical Section: Critical section is a segment of code that share common resources by more than

one process.

 Each process request permission to enter its Critical Section.
 The critical section has three components

1. Entry section: The section of code implementing process request to enter its critical section.
2. Exit section: The critical section may be followed by an exit section.
3. Remainder section: The remaining code is the remainder section.

Counter Register 1

5 5

T0: producer execute register1 = counter {register1 = 5}

Register 1

6

T1: producer execute register1 = register1 + 1 {register1 = 6}

Register 2

5

T2: consumer execute register2 = counter {register2 = 5}

Register 2

4

T3: consumer execute register2 = register2 – 1 {register2 = 4}

T4: producer execute counter = register1 {counter = 6}

Counter

6

T5: consumer execute counter = register2 {counter = 4}

Counter

4

5

General structure of a typical process Pi:

do
{

 critical section

 remainder section

} while (true);

A solution to the critical-section problem must satisfy the following three requirements:

1. Mutual exclusion: If process Pi is executing in its critical section, then no other processes can be
executing in their critical sections.

2. Progress: If no process is executing in its critical section and some processes wish to enter their critical
sections, then only those processes that are not executing in their remainder sections can participate in
deciding which will enter its critical section next, and this selection cannot be postponed indefinitely.

3. Bounded waiting: There exists a bound, or limit, on the number of times that other processes are

allowed to enter their critical sections after a process has made a request to enter its critical section and
before that request is granted.

 Two general approaches are used to handle critical sections on operating systems
1. Preemptive Kernel: A preemptive kernel is where the kernel allows a process to be removed and

replaced while it is running in kernel mode.

2. Non-Preemptive Kernel: A non preemptive kernel does not allow a process running in kernel mode to
be preempted; a kernel-mode process will run until it exits kernel mode, blocks, or voluntarily yields
control of the CPU.

entry section

exit section

6

5.2 PETERSON’S SOLUTION

 It provides a good algorithmic description of solving the critical-section problem.

 Peterson’s solution is restricted to two processes that alternate execution between their critical

sections and remainder sections. The processes are numbered P0 and P1.

The structure of process Pi in Peterson’s solution:

do
{

critical section

remainder section

} while (true);

 Peterson’s solution proves
1. Mutual exclusion is preserved.
2. The progress requirement is satisfied.
3. The bounded-waiting requirement is met.

flag[i] = true;
turn = j;
while (flag[j] && turn == j);

flag[i] = false;

Critical Section

 X

Pi

Pj Trun Pj
 acquires critical section

Pi
 acquires remainder section

7

5.3 SYNCHRONIZATION HARDWARE (TEST AND SET, SWAP, UNLOCK AND LOCK)

 Process Synchronization problems occur when two processes running concurrently share the same

data or same variable.

 The value of that variable may not be updated correctly before its being used by a second process.
Such a condition is known as Race Around Condition.

 There are three algorithms in the hardware approach of solving Process Synchronization problem:
1. Test and Set Lock
2. Swap
3. Unlock and Lock

5.3.1 Test and Set Lock :
 A hardware solution to the synchronization problem.
 There is a shared link variable which can take either of the two values, 0 or 1.
 Before entering into the critical section, a process inquires about the lock.
 If it is locked, it keeps on waiting till it becomes free.
 If it is not locked, it takes the lock and executes the critical section.

The definition of the test and set() instruction.

boolean test and set(boolean *target)
{
boolean rv = *target;
*target = true;
return rv;
}

Mutual-exclusion implementation with test and set().

do
{
while (test and set(&lock));
/* do nothing */
/* critical section */
lock = false;
/* remainder section */
} while (true);

 Variable
 X

Critical Section

 P0

 P1 Waiting to
acquire critical
section

1

CHAPTER 6

CPU SCHEDULING

6.1 BASIC CONCEPTS
 In a single-processor system, only one process can run at a time. Others must wait until the CPU is

free and can be rescheduled.

 The objective of multiprogramming is to have some process running at all times, to maximize CPU

utilization.

6.1.1 CPU - I/O Burst Cycle

 Process execution consists of a cycle of CPU execution and I/O wait. The state of process under

execution is called CPU burst and the state of process under I/O request & its handling is called I/O

burst.

 Processes alternate between these two states. Process execution begins with a CPU burst. That is

followed by an I/O burst, which is followed by another CPU burst, then another I/O burst, and so on.

2

6.1.2 CPU Scheduler

 CPU scheduler selects a process among the processes that are ready to execute and allocates CPU to

one of them. S

 Short-term schedulers, also known as dispatchers, make the decision of which process to execute

next. Short-term schedulers are faster than long-term schedulers.

6.1.3 Preemptive Scheduling IMP 2M

 Preemptive Scheduling is a CPU scheduling technique that works by dividing time slots of CPU to a

given process.

 The time slot given might be able to complete the whole process or might not be able to it. When

the burst time of the process is greater than CPU cycle, it is placed back into the ready queue and

will execute in the next chance. This scheduling is used when the process switch to ready state.

6.1.4 Dispatcher

 The dispatcher is the module that gives a process control over the CPU after it has been selected

by the short-term scheduler.

6.2 SCHEDULING CRITERIA

 Different CPU Scheduling Algorithms have different properties, and the choice of a particular

algorithm depends on the processor.

 Many criteria have been suggested for comparing CPU scheduling algorithms. The criteria include

the following.

1. CPU Utilization: The main objective of any CPU scheduling algorithm is to keep the CPU as busy as

possible. Theoretically, CPU utilisation can range from 0 to 100 but in a real-time system, it varies

from 40 to 90 percent depending on the load upon the system.

2. Throughput: Number of jobs completed in a unit of time. The throughput may vary depending upon

the length or duration of processes.

3. Turnaround Time: Turnaround time may simply deal with the total time it takes for a program to

provide the required output. Turn-around time is the sum of times spent waiting to get into

memory, waiting in ready queue, executing in CPU, and waiting for I/O.

4. Waiting Time: Waiting time is the total time spent by the process in the ready queue.

3

5. Response Time: Time taken from submission of the process of request until the first response is

produced. This measure is called response time.

6.3 SCHEDULING ALGORITHMS VVIMP

6.3.1 First Come First Serve

 First Come First Serve is the full form of FCFS. It is the easiest and most simple CPU scheduling

algorithm. In this type of algorithm, the process which requests the CPU gets the CPU allocation

first. This scheduling method can be managed with a FIFO queue.

Example 1: Demonstrate First-Come, First-Served Scheduling with the following data

Solution: If the processes arrive in the order P1, P2, P3, and are served in FCFS order,

 we get the result shown in the following Gantt chart, which is a bar chart that

 Illustrates a particular schedule, including the start and finish times of each of the participating

processes.

 The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, and 27 milliseconds for

process P3. Thus, the average waiting time is (0+ 24 + 27)/3 = 17 milliseconds.

Example 2: Demonstrate First-Come, First-Served Scheduling with the following data

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds.

Process Burst Time

P1 24

P2 3

P3 3

Process Burst Time

P2 3

P3 3

P1 24

4

6.3.2 Shortest-Job-First Scheduling:

 Shortest job first (SJF) or shortest job next, is a scheduling policy that selects the waiting process

with the smallest execution time to execute next.

 Shortest Job first has the advantage of having a minimum average waiting time among all scheduling

algorithms.

 It is a Greedy Algorithm.

 It may cause starvation if shorter processes keep coming. This problem can be solved using the

concept of ageing.

 It is practically infeasible as Operating System may not know burst time and therefore may not sort

them. While it is not possible to predict execution time, several methods can be used to estimate

the execution time for a job, such as a weighted average of previous execution times. SJF can be

used in specialized environments where accurate estimates of running time are available.

Example 1: Using SJF Algorithm draw the Gantt Chart using the following Processes and their Burst
Times.

 The waiting time is 3 milliseconds for process P1, 16milliseconds for processP2, 9milliseconds for process

P3, and 0milliseconds for process P4. Thus, the average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds.

 The SJF algorithm can be either preemptive or nonpreemptive.

 Preemptive SJF scheduling is sometimes called shortest-remaining-time-first scheduling.

Example2: Using Shortest-Remaining-Time-First Scheduling Algorithm draw the Gantt Chart using the

following Processes and their Arrival Time and Burst Time.

Process Burst Time
P1 6
P2 8
P3 7
P4 3

Process Arrival Time Burst Time
P1 0 8
P2 1 4
P3 2 9
P4 3 5

5

 Process P1 is started at time 0, since it is the only process in the queue. ProcessP2 arrives at time 1. The

remaining time for process P1 (7 milliseconds) is larger than the time required by process P2 (4

milliseconds), so process P1 is preempted, and process P2 is scheduled.

 The average waiting time for this example is *(10 − 1) + (1 − 1) + (17 − 2) + (5 − 3)+/4 = 26/4 = 6.5
milliseconds.

6.3.2 Priority Scheduling:

 Priority scheduling is a non-preemptive algorithm and one of the most common scheduling

algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to be executed first and so on.

Processes with same priority are executed on first come first served basis.

 Processes with same priority are executed on first come first served basis.

Example1: Using Priority-Scheduling Scheduling Algorithm draw the Gantt Chart using the following

Processes and their Burst Time and Priority.

The average waiting time is (0+1+6+16+18) / 5 = 8.2 milliseconds

 A major problem with priority scheduling algorithms is indefinite blocking, or starvation. A process

that is ready to run but waiting for the CPU can be considered blocked. A priority scheduling

algorithm can leave some low priority processes waiting indefinitely. In a heavily loaded computer

system, a steady stream of higher-priority processes can prevent a low-priority process from ever

getting the CPU.

 A solution to the problem of indefinite blockage of low-priority processes is aging. Aging involves

gradually increasing the priority of processes that wait in the system for a long time.

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

6

6.3.3 Round-Robin Scheduling:

 Round Robin is a CPU Scheduling Algorithm where each process is assigned a fixed time slot

in a cyclic way.

 A small unit of time, called a time quantum or time slice, is defined. A time quantum is

generally from10 to 100 milliseconds in length. The ready queue is treated as a circular

queue.

 The CPU scheduler goes around the ready queue, allocating the CPU to each process for a

time interval of up to 1 time quantum.

 It is simple, easy to implement, and starvation-free as all processes get fair share of CPU.

 One of the most commonly used technique in CPU scheduling as a core.

 It is preemptive as processes are assigned CPU only for a fixed slice of time at most.

 The disadvantage of it is more overhead of context switching.

Example1: Using Round-Robin Scheduling Algorithm draw the Gantt Chart using the following Processes

and their Burst Time and with a time quantum of 4 milliseconds

 If we use a time quantum of 4 milliseconds, then process P1 gets the first 4 milliseconds. Since it

requires another 20 milliseconds, it is preempted after the first time quantum, and the CPU is given

to the next process in the queue, process P2. Process P2 does not need 4 milliseconds, so it quits

before its time quantum expires. The CPU is then given to the next process, process P3. Once each

process has received 1 time quantum, the CPU is returned to process P1 for an additional time

quantum.

 Let’s calculate the average waiting time for this schedule. P1 waits for 6 milliseconds (10 - 4), P2

waits for 4 milliseconds, and P3 waits for 7 milliseconds. Thus, the average waiting time is 17/3 =

5.66 milliseconds.

Average waiting time (10-4) + 4 + 7 = 17/3 = 5.66 milliseconds.

6.3.4 Multilevel Queue Scheduling

Process Burst Time
P1 24
P2 3
P3 3

7

 A multi-level queue scheduling algorithm partitions the ready queue into several separate queues.

The processes are permanently assigned to one queue, generally based on some property of the

process, such as memory size, process priority, or process type. Each queue has its own scheduling

algorithm.

 For example, a common division is a foreground (interactive) process and a background (batch)

process. These two classes have different scheduling needs. For this kind of situation Multilevel

Queue Scheduling is used.

The Description of the processes in the above diagram is as follows:

 System Process The Operating system itself has its own process to run and is termed as System

Process.

 Interactive Process The Interactive Process is a process in which there should be the same kind of

interaction (basically an online game).

 Batch Processes Batch processing is basically a technique in the Operating system that collects the

programs and data together in the form of the batch before the processing starts. (Payroll System,

Bank Statements)

 Student Process The system process always gets the highest priority while the student processes

always get the lowest priority.

In an operating system, there are many processes, in order to obtain the result we cannot put all

processes in a queue; thus this process is solved by Multilevel Queue Scheduling.

8

6.3.5 Multilevel Feedback Queue Scheduling

 In a multilevel queue-scheduling algorithm, processes are permanently assigned to a queue on entry

to the system.

 Processes do not move between queues. This setup has the advantage of low scheduling overhead,

but the disadvantage of being inflexible.

 Multilevel feedback queue scheduling, however, allows a process to move between queues. The

idea is to separate processes with different CPU-burst characteristics.

 If a process uses too much CPU time, it will be moved to a lower-priority queue.

 Similarly, a process that waits too long in a lower-priority queue may be moved to a higher-priority

queue. This form of aging prevents starvation.

Explanation:

 First of all, Suppose that queues 1 and 2 follow round robin with time quantum 8 and 16

respectively and queue 3 follows FCFS.

 One of the implementations of Multilevel Feedback Queue Scheduling is as follows:

1. A process entering the ready queue is put in queue 0.

2. A process in queue 0 is given a time quantum of 8 milliseconds. If it does not finish within this time,

it is moved to the tail of queue 1.

3. If queue 0 is empty, the process at the head of queue 1 is given a quantum of 16 milliseconds. If it

does not complete, it is preempted and is put into queue 2.

4. Processes in queue 2 are run on an FCFS basis but are run only when queues 0 and 1 are empty.

 In general, a multilevel feedback queue scheduler is defined by the following parameters:

1. The number of queues.

2. The scheduling algorithm for each queue.

3. The method used to determine when to upgrade a process to a higher priority queue.

4. The method used to determine when to demote a process to a lower priority queue.

5. The method used to determine which queue a process will enter when that process needs service.

9

Advantages of MFQS

1. This is a flexible Scheduling Algorithm

2. This scheduling algorithm allows different processes to move between different queues.

3. In this algorithm, A process that waits too long in a lower priority queue may be moved to a higher

priority queue which helps in preventing starvation.

Disadvantages of MFQS

1. This algorithm is too complex.

2. As processes are moving around different queues which leads to the production of more CPU

overheads.

3. In order to select the best scheduler this algorithm requires some other means to select the values.

6.4 MULTIPLE PROCESSOR SCHEDULING

 In multiple-processor scheduling multiple CPU’s are available and hence load sharing becomes

possible. However multiple processor scheduling is more complex as compared to single

processor scheduling. In multiple processor scheduling there are cases when the processors are

identical i.e. HOMOGENEOUS, in terms of their functionality, we can use any processor available

to run any process in the queue.

6.4.1 Approaches to Multiple-Processor Scheduling

 Asymmetric Multiprocessing system: Asymmetric Multiprocessing has the master-slave relationship

among the processors. There is one master processor that controls remaining slave processor.

The master processor allots processes to slave processor, or they may have some predefined task to

perform. The master processor runs the tasks of the operating system.

Asymmetric Multiprocessing

Slave1 P1

Master

Slave 2

Slave3

P2

P3

P4

(No Shared Memory)
(Shared Memory)

Symmetric Multiprocessing

CPU 1

CPU2

CUP3

CPU4

P1

P2

P3

P4

Fig 6.8: Symmetric and Asymmetric Multiprocessing.

10

 Symmetric Multiprocessing system: In symmetric multiprocessing, all the processors are treated

equally. All processors communicate with another processor by a shared memory.

 A recent trend in CPU design is to include multiple computing cores on a single chip. Such

multiprocessor systems are termed multicore.

6.4.2 Processor Affinity

 Processor affinity enables the binding and unbinding of a process or a thread to a central processing

unit (CPU) or a range of CPUs, so that the process or thread will execute only on the designated CPU

or CPUs rather than any CPU.

 Soft Affinity: Processes are allowed to move between the Processors.

Fig 6.9.1 : Symmetric multiprocessing architecture.

Fig 6.9.2: A dual-core design with two cores placed on the same chip.

11

 Hard Afinity: Processes are allowed to move between the Processors. Linux and some other

Operating Systems support hard affinity.

6.4.3 Load Balancing 2 MARKS IMP

 Load balancing is defined as the methodical and efficient distribution of network or application

traffic across multiple servers.

 There are two general approaches to load balancing: push migration and pull migration.

 There are two general approaches to load balancing:

1. Push Migration: In push migration a task routinely checks the load on each processor and if it finds

an imbalance then it evenly distributes load on each processors by moving the processes from

overloaded to idle or less busy processors.

2. Pull Migration: Pull migration occurs when an idle processor pulls a waiting task from a busy

processor for its execution.

6.4.4 Multicore Processors:

 In multicore processors multiple processor cores are places on the same physical chip. Each core

has a register set to maintain its architectural state and thus appears to the operating system as a

separate physical processor. SMP systems that use multicore processors are faster and consume

less power than systems in which each processor has its own physical chip.

Load Balancer

Internet

Users

Server 1 Server 2

12

1

CHAPTER 7

DEADLOCKS

7.1 SYSTEM MODEL

 Dead Lock: Deadlock is a situation where a set of processes are blocked because each process is

holding a resource and waiting for another resource acquired by some other process.

 For example, in the below diagram, Process 1 is holding Resource 1 and waiting for resource 2 which

is acquired by process 2, and process 2 is waiting for resource 1.

Under the normal mode of operation, a process may utilize a resource in only the following sequence:

 Request: The process requests the resource. If the request cannot be granted immediately (for

example, if the resource is being used by another process), then the requesting process must wait

until it can acquire the resource.

 Use: The process can operate on the resource (for example, if the resource is a printer, the process

can print on the printer).

 Release: The process releases the resource.

7.2 DEADLOCK CHARACTERIZATION

 Dead Lock: Deadlock is a situation where a set of processes are blocked because each process is

holding a resource and waiting for another resource acquired by some other process.

 For example, in the below diagram, Process 1 is holding Resource 1 and waiting for resource 2 which

is acquired by process 2, and process 2 is waiting for resource 1.

Resource 1

Resource 2

Process

A

Process

B

2

7.2.1 Necessary Conditions VVIMP

Deadlock can arise if the following four conditions hold simultaneously (Necessary Conditions)

1. Mutual Exclusion: One or more than one resource are non-shareable (Only one process can use

at a time).

2. Hold and Wait: A process is holding at least one resource and waiting for resources.

3. No Preemption: A resource cannot be taken from a process unless the process releases the

resource.

4. Circular Wait: A set of processes are waiting for each other in circular form.

7.2.2 Resource-Allocation Graph

 Deadlocks can be described more precisely in terms of a directed graph called a system resource-

allocation graph.

 This graph consists of a set of vertices V and a set of edges E. The set of vertices V is partitioned into

two different types of nodes P = {P1, P2, ..., Pn}, the set consisting of all the active processes in the

system, and R = {R1, R2, ..., Rm}, the set consisting of all resource types in the system.

 A directed edge from process Pi to resource type Rj is denoted by Pi → Rj; it signifies that process Pi

has requested an instance of resource type Rj and is currently waiting for that resource.

 A directed edge from resource type Rj to process Pi is denoted by Rj → Pi; it signifies that an instance of

resource type Rj has been allocated to process Pi. A directed edge Pi → Rj is called a request edge; a

directed edge Rj → Pi is called an assignment edge.

 The resource-allocation graph shown in the following figure depicts the following situation.
The sets P, R, and E:
P = {P1, P2, P3}

Resource 1

Resource 2

Process

A

Process

B

3

R = {R1, R2, R3, R4}

E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3}

Resource instances:
 One instance of resource type R1

 Two instances of resource type R2

 One instance of resource type R3

 Three instances of resource type R4

Process states:
 Process P1 is holding an instance of resource type R2 and is waiting for an instance of resource type

R1.
 Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an instance of R3.
 Process P3 is holding an instance of R3.

7.1 Resource Allocation Graph.

4

 Two minimal cycles exist in the system:

P1 → R1 → P2 → R3 → P3 → R2 → P1

P2 → R3 → P3 → R2 → P2

 Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resource R3, which is
held by process P3. Process P3 is waiting for either process P1 or process P2 to release resource
R2. In addition, process P1 is waiting for process P2 to release resource R1

Example2: Now consider the resource-allocation graph in Figure 7.3. In this example, we also have
a cycle:
P1 → R1 → P3 → R2 → P1

7.2 Resource Allocation Graph with a Deadlock.

7.3 Resource Allocation Graph with a Cycle but no Deadlock.

5

7.3 DEADLOCK PREVENTION VVIMP

 We can prevent Deadlock by eliminating any of the above four conditions.

1. Eliminate Mutual Exclusion: The mutual exclusion condition must hold for non-shareable resources

that is only one process can use a resource at a time. If another process want to access that

resource, then it must wait until the resource has been released.

2. Eliminate No Preemption: Preempt resources from the process when resources required by other

high priority processes.

3. Eliminate Hold and Wait: Allocate all required resources to the process before the start of its

execution, this way hold and wait condition is eliminated but it will lead to low device utilization.

For example, if a process requires printer at a later time and we have allocated printer before the

start of its execution printer will remain blocked till it has completed its execution.

4. Eliminate Circular Wait: Processes waiting for resources from the others form a circular chain, that

means all waiting processes form a circular chain or circular list where each process in the list is

waiting for a resource held by next process in the list. This kind of situation is eliminated.

7.4 DEADLOCK AVOIDANCE

 In order to avoid deadlocks, the process must tell OS, the maximum number of resources a process

can request to complete its execution.

7.4.1 Safe State

 The simplest and most useful approach states that the process should declare the maximum number

of resources of each type it may ever need. The Deadlock avoidance algorithm examines the

resource allocations so that there can never be a circular wait condition.

7.6 Safe, unsafe, and deadlocked state spaces.

6

7.4.2 Resource-Allocation-Graph Algorithm

 Suppose that P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, since this action

will create a cycle in the graph. A cycle, as mentioned, indicates that the system is in an unsafe state. If P1

requests R2, and P2 requests R1, then a deadlock will occur.

7.4.3 Banker’s Algorithm VVIMP

Bankers Algorithm is illustrated with the following example

Process Allocation Need Available

 A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Solution:

7.8 An unsafe state in a Resource Allocation Graph.

Process Allocated Need Available Maximum

P0

A B C A B C A B C A B C

0 1 0 7 5 3 3 3 2 7 4 3

7

P1 2 0 0 3 2 2 3 3 2 1 2 2

1 2 2

2 1 0

5 3 2

Releases Available

P3 2 1 1 2 2 2 5 3 2 0 1 1

0 1 1

5 2 1

7 4 3

Releases Available

P4 0 0 2 4 3 3 7 4 3 4 3 1

4 3 1

3 1 2

7 4 5

Releases Available

P2 3 0 2 9 0 2 7 4 5 6 0 0

6 0 0

1 4 5

10 4 7

Releases Available

8

7.5 CASE STUDIES

Problem 1: Verify whether the following resources allocation graphs are deadlocked or not.

Solution: It is not possible to eliminate the conflicting situation of nodes P1 and P2. Since the

above Resource Allocation Graph is Deadlocked.

P0 0 1 0 7 5 3 10 4 7 7 4 3

7 4 3

3 0 4

10 5 7

Releases Available

(a) Resource-allocation graph. (b) Corresponding wait-for graph.

9

Problem 2: Illustrate the following example with Bankers Algorithm

Process Allocation Need Available

 A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0

P1 1 0 0 0 1 7 5 0

P2 1 3 5 4 2 3 5 6

P3 0 6 3 2 0 6 5 2

P4 0 0 1 4 0 6 5 6

7.6 RECOVERY FROM DEADLOCK

7.6.1 Process Termination: To eliminate deadlocks by aborting a process, we use one of two methods.

To eliminate the deadlock, we can simply kill one or more processes. For this, we use two methods:

(a) Abort all the Deadlocked Processes: Aborting all the processes will certainly break the deadlock,

but with a great expense. The deadlocked processes may have computed for a long time and the

result of those partial computations must be discarded and there is a probability to recalculate them

later.

(b) Abort one process at a time until deadlock is eliminated: Abort one deadlocked process at a time,

until deadlock cycle is eliminated from the system. Due to this method, there may be considerable

overhead, because after aborting each process, we have to run deadlock detection algorithm to check

whether any processes are still deadlocked.

2. Resource Preemption:T o eliminate deadlocks using resource preemption, we preempt some

resources from processes and give those resources to other processes. This method will raise three

issues

(a) Selecting a Victim: We must determine which resources and which processes are to be preempted

and also the order to minimize the cost.

(b) Rollback: We must determine what should be done with the process from which resources are

preempted. One simple idea is total rollback. That means abort the process and restart it.

(c) Starvation: In a system, it may happen that same process is always picked as a victim. As a result,

that process will never complete its designated task. This situation is called Starvation and must be

avoided. One solution is that a process must be picked as a victim only a finite number of times.

1

CHAPTER 8
MEMORY MANAGEMENT

8.1 BASICS OF MEMORY MANAGEMENT

 Memory management is a method in the operating system to manage operations between main

memory and disk during process execution. The main aim of memory management is to achieve
efficient utilization of memory.

Why Memory Management is required:
 Allocate and de-allocate memory before and after process execution.
 To keep track of used memory space by processes.
 To minimize fragmentation issues.
 To proper utilization of main memory.
 To maintain data integrity while executing of process.

8.1.1 Basic Hardware

 Main memory and the registers built into the processor itself are the only general-purpose storage
that the CPU can access directly

8.1 A base and a limit register define a logical address space.

2

 Memory protection is a way to control memory access rights on a computer, and is a part of most

modern instruction set architectures and operating systems. This prevents a bug or malware within
a process from affecting other processes, or the operating system itself.

 Now we are discussing the concept of logical address space and Physical address space:

1. Logical Address space: An address generated by the CPU is known as “Logical Address”. It is also

known as a Virtual Address. Logical address space can be defined as the size of the process. A logical
address can be changed.

2. Physical Address space: An address seen by the memory unit (i.e the one loaded into the memory
address register of the memory) is commonly known as a “Physical Address”.

 A Physical address is also known as a Real Address. The set of all physical addresses corresponding
to these logical addresses is known as Physical Address Space.

 A physical address is computed by MMU. The run-time mapping from virtual to physical addresses
is done by a hardware device Memory Management Unit (MMU). The physical address always
remains constant.

 The base register holds the smallest legal physical memory address; the limit register specifies the
size of the range. For example, if the base register holds. 300040 and the limit register is 120900,
then the program can legally access all addresses from 300040 through 420939 (inclusive).

8.2 Hardware Address Protection with base and limit registers.

3

 In this case, we usually refer to the logical address as a virtual address. We use logical address and
virtual address interchangeably in this text. The set of all logical addresses generated by a program is
a logical address space. The set of all physical addresses corresponding to these logical addresses is
a physical address space. Thus, in the execution-time address-binding scheme, the logical and
physical address spaces differ.

8.2 SWAPPING IMP
 Swapping is a mechanism in which a process can be swapped temporarily out of main memory (or

move) to secondary storage (disk) and make that memory available to other processes.
 At some later time, the system swaps back the process from the secondary storage to main

memory.

8.4 Dynamic relocation using a relocation register.

8.5 Swapping of two processes using a disk as a backing store

4

 The total time taken by swapping process includes the time it takes to move the entire process to a
secondary disk and then to copy the process back to memory, as well as the time the process takes
to regain main memory.

Example: Let us assume that the user process is of size 2048KB and on a standard hard disk where
swapping will take place has a data transfer rate around 1 MB per second. The actual transfer of the
1000 KB process to or from memory will take

8.2.1 Swapping on Mobile Systems: Although most operating systems for PCs and servers support some
modified version of swapping, mobile systems typically do not support swapping in any form.

 Mobile devices generally use flash memory rather than more spacious hard disks as their persistent

storage. The resulting space constraint is one reason why mobile operating system designers avoid
swapping.

8.3 CONTIGUOUS MEMORY ALLOCATION

 Contiguous Memory Allocation: Contiguous memory allocation is basically a method in which a

single contiguous section/part of memory is allocated to a process or file needing it. Because of
this all the available memory space resides at the same place together, which means that the
freely/unused available memory partitions are not distributed in a random fashion here and there
across the whole memory space.

2048KB / 1024KB per second
= 2 seconds
= 2000 milliseconds

Memory Processes

5

8.3.1 Memory Protection

 Memory protection is a way to control memory access rights on a computer, and is a part of most

modern instruction set architectures and operating systems. This prevents a bug or malware within
a process from affecting other processes, or the operating system itself.

8.6 A base and a limit register define a logical address space.

8.7 Hardware support for relocation and limit registers.

6

8.3.2 Memory Allocation & Fragmentation

 Fixed-size Partition Scheme: This technique is also known as Static Partitioning. The size of each

partition is fixed.
 In this partition scheme, each partition may contain exactly one process. There is a problem that this

technique will limit the degree of multiprogramming because the number of partitions will basically
decide the number of processes.

 Whenever any process terminates then the partition becomes available for another process.

Example: Let's take an example of fixed size partitioning scheme, we will divide a memory size of 15 KB
into fixed-size partitions.

Advantages of Fixed-size Partition Scheme
1. This scheme is simple and is easy to implement.
2. It supports multiprogramming as multiple processes can be stored inside the main memory.
3. Management is easy using this scheme.

Disadvantages of Fixed-size Partition Scheme:
Some disadvantages of using this scheme are as follows:
1. Internal Fragmentation: Suppose the size of the process is lesser than the size of the partition in that
case some size of the partition gets wasted and remains unused. This wastage inside the memory is
generally termed as internal fragmentation. As we have shown in the above diagram the 70 KB partition
is used to load a process of 50 KB so the remaining 20 KB got wasted.
2. Limitation on the size of the process: If in a case size of a process is more than that of a maximum-
sized partition then that process cannot be loaded into the memory.
3. External Fragmentation: It is another drawback of the fixed-size partition scheme as total unused
space by various partitions cannot be used in order to load the processes even though there is the
availability of space but it is not in the contiguous fashion.
4. Degree of multiprogramming is less: In this partition scheme, as the size of the partition cannot
change according to the size of the process. Thus the degree of multiprogramming is very less and is
fixed.

3 KB 3 KB 3 KB 3 KB 3 KB

Process 7

Three is enough memory to
run Process 7 but the
memory is not contiguous.

External
Fragmentation

Process 0

Free Space 2MB

Process 1

Free Space 1MB

Process 2

Free Space2MB

Process 3

Free Space 3MB

7

 Variable-size Partition Scheme: This scheme is also known as Dynamic Partitioning and is come into

existence to overcome the drawback i.e internal fragmentation that is caused by Static Partitioning.
In this partitioning, scheme allocation is done dynamically.

 The size of the partition is not declared initially. Whenever any process arrives, a partition of size
equal to the size of the process is created and then allocated to the process. Thus the size of each
partition is equal to the size of the process.

 As partition size varies according to the need of the process so in this partition scheme there is
no internal fragmentation.

Advantages of Variable-size Partition Scheme
Some Advantages of using this partition scheme are as follows:
1. No Internal Fragmentation: As in this partition scheme space in the main memory is allocated

strictly according to the requirement of the process thus there is no chance of internal
fragmentation. Also, there will be no unused space left in the partition.

2. Degree of Multiprogramming is Dynamic: As there is no internal fragmentation in this partition
scheme due to which there is no unused space in the memory. Thus more processes can be loaded
into the memory at the same time.

3. No Limitation on the Size of Process: In this partition scheme as the partition is allocated to the
process dynamically thus the size of the process cannot be restricted because the partition size is
decided according to the process size.

Disadvantages of Variable-size Partition Scheme

Some Disadvantages of using this partition scheme are as follows:
1. External Fragmentation: As there is no internal fragmentation which is an advantage of using this

partition scheme does not mean there will no external fragmentation. Let us understand this with
the help of an example. In the above diagram Process P1 (3MB) and Process P3 (8MB) completed
their execution. Hence there are two spaces left i.e. 3MB and 8MB. Let’s there is a Process P4 of
size 15 MB comes. But the empty space in memory cannot be allocated as no spanning is allowed in
contiguous allocation. Because the rule says that process must be continuously present in the main
memory in order to get executed. Thus it results in External Fragmentation.

Partition 1

Size of Partition = Size of Process

OS

Process P1
3 MB

Process P2

5 MB

Process P1
8 MB

Partition 2

Partition 3

8

8.4 SEGMENTATION

 In Operating Systems, Segmentation is a memory management technique in which the memory is

divided into the variable size parts. Each part is known as a segment which can be allocated to a
process. The details about each segment are stored in a table called a segment table. Segment table
is stored in one (or many) of the segments.

Example: Normally, when a program is compiled, the compiler automatically constructs segments
reflecting the input program.
A C compiler might create separate segments for the following:
1. The code
2. Global variables
3. The heap, from which memory is allocated
4. The stacks used by each thread
5. The standard C library
Libraries that are linked in during compile time might be assigned separate segments. The loader
would take all these segments and assign them segment numbers.

8.4.2 Segmentation Hardware

 Segment table contains mainly two information about segment:
Base: It is the base address of the segment
Limit: It is the length of the segment.

 Translation of Logical address into physical address by segment table

8.8 Programmer’s view of a program.

9

8.10 Translation of Logical address into physical address by segment table.

8.9 A base and a limit register define a logical address space.

10

Example:

8.11 Division of main program into Segment.

8.12 Converting Logical Address into Physical Addresses.

11

Advantages of Segmentation:
1. No internal fragmentation
2. Average Segment Size is larger than the actual page size.
3. Less overhead
4. It is easier to relocate segments than entire address space.
5. The segment table is of lesser size as compared to the page table in paging.
Disadvantages:
1. It can have external fragmentation.
2. It is difficult to allocate contiguous memory to variable sized partition.
3. Costly memory management algorithms.

8.5 PAGING

 Paging is a memory management scheme that eliminates the need for contiguous allocation of

physical memory. This scheme permits the physical address space of a process to be non –
contiguous.

 Logical Address or Virtual Address: An address generated by the CPU.
 Logical Address Space or Virtual Address Space: The set of all logical addresses generated by a

program
 Physical Address: An address actually available on memory unit.
 Physical Address Space: The set of all physical addresses corresponding to the logical addresses

12

8.5.1 Hardware support for Paging

 The mapping from virtual to physical address is done by the memory management unit (MMU)

which is a hardware device and this mapping is known as paging technique.

 The Physical Address Space is conceptually divided into a number of fixed-size blocks,
called frames.

 The Logical address Space is also splitted into fixed-size blocks, called pages.
Page Size = Frame Size

8.13 Example of segmentation.

13

8.14 Paging hardware.

14

Example 1:

(5 ×4) + 0
20 + 0 =20

Value Logical Address Page Offset

0 0 0 a

0 0 1 b

0

1

2

3

4

5

6

7

Page 0

Page 1

Page 2

Page 3

Index Page

Logical Address Physical Address

PROCESS MAIN MEMORY

8.15 Paging example for a 32-byte memory with 4-byte pages.

15

Example 1:

(6 ×4) + 0
24 + 0 =24

Value Logical Address Page Offset

4 1 0 e

4 1 1 f

(6 ×4) + 1
24 + 1 =25

8.16 Free Frame before the allocation.

16

8.5.2 Paging Hardware with TLB

 Translation Lookaside Buffer (TLB) is nothing but a special cache used to keep track of recently

used transactions.

 TLB contains page table entries that have been most recently used.

 Given a virtual address, the processor examines the TLB if a page table entry is present (TLB hit),
the frame number is retrieved and the real address is formed.

 If a page table entry is not found in the TLB (TLB miss), the page number is used as index while
processing page table. TLB first checks if the page is already in main memory, if not in main
memory a page fault is issued then the TLB is updated to include the new page entry.

8.17 Free Frame after the Allocation.

17

8.5.3 Protection

 Memory protection in a paged environment is accomplished by protection bits associated with each

frame.
 One additional bit is generally attached to each entry in the page table: a valid-invalid bit.
 When this bit is set to valid, the associated page is in the process’s logical address space and is thus

a legal (or valid) page.
 When the bit is set to invalid, the page is not in the process’s logical address space. Illegal addresses

are trapped by use of the valid-invalid bit. The operating system sets this bit for each page to allow
or disallow access to the page

8.18 Paging hardware with TLB.

18

8.5.4 Shared Pages in OS

 Sharing is another design issue for paging system.
 It is very common for many computer users to be running the same program at the same time in a

large multiprogramming computer system.
 Now, to avoid having two copies of same page in the memory at the same time, just share the

pages.

8.19 Valid (v) or invalid (i) bit in a page table.

19

8.20 Sharing of code in a paging environment.

1

CHAP 9
VIRTUAL MEMORY

 Virtual Memory: Virtual memory is a feature of an operating system that enables a computer to be

able to compensate shortages of physical memory by transferring pages of data from disk storage to
primary memory.

9.1 DEMAND PAGING

 Demand Paging: The process of loading the page into memory on demand (whenever page fault

occurs) is known as demand paging.

 Steps to be followed in Demand Paging:

1. Attempt to access page.

2. If page is valid (in main memory) then continue processing instruction as normal.

3. If page is invalid then a page-fault trap occurs.

4. Check if the memory reference is a valid reference to a location on secondary memory. If not, the

process is terminated (illegal memory access). Otherwise, we have to page in the required page.

9.1 Diagram showing virtual memory that is larger than physical memory.

2

5. Schedule disk operation to read the desired page into main memory.

6. Restart the instruction that was interrupted by the operating system trap.

 Page table when some pages are not in main memory.

9.2 Transfer of a paged memory to contiguous disk space.

9.3 Page table when some pages are not in main memory.

3

 Steps in handling a page fault.

9.2 PAGE REPLACEMNT

 The page replacement algorithm decides which memory page is to be replaced. The process of
replacement is sometimes called swap out or write to disk. Page replacement is done when the
requested page is not found in the main memory (page fault).

 There are two main aspects of virtual memory, Frame allocation and Page Replacement. It is very
important to have the optimal frame allocation and page replacement algorithm. Frame allocation is
all about how many frames are to be allocated to the process while the page replacement is all
about determining the page number which needs to be replaced in order to make space for the
requested page

9.4 Steps in handling a page fault.

Virtual Memory

Frame Allocation (How many Frames
are to be allocated for a Process.)

Page Replacement (Which Page is to be
Replaced)

4

9.2.1 Basic Page Replacement

 Page replacement takes the following approach. If no frame is free, we find one that is not currently

being used and free it.

9.5 Need for page replacement.

9.6 Page Replacement.

5

1. Find the location of the desired page on the disk.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select a victim frame.

c. Write the victim frame to the disk; change the page and frame tables accordingly.

3. Read the desired page into the newly freed frame; change the page and frame tables.

4. Continue the user process from where the page fault occurred.

1

CHAPTER-10

MASS-STORAGE STRUCTURE

10.1 OVERVIEW OF MASS-STORAGE STRUCTURE

10.1.1 Magnetic Disks

 Magnetic disk is a circular plate constructed of metal or plastic coated with magnetized material .

 Both sides of the disk are used.

 Several disks may be stacked on one spindle with Read/Write heads available on each surface.

 All disks rotate together at high speed and not stopped or started for access purpose.

 Used to store large amount of data .

 Basic unit of storage is BIT .

 BIT is 1 by magnetizing area on disk .

 Character: Group of bits.

 Capacity: Number of bytes it can store.

 Number of tracks: ranges from few hundred to few thousand.

 Capacity of each track: ranges from tens of Kbytes to 150 Kbytes.

 Formatting: Tracks are divided into equal sized disk blocks called sectors.

 Sector size is fixed range from 512 to 4096 bytes.

2

 Read/Write head is classified into

 Fixed head system.

 Moving head system.

 Rotate disk pack of cylinders ranging from 3600 and 7200 rpm

 Access time: Time required to access the data.

tA = Access time

tA = tS + tL

 Seek time: Time required to position the read/write head on the correct track & correct surface.

tS = Seek time

 Latency time: Time required to locate the required disk block from the beginning.

tL = Latency time

3

10.1.2 Floppy Disk

 A disk drive with removable disks are called a Floppy Disk

 The disks used with a Floppy disk drive are small disks made of plastic coated with magnetic

recording material

 There are two sizes commonly used, with diameters of 5.25 and 3.5 inches

 The 3.5 inch disks are smaller and can store more data than 5.25 inch disks

 Floppy disks extensively used in personal computer as a medium for distributing software to

computer users

 Basic unit of storage is BIT .

 BIT is 1 by magnetizing area on disk .

 Character: Group of bits.

 Capacity: Number of bytes it can store.

 Density : Single density and Double density

 Data stored in: Tracks & Sectors

 Track: Data is placed in concentric magnetic circles called tracks

 Sector :Each track is divided into storage units called sectors

 FAT uses 512 byte sectors exclusively.

 The number of Sectors per Track vary depending on the media and format.’

 Physical Sector Numbering starts with the number 1at the beginning of each track and side.

 Number of Tracks: 80 in 3.5 inch floppy disk

Disk Formats - 3.5”

 Low Density High Density

Tracks 80 80

Sectors per track 9 18

Bytes per sector 512 512

Total capacity 720K 1.44M

4

 Formatting: Tracks are divided into equal sized disk blocks called sectors.

 Access time: Time required to access the data.

tA = Access time

tA = tS + tL

 Seek time: Time required to position the read/write head on the correct track & correct surface.

tS = Seek time

 Latency time: Time required to locate the required disk block from the beginning.

tL = Latency time

10.1.3 Magnetic Tape

 Magnetic tape transport consists of the electrical, mechanical and electronic components provide

the parts and control mechanism for magnetic tape unit.

 The tape is a strip of plastic coated with magnetic recording media .

 Bits are recorded as magnetic spots on the tape along with several tracks.

 Usually, seven or nine bits are recorded simultaneously to form a character together with a parity

bit.

 The information is recorded in blocks referred to as records.

 Each record on tape has an identification bit pattern at the beginning and end. By recording the bit

pattern at the beginning, the tape control identifies the record number.

 By reading the bit pattern at the end of the record, the control recognizes the beginning of a gap

 A tape unit is addressed by specifying the record number and number of characters in the record

 Record may be fixed length or variable length

5

 Sequential access.

 Read/Write head: Reads or writes data on tape.

 Strorage: 1600 to 6250 bytes per inch.

 Inter block gap: 0.6 inches.

10.2 DISK SCHEDULING IMP

 The algorithms used for disk scheduling are called as disk scheduling algorithms.

 The purpose of disk scheduling algorithms is to reduce the total seek time.

 Seek Time: Seek time is the time taken to locate the disk arm to a specified track where the data is

to be read or write. So the disk scheduling algorithm that gives minimum average seek time is

better.

10.2.1 FCFS (First Come First Served) Scheduling

 As the name suggests, this algorithm entertains requests in the order they arrive in the disk queue.

 It is the simplest disk scheduling algorithm.

Advantages:

 It is simple, easy to understand and implement.

 It does not cause starvation to any request.

Disadvantages:

 It results in increased total seek time.

 It is inefficient.

Problem1: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 37, 122, 14, 124,

65, 67. The FCFS scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders

are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while

servicing these requests.

Block Block Block Block Block Block

6

Total head movements incurred while servicing these requests: (98-53) + (183-98) + (183-37) +(122-

37) +(122-14) + (124-14) + (124-65) + (67-65) = 45 + 85 + 146 + 85 + 108 + 110 + 59 + 2 = 640

Problem2: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124,

65, 67. The FCFS scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders

are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while

servicing these requests.

10.2.2 SSTF (Shortest Seek Time First) Scheduling

 SSTF stands for Shortest Seek Time First.

 This algorithm services that request next which requires least number of head movements from its

current position regardless of the direction.

 It breaks the tie in the direction of head movement.

Advantages:

 It reduces the total seek time as compared to FCFS.

 It provides increased throughput.

10.1 FCFS disk scheduling.

7

 It provides less average response time and waiting time.

 Disadvantages:

 There is an overhead of finding out the closest request.

 The requests which are far from the head might starve for the CPU.

 It provides high variance in response time and waiting time.

 Switching the direction of head frequently slows down the algorithm.

Example 2: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 37, 122, 14, 124,

65, 67. The SSTF scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders

are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while

servicing these requests.

Total head movements incurred while servicing these requests: (65-53) + (67-65) + (67-37) +

(37-14) + (98-14) + (122-98) +(124-122) + (183-124) = 12 + 2 + 30 + 23 + 84 + 24 + 2 + 59 = 236

Example 2: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124,

65, 67. The SSTF scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders

10.2 SSTF disk scheduling.

8

are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while

servicing these requests.

10.2.3 SCAN Scheduling

 As the name suggests, this algorithm scans all the cylinders of the disk back and forth.

 Head starts from one end of the disk and move towards the other end servicing all the requests in

between.

 After reaching the other end, head reverses its direction and move towards the starting end

servicing all the requests in between.

 The same process repeats.

Note:

 SCAN Algorithm is also called as Elevator Algorithm.

 This is because its working resembles the working of an elevator.

 Advantages:

 It is simple, easy to understand and implement.

 It does not lead to starvation.

 It provides low variance in response time and waiting time.

Disadvantages:

 It causes long waiting time for the cylinders just visited by the head.

 It causes the head to move till the end of the disk even if there are no requests to be

serviced.

Example 1: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124,

65, 67. The SCAN scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders

are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while

servicing these requests.

10.3 SCAN Disk Scheduling.

9

Total head movements incurred while servicing these requests =

(53-37) + (37-14) +(14-0) + (65-0) + (67-65) + (98-67) + (122-98) + (124-122) + (183-124) = 16 +23

+14 + 65 + 2 +31+ 24 + 2 + 59 = 236

Example 2: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124,

65, 67. The SCAN scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders

are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while

servicing these requests.

10.2.4 C-SCAN Scheduling
 Circular-SCAN Algorithm is an improved version of the SCAN Algorithm.

 Head starts from one end of the disk and move towards the other end servicing all the requests in

between.

 After reaching the other end, head reverses its direction.

 It then returns to the starting end without servicing any request in between.

 The same process repeats.

Advantages:

 The waiting time for the cylinders just visited by the head is reduced as compared to the SCAN

Algorithm.

 It provides uniform waiting time.

 It provides better response time.

Disadvantages:

 It causes more seek movements as compared to SCAN Algorithm.

 It causes the head to move till the end of the disk even if there are no requests to be serviced.

Example 1: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 37, 122, 14, 124,

65, 67. The C-SCAN scheduling algorithm is used. The head is initially at cylinder number 53. The

cylinders are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred

while servicing these requests.

10

Total head movements incurred while servicing these requests =

(65-53) + (67-65) + (98-67) + (122-98) + (124-122) + (183-124) + (199-183) + (199-0) + (14-0)+ (37-

14) =

 12 + 2 + 31 + 24 + 2 + 59 + 16 + 199 +14+ 23 = 382

Example 2: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124,

65, 67. The C-SCAN scheduling algorithm is used. The head is initially at cylinder number 53. The

cylinders are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred

while servicing these requests.

10.2.5 LOOK Scheduling

 LOOK Algorithm is an improved version of the SCAN Algorithm.

 Head starts from the first request at one end of the disk and moves towards the last request at

the other end servicing all the requests in between.

 After reaching the last request at the other end, head reverses its direction.

 It then returns to the first request at the starting end servicing all the requests in between.

 The same process repeats.

10.4 C-SCAN Disk Scheduling.

11

Advantages:

 It does not causes the head to move till the ends of the disk when there are no requests to be

serviced.

 It provides better performance as compared to SCAN Algorithm.

 It does not lead to starvation.

 It provides low variance in response time and waiting time.

Disadvantages:

 There is an overhead of finding the end requests.

 It causes long waiting time for the cylinders just visited by the head.

Example 1: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124,

65, 67. The LOOK scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders

are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while

servicing these requests.

Total head movements incurred while servicing these requests = (65 -53) + (67 - 65) + (98 – 67) + (122 -

98) + (124 - 122) + (183 - 124) + (183 - 41) + (41 - 14)

= 12 + 2 + 31 + 24 + 2 + 59 + 142 + 27 = 299

Example 2: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 37, 122, 14, 124,

65, 67. The LOOK scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders

are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred while

servicing these requests.

10.5 LOOK Scheduling.

12

10.2.6 C-LOOK Scheduling

 Circular-LOOK Algorithm is an improved version of the LOOK Algorithm.

 Head starts from the first request at one end of the disk and moves towards the last request at the

other end servicing all the requests in between.

 After reaching the last request at the other end, head reverses its direction.

 It then returns to the first request at the starting end without servicing any request in between.

 The same process repeats.

Advantages:

 It does not causes the head to move till the ends of the disk when there are no requests to be

serviced.

 It reduces the waiting time for the cylinders just visited by the head.

 It provides better performance as compared to LOOK Algorithm.

 It does not lead to starvation.

 It provides low variance in response time and waiting time.

Disadvantages:

 There is an overhead of finding the end requests.

Example 1: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124,

65, 67. The C-LOOK scheduling algorithm is used. The head is initially at cylinder number 53. The

cylinders are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred

while servicing these requests.

10.6 C-LOOK

13

Total head movements incurred while servicing these requests

= (65 - 53) + (67 - 65) + (98 - 67) + (122 - 98) + (124 - 122) + (183 - 124) + (183 - 14) + (41 - 14)

= 12 + 2 + 31 + 24 + 2 + 59 + 169 + 27 = 326

Example 2: Consider a disk queue with requests for I/O to blocks on cylinders98, 183, 37, 122, 14, 124,

65, 67. The C-LOOK scheduling algorithm is used. The head is initially at cylinder number 53. The

cylinders are numbered from 0 to 199. Find the total head movement (in number of cylinders) incurred

while servicing these requests.

10.3 SWAP-SPACE MANAGEMENT

 Swapping is a memory management scheme in which any process can be temporarily swapped from

main memory to secondary memory so that the main memory can be made available for other

processes. It is used to improve main memory utilization. In secondary memory, the place where the

swapped-out process is stored is called swap space.

 The purpose of the swapping in operating system is to access the data present in the hard disk and

bring it to RAM so that the application programs can use it. The thing to remember is that swapping

is used only when data is not present in RAM.

 Although the process of swapping affects the performance of the system, it helps to run larger and

more than one process. This is the reason why swapping is also referred to as memory compaction.

 The concept of swapping has divided into two more concepts: Swap-in and Swap-out.

 Swap-out is a method of removing a process from RAM and adding it to the hard disk.

 Swap-in is a method of removing a program from a hard disk and putting it back into the main

memory or RAM.

Advantages of Swapping:

1. It helps the CPU to manage multiple processes within a single main memory.

2. It helps to create and use virtual memory.

3. Swapping allows the CPU to perform multiple tasks simultaneously. Therefore, processes do not

have to wait very long before they are executed.

4. It improves the main memory utilization.

Disadvantages of Swapping:

1. If the computer system loses power, the user may lose all information related to the program in

case of substantial swapping activity.

2. If the swapping algorithm is not good, the composite method can increase the number of Page Fault

and decrease the overall processing performance.

14

10.3.1 Swap-Space: The area on the disk where the swapped-out processes are stored is called swap

space.

10.3.2 Swap-Space Management: Swap-Swap management is another low-level task of the operating

system. Disk space is used as an extension of main memory by the virtual memory. As we know the

fact that disk access is much slower than memory access, In the swap-space management we are

using disk space, so it will significantly decreases system performance. Basically, in all our systems we

require the best throughput, so the goal of this swap-space implementation is to provide the virtual

memory the best throughput. In these article, we are going to discuss how swap space is used, where

swap space is located on disk, and how swap space is managed.

10.3.3 Swap-Space Use: Swap-space is used by the different operating-system in various ways. The

systems which are implementing swapping may use swap space to hold the entire process. Paging

systems may simply store pages that have been pushed out of the main memory.

 Following table shows different system using amount of swap space:

 Solaris, setting swap space equal to the amount by which virtual memory exceeds page-able

physical memory. In the past Linux has suggested setting swap space to double the amount of

physical memory. Today, this limitation is gone, and most Linux systems use considerably less

swap space.

10.3.4 Swap-Space Use Example:

 Linux allows one or more swap areas to be established.

 A swap area may be in either a swap file on a regular file system or a dedicated swap partition.

 Each swap area consists of a series of 4-KB page slots, which are used to hold swapped pages.

 Associated with each swap area is a swap map-an array of integer counters, each corresponding to a

page slot in the swap area.

 If the value of a counter is 0, the corresponding page slot is available.

 Values greater than 0 indicate that the page slot is occupied by a swapped page. For example , a

value of 3 indicates that the swapped page is mapped to three different processes

System Swap-Space

Solaris Equal amount of Physical Memory

Linux Double the amount of Physical Memory

10.7 The data structures for swapping on Linux systems.

15

10.4 RAID VVIMP

 Redundant Array Independent Disk

 RAID Level 0 requires a minimum of 2 drives to implement.

Characteristics & Advantages:

1. RAID 0 implements a striped disk array, the data is broken down into blocks and each block is

written to a separate disk drive.

2. I/O performance is greatly improved by spreading the I/O load across many channels and drives.

3. Best performance is achieved when data is striped across multiple controllers with only one drive

per controller.

4. No parity calculation overhead is involved.

5. Very simple design.

6. Easy to implement.

Disadvantages:

1. Not a "True" RAID because it is NOT fault-tolerant.

2. The failure of just one drive will result in all data in an array being lost.

3. Should never be used in mission critical environments.

16

 For Highest performance, the controller must be able to perform two concurrent separate reads per

mirrored pair or two duplicate Writes per mirrored pair.

 RAID Level 1 requires a minimum of 2 drives to implement.

Characteristics & Advantages:

1. One Write or two Reads possible per mirrored pair.

2. Twice the Read transaction rate of single disks, same Write transaction rate as single disks.

3. 100% redundancy of data means no rebuild is necessary in case of a disk failure, just a copy to the

replacement disk.

4. Transfer rate per block is equal to that of a single disk.

5. Under certain circumstances, RAID 1 can sustain multiple simultaneous drive failures.

Disadvantages:

1. Highest disk overhead of all RAID types (100%) – inefficient

2. Typically the RAID function is done by system software, loading the CPU/Server and possibly

degrading throughput at high activity levels. Hardware implementation is strongly recommended

3. May not support hot swap of failed disk when implemented in "software"

 Characteristics & Advantages:

1. Each bit of data word is written to a data disk drive (4 in this example: 0 to 3).

2. Each data word has its Hamming Code ECC word recorded on the ECC disks.

3. On Read, the ECC code verifies correct data or corrects single disk errors.

 Disadvantages:

1. Very high ratio of ECC disks to data disks with smaller word sizes – inefficient.

2. Entry level cost very high - requires very high transfer rate requirement to justify

3. Transaction rate is equal to that of a single disk at best (with spindle synchronization)

4. No commercial implementations exist / not commercially viable.

17

 The data block is subdivided ("striped") and written on the data disks. Stripe parity is generated on

Writes, recorded on the parity disk and checked on Reads.

 RAID Level 3 requires a minimum of 3 drives to implement.

 Characteristics & Advantages:

1. Very high Read data transfer rate.

2. Very high Write data transfer rate.

3. Disk failure has an insignificant impact on throughput.

4. Low ratio of ECC (Parity) disks to data disks means high efficiency.

 Disadvantages:

1. Transaction rate equal to that of a single disk drive at best (if spindles are synchronized).

2. Controller design is fairly complex.

3. Very difficult and resource intensive to do as a "software" RAID.

18

1. Each entire block is written onto a data disk. Parity for same rank blocks is generated on Writes,

recorded on the parity disk and checked on Reads.

 RAID Level 4 requires a minimum of 3 drives to implement.

 Characteristics & Advantages:

1. Very high Read data transaction rate.

2. Low ratio of ECC (Parity) disks to data disks means high efficiency.High aggregate Read transfer rate.

 Disadvantages:

2. Quite complex controller design.

3. Worst Write transaction rate and Write aggregate transfer rate.

4. Difficult and inefficient data rebuild in the event of disk failure.

5. Block Read transfer rate equal to that of a single disk.

 Each entire data block is written on a data disk; parity for blocks in the same rank is generated on

Writes, recorded in a distributed location and checked on Reads.

 RAID Level 5 requires a minimum of 3 drives to implement.

 Characteristics & Advantages:

1. Highest Read data transaction rate. Medium Write data transaction rate.

2. Low ratio of ECC (Parity) disks to data disks means high efficiency.

3. Good aggregate transfer rate.

 Disadvantages:

1. Disk failure has a medium impact on throughput.

2. Most complex controller design.

3. Difficult to rebuild in the event of a disk failure (as compared to RAID level 1).

4. Individual block data transfer rate same as single disk.

19

 Two independent parity computations must be used in order to provide protection against double

disk failure. Two different algorithms are employed to achieve this purpose.

 RAID Level 6 requires a minimum of 4 drives to implement

 Characteristics & Advantages:

1. RAID 6 is essentially an extension of RAID level 5 which allows for additional fault tolerance by using

a second independent distributed parity scheme (dual parity).

2. Data is striped on a block level across a set of drives, just like in RAID 5, and a second set of parity is

calculated and written across all the drives; RAID 6 provides for an extremely high data fault

tolerance and can sustain multiple simultaneous drive failures.

3. Perfect solution for mission critical applications.

 Disadvantages:

1. More complex controller design.

2. Controller overhead to compute parity addresses is extremely high.

3. Write performance can be brought on par with RAID Level 5 by using a custom ASIC for computing

Reed-Solomon parity.

4. Requires N+2 drives to implement because of dual parity scheme.

1

CHAPTER 11
FILE SYSTEM INTERFACE

11.1 FILE CONCEPT
File: Collection of interrelated records.

11.1.1 File Attributes

 Name: The symbolic file name is the only information kept in human readable form.

 Identifier: This unique tag, usually a number, identifies the file within the file system.

 Type: This information is needed for systems that support different types of files.

 Location: This information is a pointer to a device and to the location of the file on that device.

 Size: The current size of the file (in bytes, words, or blocks) and possibly the maximum allowed size are included in

this attribute.

 Protection: Access-control information determines who can do reading, writing, executing, and so on.

 Time, date, and user identification: This information may be kept for creation, last modification, and last use.

These data can be useful for protection, security, and usage monitoring.

11.1.2 File Operations IMP

 File: A file is collection of interrelated records.

Create Creates a file
Read (or) Get Reads the content of the file.
Write Writes data to file
Open Prepares the file for reading (or) writing.
Truncate Erase the contents of a file but keeps its attributes
Reset Sets file pointer to the beginning of the file.
Find (or) Locate Searches the first record that satisfies the search condition.
Find Next Searches for next record into the file that satisfies the search

condition.
Delete Deletes the current record.
Modify Modifies field value for current record.
Close Completes the file access.
Scan If the file has just been opened (or) reset, scan returns the first

record, otherwise it returns the next record.

2

Record at a time operations
Reset Sets the file pointer to the beginning of the file.
Insert Insert new record in the file

11.1.3 File Types

Set at a time operations
Find All Locates all the records in the file that satisfy a search condition.
Find Ordered Retrieves all the records in the file in some specified order.
Reorganize Starts the reorganize process i.e. organization of data file into blocks,

records.

3

11.2 FILE ACCESS METHODS VIMP

11.2.1 Sequential Access

 In sequential access, the OS read the file word by word. A pointer is maintained which initially

points to the base address of the file. If the user wants to read first word of the file then the
pointer provides that word to the user and increases its value by 1 word. This process continues
till the end of the file.

 Most of the files such as text files, audio files, video files, etc need to be sequentially accessed.

Key points:
 Data is accessed one record right after another record in an order.
 When we use read command, it move ahead pointer by one.
 When we use write command, it will allocate memory and move the pointer to the end of the file.
 Such a method is reasonable for tape.

11.2.2 Direct Access

 Another method is direct access (or relative access).
 Here, a file is made up of fixed-length logical records that allow programs to read and write records

rapidly in no particular order.

11.2.3 Index Sequential Method

 A particular record can be accessed by its index. The index is nothing but the address of a record in

the file.

 In index accessing, searching in a large database became very quick and easy but we need to have
some extra space in the memory to store the index value.

 1 2 3 4 5

 1 3 7 2 8 6 4 5

4

11.3 DIRECTORY OVER VIEW IMP

 Directory: A directory is a container that is used to contain folders and files.

 It organizes files and folders in a hierarchical manner.

11.3.1 Single-Level Directory

 All files are contained in the same directory which makes it easy to support and understand.

Advantages:
 All files are contained in the same directory, which is easy to support and understand.
 If the files are smaller in size, searching will become faster.
 The operations like file creation, searching, deletion, updating are very easy in such a directory

structure.

11.1 Example of index and relative files.

11.2 Single-level directory.

5

Disadvantages:
 There may chance of name collision because two files can not have the same name.
 Searching will become time taking if the directory is large.
 This can not group the same type of files together.

11.3.2 Two Level Directory

 In the two-level directory structure, Master File Directory contain list of Users.
 Each user has User File Directory.

Advantages:
 We can give full path like /user-name/directory-name/.
 Different users can have the same directory as well as the file name.
 Searching of files becomes easier due to pathname and user-grouping.

Disadvantages:
 A user is not allowed to share files with other users.
 Still, it not very scalable, two files of the same type cannot be grouped together in the same user.

11.3.5 Tree-Structured Directories

 This generalization allows the user to create their own subdirectories and to organize their files

accordingly.

11.3 Two Level Directory.

11.4 Tree Structured Directory.

6

A tree structure is the most common directory structure. The tree has a root directory, and every file in
the system has a unique path.

Advantages:
 Very general, since full pathname can be given.
 Very scalable, the probability of name collision is less.
 Searching becomes very easy, we can use both absolute paths as well as relative.

Disadvantages:
 Every file does not fit into the hierarchical model, files may be saved into multiple directories.
 We can’t share files.
 It is inefficient, because accessing a file may go under multiple directories.

11.3.6 Acyclic-Graph Directories

 An acyclic graph is a graph with no cycles and allows directories to share subdirectories and files.

 The same file or subdirectory may be in two different directories. The acyclic graph is a generalization of

the tree-structured directory scheme.

11.5 Acyclic-graph directory structure.

7

 It is used in the situation like when two programmers are working on a joint project and they need
to access files. The associated files are stored in a subdirectory, separating them from other projects
and files of other programmers since they are working on a joint project so they want the
subdirectories to be into their own directories. The common subdirectories should be shared. So
here we use Acyclic directories.

 It is the point to note that the shared file is not the same as the copy file. If any programmer makes
some changes in the subdirectory it will reflect in both subdirectories.

Advantages:
 We can share files.
 Searching is easy due to different-different paths.

Disadvantages:
 We share the files via linking, in case deleting it may create the problem.
 If the link is a soft link then after deleting the file we left with a dangling pointer.
 In the case of a hard link, to delete a file we have to delete all the references associated with it.

11.3.7 General Graph Directory Structure
 In general graph directory structure, cycles are allowed within a directory structure where multiple

directories can be derived from more than one parent directory.
 The main problem with this kind of directory structure is to calculate the total size or space that has

been taken by the files and directories.

11.6 General Graph Directory.

8

Advantages:
 It allows cycles.
 It is more flexible than other directories structure.
Disadvantages:
 It is more costly than others.
 It needs garbage collection.

11.4 FILE SYSTEM MOUNTING

 Mounting: Attaching the files to file system.
 Operating system makes files and directories available at a specific path so that we can make use of

all those files and directories at that specific path.
 Generally a computer can have partitions C,D, E etc.
 Generally C file system contains software’s and D, E file system contains user programs or user

related data.
 The root (/) file system is always mounted. Any other file system can be connected or disconnected

from the root (/) file system.

Example:

Let us assume that we have turbo c in our system. By using turbo C we can execute file system.

C:\TURBO C

We want execute TURBO C from D:\

We have to attach the C:\ to D:\

D:\MOUNT C:\TURBO C D:\

After executing the command we can execute C file system from D:\

 Unmounting: Detaching file from file system.

D:\UMOUNT C:\TURBO C D:\

Mount Point: Mount point specifies the location at which the file system is attached.

9

11.15 Mount Point.

11.14 File system. (a) Existing system. (b) Unmounted volume.

10

11.5 PROTECTION

 Protection actually refers to a mechanism that restricts the access of the resources specified by a

computer system to programs, processes, or users.

Need of System Protection:

 To prevent access of unauthorized users.
 To ensure that resources are used only as specified policy by each active program or mechanism in

the scheme.
 To improve reliability by detecting latent errors.

11.6.1 Types of Access

 Read: Read from the file.

 Write: Write or rewrite the file.

 Execute: Load the file into memory and execute it.

 Append: Write new information at the end of the file.

 Delete: Delete the file and free its space for possible reuse.

 List: List the name and attributes of the file.
11.6.2 Access Control

 Owner. The user who created the file is the owner.

 Group. A set of users who are sharing the file and need similar access is a group, or work group.

 Universe. All other users in the system constitute the universe.

 The characters are pretty easy to remember.
r = read permission
w = write permission
x = execute permission
– = no permission

 File access permissions can also be changed by a numerical (octal) chmod specification. Read
permission is given the value 4, write permission the value 2 and execute permission 1.

 r w x
 4 2 1

These values are added together for any one user category:

11

0 = no permissions
1 = execute only
2 = write only
3 = write and execute (1+2)
4 = read only
5 = read and execute (4+1)
6 = read and write (4+2)
7 = read and write and execute (4+2+1)

Example:

Access permissions can be expressed as three digits:
 user group others
chmod 640 file1 rw- r-- ---
chmod 754 file1 rwx r-x r--
chmod 664 file1 rw- rw- r--

1

CHAPTER12
FILE SYSTEM IMPLEMENTATION

12.1 FILE SYSTEM STRUCTURE

 File System provide efficient access to the disk by allowing data to be stored, located and retrieved

in a convenient way.
 A file System must be able to store the file, locate the file and retrieve the file.
 Most of the Operating Systems use layering approach for every task including file systems. Every

layer of the file system is responsible for some activities.

 When an application program asks for a file, the first request is directed to the logical file system.

The logical file system contains the Meta Data of the File and Directory Structure. If the application

program doesn't have the required permissions of the file then this layer will throw an error. Logical

file systems also verify the path to the file.

Application Program

Logical File System

File Organization Module

Basic File System

I/O Control

Devices

12.1 Layered File System.

2

 Generally, files are divided into various logical blocks. Files are to be stored in the hard disk and to

be retrieved from the hard disk. Hard disk is divided into various tracks and sectors. Therefore, in

order to store and retrieve the files, the logical blocks need to be mapped to physical blocks. This

mapping is done by File organization module. It is also responsible for free space management.

 Once File organization module decided which physical block the application program needs, it

passes this information to basic file system. The basic file system is responsible for issuing the

commands to I/O control in order to fetch those blocks.

 I/O controls contain the codes by using which it can access hard disk. These codes are known as

device drivers. I/O controls are also responsible for handling interrupts.

12.2 FILE SYSTEM IMPLEMENTATION

 There are various on disk data structures that are used to implement a file system. This structure

may vary depending upon the operating system.

1. Boot Control Block: Boot Control Block contains all the information which is needed to boot an

operating system from that volume. It is called boot block in UNIX file system. In New Technology

File System, it is called the partition boot sector.

2. Volume Control Block: Volume control block all the information regarding that volume such as

number of blocks, size of each block, partition table, pointers to free blocks and free File Control

Blocks. In UNIX file system, it is known as super block. In NTFS, this information is stored inside

master file table.

3. Directory Structure (Per File System): A directory structure (per file system) contains file names and

pointers to corresponding FCBs. In UNIX, it includes inode numbers associated to file names.

4. File Control Block: File Control block contains all the details about the file such as ownership details,

permission details, file size,etc. In UFS, this detail is stored in inode. In NTFS, this information is

stored inside master file table as a relational database structure.

3

ACL: Access Control List.

12.2.1 In-memory file-system structures.

 They are maintained in main-memory and these are helpful for file system management for

caching.

12.2 A typical file-control block.

12.3 In-memory file-system structures - File Open

12.4 In-memory file-system structures - File Read

4

12.2.2 Virtual File Systems

 A virtual file system (VFS) is programming that forms an interface between an operating system's

kernel and a more concrete file system. The VFS serves as an abstraction layer that gives

applications access to different types of file systems and local and network storage devices.

12.4 ALLOCATION METHODS VIMP

 The allocation methods define how the files are stored in the disk blocks. There are three

main disk space or file allocation methods.

1. Contiguous Allocation

2. Linked Allocation

3. Indexed Allocation

12.4.1 Contiguous Allocation

 In this scheme, each file occupies a contiguous set of blocks on the disk. For example, if a file

requires n blocks and is given a block b as the starting location, then the blocks assigned to the file

12.5 Schematic view of a virtual file system.

5

will be b, b+1, b+2,……b+n-1. This means that given the starting block address and the length of

the file, we can determine the blocks occupied by the file.

The directory entry for a file with contiguous allocation contains

 Address of starting block

 Length of the allocated portion.

Advantages:

 Both the Sequential and Direct Accesses are supported by this. For direct access, the address of

the k
th

block of the file which starts at block b can easily be obtained as (b+k).

 This is extremely fast since the number of seeks are minimal because of contiguous allocation of

file blocks.

Disadvantages:

 This method suffers from both internal and external fragmentation. This makes it inefficient in

terms of memory utilization.

 Increasing file size is difficult because it depends on the availability of contiguous memory at a

particular instance.

12.4.2 Linked Allocation

 In this scheme, each file is a linked list of disk blocks which need not be contiguous.

 The disk blocks can be scattered anywhere on the disk.

12.6 Contiguous allocation of disk space.

6

 The directory entry contains a pointer to the starting and the ending file block. Each block

contains a pointer to the next block occupied by the file.

 The file ‘jeep’ in following image shows how the blocks are randomly distributed. The last block

(25) contains -1 indicating a null pointer and does not point to any other block.

Advantages:

 This is very flexible in terms of file size. File size can be increased easily since the system does not

have to look for a contiguous chunk of memory.

 This method does not suffer from external fragmentation. This makes it relatively better in terms

of memory utilization.

Disadvantages:

 Because the file blocks are distributed randomly on the disk, a large number of seeks are needed

to access every block individually. This makes linked allocation slower.

 It does not support random or direct access. We can not directly access the blocks of a file. A

block k of a file can be accessed by traversing k blocks sequentially (sequential access) from the

starting block of the file via block pointers.

 Pointers required in the linked allocation incur some extra overhead.

12.7 Linked Allocation of Disk Space.

7

12.4.3 Indexed Allocation

 In this scheme, a special block known as the Index block contains the pointers to all the blocks

occupied by a file.

 Each file has its own index block. The i
th

entry in the index block contains the disk address of the i
th

file block. The directory entry contains the address of the index block as shown in the image.

Advantages:

 This supports direct access to the blocks occupied by the file and therefore provides fast access to

the file blocks.

 It overcomes the problem of external fragmentation.

Disadvantages:

 The pointer overhead for indexed allocation is greater than linked allocation.

 For very small files, say files that expand only 2-3 blocks, the indexed allocation would keep one

entire block (index block) for the pointers which is inefficient in terms of memory utilization.

However, in linked allocation we lose the space of only 1 pointer per block.

12.8 Indexed Allocation of Disk Space.

8

12.5 FREE-SPACE MANAGEMENT

The system keeps tracks of the free disk blocks for allocating space to files when they are created.

12.5.1 Bitmap or Bit vector

 A Bitmap or Bit Vector is series or collection of bits where each bit corresponds to a disk block. The

bit can take two values 0 and 1.

 0 indicates that the block is allocated and 1 indicates a free block.

Advantages:

 Simple to understand.

12.5.2 Linked List Allocation

 In this approach, the free disk blocks are linked together i.e. a free block contains a pointer to the

next free block.

 The block number of the very first disk block is stored at a separate location on disk and is also

cached in memory.

Advantage:

 No wastage of Space.

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

0 0 0 0 1 1 1 0

12.9 Linked free-space list on disk.

9

Disadvantage:

 I/O required for free space list traversal.

12.5.3 Grouping

 This approach stores the address of the free blocks in the first free block. The first free block stores

the address of some, say n free blocks.

 Out of these n blocks, the first n-1 blocks are actually free and the last block contains the address of

next free n blocks.

Advantage:

The addresses of a group of free disk blocks can be found easily.

12.5.4 Counting
This approach stores the address of the first free disk block and a number n of free contiguous disk

blocks that follow the first block.

Every entry in the list would contain:

1. Address of first free disk block

2. A number n

12.6 EFFICIENCY AND PERFORMANCE

 Efficiency: An OS allows the computer system resources to be used efficiently.

 The page cache caches pages of files to optimize file I/O. The buffer cache caches disk blocks to

optimize block I/O.

12.10 I/O without a unified buffer.

cache.

10

12.7 RECOVERY

 Files and directories are kept both in main memory and on disk, and care must be taken to ensure

that a system failure does not result in loss of data or in data inconsistency.

12.7.1 Consistency Checking

 The consistency checker is a systems program such as fsck in UNIX, compares the data in the

directory structure with the data blocks on disk and tries to fix any inconsistencies it finds.

 The allocation and free space management algorithms dictate what types of problems the checker

can find and how successful it will be in fixing them.

 For instance, if linked allocation is used and there is a link from any block to its next block, then the

entire file can be reconstructed from the data blocks, and the directory structure can be recreated.

 The loss of a directory entry on an indexed allocation system can be disastrous, because the data

blocks have no knowledge of one another.

12.11 I/O using a unified buffer cache.

11

12.7.2 Log-Structured File Systems

 A log structured file system (LFS) gives a completely different approach to managing a file system.

 The central idea behind LFS is that blocks are never modified; whenever an operation conceptually

modifies a file, the operation instead places a new block at the end of the log. Writes always go to

the end of the disk.

 For example, suppose I wished to change the first byte of a file. I would create a new copy of the

direct block containing that byte, and place it at the end of the log. Since the address of that block

has now changed, I would also create a copy of the inode for the file.

 An inode is a data structure in UNIX operating systems that contains important information

pertaining to files within a file system.

12.7.3 Backup and Restore

A typical backup schedule may then be as follows:

Day 1: Copy to a backup medium all files from the disk. This is called a full backup.

Day 2. Copy to another medium all files changed since day 1. This is an incremental backup.

Day 3. Copy to another medium all files changed since day 2.

 .

 .

 .

Day N. Copy to another medium all files changed since day N−1. Then go back to day 1.

LECTURE NOTES PREPARED BY

Dr.T.S.RAVI KIRAN, ASSISTANT PROFESSOR & HOD

DEPARTMENT OF COMPUTER SCIENECE

P.B.SIDDHARHA COLLEE OF ARTS & SCIENECE, VIJAYAWADA, AP, INDIA PIN:
520010

Email: tsravikiran@pbsiddhartha.ac.in
Mobile: 9441176980

COURSE:

 PROBLEM SOLVING USING PYTHON
POGRAMMING

CONTENTS:

1. Introduction
2. Data Structures
3. Control Flow
4. Functions
5. Classes & Objects
6. Inheritance
7. Operator Overloading
8. Errors & Exceptions
9. Regular Expressions
10. File Handing
11. Python Databases
12. Additional Python Exercises

1

INTRODUCTION TO PYTHON

1.1 ABOUT PYTHON

 Python is an Interpreted, Object-Oriented, High-Level Programming Language with Dynamic

Semantics.

 Python is easy to learn and it is powerful Programming Language.

 It has efficient high level Data Structures.

 Provide efficient approach to Object Oriented Programming.

 Provide Elegant Syntax.

 It has Interpreted Nature.

1.2 HISTORY OF PYTHON

 Python was developed by “GUIDO VAN ROSSUM” in the late 80’s and early 90’s at “National

Research Institute for Mathematics and Computer Science” in the Netherland.

 It has been derived from many languages such as ABC, MODUAL-3, C, C++, ALGOL-68, SMALL TALK,

UNIX, and Other Scripting Languages.

1.3 FEATURES OF PYTHON VIMP

1. Simple
 Python is Simple and a Small language.
 Reading a program written in Python leads everyone like Reading Language.

2. Easy to Learn
 A python program is Clearly Defined and Easily Readable.
 The structure of the program is Very Simple.
 It uses Few Keywords and a Clearly Defined Syntax.

3. Portable
 Due to its Open Source Nature python has been ported to many platforms.
 All python programs can works on any platforms without requiring any changes.

4. Interpreted
 Python is processed at run time by the interpreter.
 No need to compile a program before executing it. We can simply run the program.
 Basically python converts the source code into an interpreted form called as byte code.

2

5. Object Oriented
 Python supports Object Oriented as well as Program Oriented style of programming.
 While Object Oriented Technique encapsulates Code and Functionalities with in Objects, Procedure

Oriented Technique, as the other hand, builds the Program (or) Functionalities which are noting
Reusable Pieces of Program.

6. Extensible
 Since python is open source software any one can add low level modules to the python interpreter.
 These modules enable programmers to add or customize their tools to work more efficiently.

7. Embeddable
 Programmers can embed python using their C, C++, ACTIVE X, COBAL, and Java programmers to give

Scripting Capabilities for users.

8. Extensive Libraries
 Python has a huge library that is easily portable across different platforms.
 Their library functions are compatible as UNIX, Windows and allow programmers to perform a wide

range of applications varying from Text Processing, Maintaining Database, to GUI Programming.

1.5 APPLICATIONS OF PYTHON (OR) WHO USES PYTHON

 Python is used to develop wide range of applications including Image Processing, Text Processing,
Enterprise Level Applications using Scientific and Numeric data for Networks.

 Python is used in Embedded Scripting Languages, 3D Software, Web Development, GUI Based
Develop Applications, Image Processing of Graphic Design Applications, Scripting or Computational
Applications, Visualizations, and Parallel Computing.

 Python is also used in developing Games, Enterprise and Business Applications, Operating System,

Language Development, Network Programming of Teaching.

 Python is also being applied in revenue generations of products by companies. for instance , among
the general known python uses base:

1. Google makes extensive use of python its Web Based Systems.

2. The popular Youtube Video Sharing Services is largely written in Python.

3. The Drop Box Storage Service (Dropbox is a free service that lets you bring your photos, docs, and

videos anywhere and share them easily) codes and boots its server and Desktop Client Software is

primarily written in python.

4. Voice and Text Chat for gamers uses python.

5. Bit Torrent peers to peer file sharing system began its life as python program.

6. Python is used in the production of Animated Movies.

3

7. GIS Mapping Products use python.

8. Google Opening Web Development Framework use python as Application Language.

9. Cisco Email Server Products uses more than one, million lines of code of Python to do its job.

10. MAYA a powerful interpreted 3D Modelling and Animation System provides a python scripting API.

11. The MSA Symmetric Key use python for Cryptography and Intelligence Analysis.

12. Robotics uses python to develop Commercial and Military Robotic Devices.

13. The civilizations games customizable scripted level are written in python.

14. The one laptop per child (olpc) project builds its user interface and activities involved in python.

15. Netflix and yelp have both documented the roleof pytshon in their software infrastructure.

16. Intel, Cisco,Hewlett-Packard, Seagate, Qualcomm core and IBM use python for hardware testing.

17. JP Morgan chase, UBS, get go and Citadel apply python to financial market for costing.

18. NASA, Los Alamos, Fermi lab, JPL and other use python for scientific programming.

19. In reality trending Instagram has more than 100 million people, interestingly. Its programming is

written in python.

20. Pinterest and quora e viral network giants with large user base uses python for their primary

backend system.

1.6 WHAT CAN I DO WITH PYTHON?

In addition to being a well-designed programming languages, python is useful for accomplishing real
world basis

1.6.1 System Programming:

 Python’s builts makes idle for writing, portable, maintainable System Administration Tools and
Utilities.

 Python Programmer can send Files and Directory Trees to, other Programmers.
 Do Parallel Processing with Process and Threads, etc.

1.6.2 GUI’S:

Python provide TIC GUI API called ‘TKINTER’ that allows Python Program to implement portable GUI’S
with machine look and feel.

1.6.3 Internet Scripting:

 Python comes with Standard Internet Modules that allows Python Program to perform a wide
variety of Networking Tasks, in Client / Server Modes.

4

1.6.4 Component Integration:

 Python Scripts can easily communicate with other application using variety of Integration
Mechanisms.

 For instance, integrating a library into python enables python to test and leaves the library’s
components and embedding python in a products enables onsite customization to be coded
with having to recompile to entire product

1.6.5 Database Programming:

 Python interfaces to all commands used in Relational Database System such as Oracle,
DDBC, MYSQL, and SQL Lite.

1.6.6 Rapid Prototyping:

 Rapid Prototyping with python allows a developer to incorporate several ideas into
prototypes within budget.

 1.6.7. Numeric and Scripting:

 Numerical Python adding a fast company Multidimensional Array Facilities to Python.
 NUMPY in the successor to both Numeric and Num Array.
 Additional numeric tools for Python Animation, 3D Visualization.

1.7 VARIABLES IMP

 Variable: Variable is reserved memory location that stores value.
 In programming, a variable is a value that can change, depending on conditions or on information

passed to the program.
 Variables are examples of identifiers.
 Identifiers are names given to identify something.

For naming any identifier there are some basic rules that you must follow. These rules are

1. The first character of an identifier must be an underscore (‘_’) or letter (upper or lowercase).
2. The rest of the identifier name can be underscore(‘_’), letter (upper or lowercase), or digits (0-9).
3. Identifiers names are case-sensitive. For example, myvar and myVar are not the same.
4. Punctuation characters such as @,$, and % are not allowed within identifiers.

Examples of valid identifier names are sum, _my_var, num1, r, var_20, First. etc.

Examples of invalid identifier names are 1num, my-var, %check, Basic Sal, H#R&A,
etc.

5

Example: Program to display data of different types using variables
and literal constants.

num=7
amt=123.45
code = 'A'
pi=3.1415
population_of_India = 10000000000
msg = "Hi"

print("NUM ="+str(num))
print("\n AMT = "+str(amt))
print(" CODE = "+str(code))
print("POPULATION OF INDIA = " + str(population_of_India))
print("\n MESSAGE = "+str(msg))

OUTPUT

NUM =7
AMT = 123.45
CODE = A
POPULATION OF INDIA = 10000000000
MESSAGE = Hi

1.8 TYPED LANGAUGE

 The typing discipline of a language is defined by the nature of type constraint and the way they are
evaluated and enforced.

 The Concept Of Typing Discipline Is Dealt With Four Types That Are As Follows.
1. Statically Typed Languages
2. Dynamically Typed Languages
3. Strongly Typed Language
4. Weakly Typed Language

1.Statically Typed Languages

 A language in which types are fixed at compile time.

E.g. C and Java

2. Dynamically Typed Languages

 A language in which the types are discovered at execution time.

E.g. Python, VB Script

Strongly Typed Language:

6

 A language in which the types are always enforced.
 For instance, Java and Python are strongly typed. If you have integer, you can not treat like a string

without explicitly converting it.

Weakly Typed Language:

 A language in which the type may be ignored which is actually the opposite of strongly typed. VB
Script is weakly typed. In VB Script, you can concatenate the string ‘12’ and the integer 3 to get the
string ‘123’, then treat that as the integer 123, all without any explicit conversion.

 Python is both dynamically typed (because it does not use explicit data type declarations) and
strong typed (because once a variable has a data type, it actually matters).

1.9 DATA TYPES IN PYTHON VIMP

Python has the following data types built-in by default, in these categories:

 Print the data type of the variable x:
x = 5
print(type(x))

 Setting the Data Type
In Python, the data type is set when you assign a value to a variable:

Text Type: str
Numeric Types: int, float, complex
Sequence Types: list, tuple, range
Mapping Type: dict
Set Types: set, frozenset
Boolean Type: bool
Binary Types: bytes, bytearray, memoryview

Example Data Type Description
x = "Hello World" str
x = 20 int
x = 20.5 float
x = 1j complex
x = ["apple", "banana", "cherry"] list
x = ("apple", "banana", "cherry") tuple
x = range(6) range The rage specifies values between

0 to 6

7

1.10 LITERALS

Literal: In Python, literals refer to the data that is specified in a variable or constant.

1.10.1 Numbers
Can be integers (1 and 2), floats (1.1 and 1.2), fractions (1/2 and 2/3) or even complex numbers
(3+7i)

1.10.1 Strings
 String: A string is group of characters.

x = {"name" : "John", "age" : 36} dict Create a dictionary containing
personal information

x = {"apple", "banana", "cherry"} set
x = frozenset({"apple", "banana", "cherry"}) frozenset The frozenset() function returns an

unchangeable frozenset object
(which is like a set object, only
unchangeable).
E.g.
mylist = ['apple', 'banana',
'cherry']
x = frozenset(mylist)
x[1] = "strawberry"
print(x)

x = True bool
x = b"Hello" bytes Bytes objects are immutable

sequences of single bytes.
E.g.
#triple single or double
quotes allows multiple lines
x = b'''Python Tutorial,
Javascript Tutorial,
MySQL Tutorial'''
print(x)

x = bytearray(5) bytearray It gives a mutable sequence of
integers in the range 0 <= x < 256.
E.g.
#create a bytearray from a
list of integers in the range
0 through 255
x = bytearray([94, 91, 101,
125, 111, 35, 120, 101, 115,
101, 200])
print(x)

x = memory view(bytes(5)) memoryview The python memoryview() function
returns a memoryview object of the
given argument.

8

 Strings in python are surrounded by either single quotation marks, or double quotation
marks.

 'hello' is the same as "hello".
 You can display a string literal with the print() function:

E.g1.
print("Hello")
print('Hello')

E.g.

a = ''' We are the students of P.B.Siddhartha College of Arts & Scince,
MCA Fourth Semester,
Leaning Python Programming.'''
print(a)

1.11 OPERATORS

Operators are symbols that represent that represent computations like addition, subtraction,
multiplication and so on.

Operator categories:

 Arithmetic Operators
 Relational Operators
 Logical Operators
 Assignment Operators
 Increment and Decrement Operators
 Bitwise Operators
 Special Operators

1

CHAPTER 2

DATA STRUCTURES

2.1 LISTS
 Lists are used to store multiple items in a single variable.

 Lists are created using square brackets.

 List items are ordered, changeable, and allow duplicate values.

 List items are indexed, the first item has index [0], the second item has index [1] etc.

 When we say that lists are ordered, it means that the items have a defined order, and that

order will not change.

 If you add new items to a list, the new items will be placed at the end of the list.

 Since lists are indexed, lists can have items with the same value.

Example 1:

thislist = ["apple", "banana", "cherry", "apple", "cherry"]

print(thislist)

Output:

['apple', 'banana', 'cherry', 'apple', 'cherry']

Example 2:

thislist = ["apple", "banana", "cherry"]

print(len(thislist))

Output: 3

Example 3:

list1 = ["apple", "banana", "cherry"]

list2 = [1, 5, 7, 9, 3]

list3 = [True, False, False]

Output:

['apple', 'banana', 'cherry']

[1, 5, 7, 9, 3]

[True, False, False]

Example 4:

mylist = ["apple", "banana", "cherry"]

print(type(mylist))

2

Output:

<class 'list'>

Example 5:

thislist = list(("apple", "banana", "cherry")) # note the double

round-brackets

print(thislist)

Output:

['apple', 'banana', 'cherry']

2.1.1 Access List Items

 List items are indexed and you can access them by referring to the index number.

Example1:

thislist = ["apple", "banana", "cherry"]

print(thislist[1])

Output:

banana

2.1.2 Change Item Value

 To change the value of a specific item, refer to the index number.

Example1:

thislist = ["apple", "banana", "cherry"]

thislist[1] = "blackcurrant"

print(thislist)

Output:

['apple', 'blackcurrant', 'cherry']

2.1.3 Appended Items

 To add an item to the end of the list, use the append() method.

Example1:

thislist = ["apple", "banana", "cherry"]

thislist.append("orange")

print(thislist)

Output:

['apple', 'banana', 'cherry', 'orange']

3

2.1.4 Remove Specified Item

 The remove() method removes the specified item

Example1:

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana")

print(thislist)

Output:

['apple', 'cherry']

2.1.5 Loop Through a List

 You can loop through the list items by using a for loop.

Example 1:

thislist = ["apple", "banana", "cherry"]

for x in thislist:

 print(x)

Output:

apple

banana

cherry

2.1.6 List Comprehension

 List comprehension offers a shorter syntax when you want to create a new list based on the

values of an existing list.

Example:

 Based on a list of fruits, you want a new list, containing only the fruits with the letter "a" in

the name.

 Without list comprehension you will have to write a for statement with a conditional test

inside.

Example 1:

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]

newlist = []

for x in fruits:

 if "a" in x:

 newlist.append(x)

print(newlist)

Output:

4

['apple', 'banana', 'mango']

2.1.7 Sort List Alphanumerically

 List objects have a sort() method that will sort the list alphanumerically, ascending, by

default.

Example 1:
thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]
thislist.sort()

print(thislist)

Output:

['banana', 'kiwi', 'mango', 'orange', 'pineapple']

Example2:
thislist = [100, 50, 65, 82, 23]
thislist.sort()
print(thislist)

Output:

[23, 50, 65, 82, 100]

2.1.8 Copy a List

 You cannot copy a list simply by typing list2 = list1, because: list2 will only be

a reference to list1, and changes made in list1 will automatically also be made

in list2.

 There are ways to make a copy, one way is to use the built-in List method copy().

Example:
thislist = ["apple", "banana", "cherry"]
mylist = thislist.copy()

print(mylist)

Output:

['apple', 'banana', 'cherry']

2.1.9 Join Two Lists

 There are several ways to join, or concatenate, two or more lists in Python.

5

 One of the easiest ways are by using the + operator.

Example 1:

list1 = ["a", "b", "c"]
list2 = [1, 2, 3]
list3 = list1 + list2

print(list3)

Output:

'a', 'b', 'c', 1, 2, 3]

Example 2:

list1 = ["a", "b" , "c"]

list2 = [1, 2, 3]

for x in list2:

 list1.append(x)

print(list1)

Output:

['a', 'b', 'c', 1, 2, 3]

Example 1:

thistuple = ("apple", "banana", "cherry")

print(thistuple)

2.1.9 List Methods

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

6

Output:

 ('apple', 'banana', 'cherry')

2.2 TUPLE

 Tuples are used to store multiple items in a single variable.

 A tuple is a collection which is ordered and unchangeable.

 Tuples are written with round brackets.

 Tuple items are ordered, unchangeable, and allow duplicate values.

 Tuple items are indexed, the first item has index [0], the second item has index [1] etc.

Example 1:
thistuple = ("apple", "banana", "cherry")
print(thistuple)

Output:

('apple', 'banana', 'cherry')

2.1.1 Access Tuple Items

 You can access tuple items by referring to the index number, inside square brackets.

Example 1:

thistuple = ("apple", "banana", "cherry")

print(thistuple[1])

Output:

banana

Negative Indexing:

 Negative indexing means start from the end.

 -1 refers to the last item, -2 refers to the second last item etc.

Example 1:
thistuple = ("apple", "banana", "cherry")

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

7

print(thistuple[-1])

Output:

cherry

Range of Indexes:

 You can specify a range of indexes by specifying where to start and where to end the range.

 When specifying a range, the return value will be a new tuple with the specified items.

Example 1:

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[2:5])

#This will return the items from position 2 to 5.

#Remember that the first item is position 0,

#and note that the item in position 5 is NOT included

Output:

('cherry', 'orange', 'kiwi')

Example 2:
thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")

print(thistuple[:4])

Output:

('apple', 'banana', 'cherry', 'orange')

Example 3:
thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")

print(thistuple[2:])

Output:

('cherry', 'orange', 'kiwi', 'melon', 'mango')

Range of Negative Indexes:

 Specify negative indexes if you want to start the search from the end of the tuple.

Example 4:

8

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[-4:-1])

Output:

('orange', 'kiwi', 'melon')

#Negative indexing means starting from the end of the tuple.

#This example returns the items from index -4 (included) to index -1

(excluded)

#Remember that the last item has the index -1

Check if Item Exists:

 Check if "apple" is present in the tuple.

Example 5:
thistuple = ("apple", "banana", "cherry")

if "apple" in thistuple:
 print("Yes, 'apple' is in the fruits tuple")

Output:

Yes, 'apple' is in the fruits tuple

2.1.2 Update Tuples

 Tuples are unchangeable, meaing that you cannot change, add, or remove items once the tuple is

created.

 But there are some workarounds.

Example 1:
x = ("apple", "banana", "cherry")

y = list(x)
y[1] = "kiwi"
x = tuple(y)

print(x)

Output:

("apple", "kiwi", "cherry")

Add Items:

 Once a tuple is created, you cannot add items to it.

9

Example 1:
thistuple = ("apple", "banana", "cherry")

thistuple.append("orange") # This will raise an error

print(thistuple)

Output:

Traceback (most recent call last):

 File "./prog.py", line 2, in <module>

AttributeError: 'tuple' object has no attribute 'append

Example 2:

 Convert the tuple into a list, add "orange", and convert it back into a tuple:

thistuple = ("apple", "banana", "cherry")
y = list(thistuple)

y.append("orange")
thistuple = tuple(y)

print(thistuple)

Output:

('apple', 'banana', 'cherry', 'orange')

Remove Items:

 Note: You cannot remove items in a tuple.

Example 3:

thistuple = ("apple", "banana", "cherry")

y = list(thistuple)
y.remove("apple")
thistuple = tuple(y)

print(thistuple)

Output:

('banana', 'cherry')

Unpacking a Tuple:

 When we create a tuple, we normally assign values to it. This is called "packing" a tuple.

Example 4: (Packing tuple)

10

fruits = ("apple", "banana", "cherry")

print(fruits)

Output:

 ('apple', 'banana', 'cherry')

 But, in Python, we are also allowed to extract the values back into variables. This is called

"unpacking".

Example 5:

fruits = ("apple", "banana", "cherry")

(green, yellow, red) = fruits

print(green)
print(yellow)

print(red)

Output:

apple

banana

cherry

Using Asterisk*

 If the number of variables is less than the number of values, you can add an * to the variable name

and the values will be assigned to the variable as a list.

Example 6:

fruits = ("apple", "banana", "cherry", "strawberry", "raspberry")

(green, yellow, *red) = fruits

print(green)
print(yellow)
print(red)

Output:

apple

banana

['cherry', 'strawberry', 'raspberry']

11

 If the asterix is added to another variable name than the last, Python will assign values to the

variable until the number of values left matches the number of variables left.

fruits = ("apple", "mango", "papaya", "pineapple", "cherry")

(green, *tropic, red) = fruits

print(green)

print(tropic)
print(red)

Output:

apple

['mango', 'papaya', 'pineapple']

cherry

2.1.3 Loop Through a Tuple

 You can loop through the tuple items by using a for loop.

Example 1:
thistuple = ("apple", "banana", "cherry")

for x in thistuple:
 print(x)

Output:

apple

banana

cherry

Loop Through the Index Numbers:

 You can also loop through the tuple items by referring to their index number.

 Use the range() and len() functions to create a suitable iterable.

Example 2:

thistuple = ("apple", "banana", "cherry")

for i in range(len(thistuple)):
 print(thistuple[i])

Output:

apple

banana

12

cherry

Using a While Loop:

 You can loop through the list items by using a while loop.

 Use the len() function to determine the length of the tuple, then start at 0 and loop your way

through the tuple items by refering to their indexes.

 Remember to increase the index by 1 after each iteration.

Example 3:

thistuple = ("apple", "banana", "cherry")

i = 0
while i < len(thistuple):
 print(thistuple[i])
 i = i + 1

Output:

apple

banana

cherry

2.1.4 Python - Join Tuples

Join Two Tuples

 To join two or more tuples you can use the + operator.

Example 4:

tuple1 = ("a", "b" , "c")
tuple2 = (1, 2, 3)

tuple3 = tuple1 + tuple2
print(tuple3)

Output:

('a', 'b', 'c', 1, 2, 3)

Multiply Tuples

 If you want to multiply the content of a tuple a given number of times, you can use the * operator.

13

Example 5:

fruits = ("apple", "banana", "cherry")
mytuple = fruits * 2

print(mytuple)

Output:

('apple', 'banana', 'cherry', 'apple', 'banana', 'cherry')

2.1.5 Tuple Methods

 Python has two built-in methods that you can use on tuples.

Method Description

count()

Returns the number of times a specified value occurs in a tuple

index() Searches the tuple for a specified value and returns the position of where it

was found

2.3 SETS

 A set is a collection which is both unordered and unindexed.

 Unordered means that the items in a set do not have a defined order.

 Set items can appear in a different order every time you use them, and cannot be referred to by

index or key.

 Sets are used to store multiple items in a single variable.

 Sets are written with curly brackets.

Example1:
thisset = {"apple", "banana", "cherry"}

print(thisset)

Note: the set list is unordered, meaning: the items will appear in a random

order.

Refresh this page to see the change in the result.

Output:

{'cherry', 'apple', 'banana'}

14

 Sets cannot have two items with the same value. (Duplicates Not Allowed)

Example1:

thisset = {"apple", "banana", "cherry", "apple"}
print(thisset)

Output:

{'banana', 'cherry', 'apple'}

2.3.1 Access Set Items

 You cannot access items in a set by referring to an index or a key.

 But you can loop through the set items using a for loop, or ask if a specified value is present in

a set, by using the in keyword.

Example1:
thisset = {"apple", "banana", "cherry"}

for x in thisset:
 print(x)

Output:

banana

apple

cherry

Change Items: Once a set is created, you cannot change its items, but you can add new items.

2.3.2 Add Set Items

 Once a set is created, you cannot change its items, but you can add new items.

Example1:

thisset = {"apple", "banana", "cherry"}

thisset.add("orange")

print(thisset)

Output:

{'cherry', 'orange', 'banana', 'apple'}

2.3.2 Remove Set Items

 To remove an item in a set, use the remove(), or the discard() method.

15

Example1:

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana")

print(thisset)

Output:

{'cherry', 'apple'}

2.3.2 Loop Sets

 You can loop through the set items by using a for loop.

Example1:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

 print(x)

Output:

apple

cherry

banana

2.3.3 Join Two Sets

 There are several ways to join two or more sets in Python.

 You can use the union() method that returns a new set containing all items from both sets,

or the update() method that inserts all the items from one set into another.

Example1:

set1 = {"a", "b" , "c"}

set2 = {1, 2, 3}

set3 = set1.union(set2)

print(set3)

Output:

{'b', 1, 'a', 'c', 3, 2}

Example2:

set1 = {"a", "b" , "c"}
set2 = {1, 2, 3}
set1.update(set2)

print(set1)

16

Keep ONLY the Duplicates:

 The intersection_update() method will keep only the items that are present in both

sets.

Example1:

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

x.intersection_update(y)

print(x)

Output:

{'apple'}

Example2:

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.intersection(y)

print(z)

Output:

{'apple'}

Keep All, But NOT the Duplicates:

 The symmetric_difference_update() method will keep only the elements that are

NOT present in both sets.

Example1:

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

x.symmetric_difference_update(y)

print(x)

Output:

{'google', 'banana', 'microsoft', 'cherry'}

 The symmetric_difference() method will return a new set, that contains only the

elements that are NOT present in both sets.

17

Example1:

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.symmetric_difference(y)

print(z)

Output:

{'google', 'banana', 'microsoft', 'cherry'}

2.3.4 Set Methods

Method Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

difference() Returns a set containing the difference between two or

more sets

difference_update() Removes the items in this set that are also included in

another, specified set

discard() Remove the specified item

intersection() Returns a set, that is the intersection of two other sets

intersection_update () Removes the items in this set that are not present in other,

specified set(s)

isdisjoint() Returns whether two sets have a intersection or not

issubset() Returns whether another set contains this set or not

issuperset() Returns whether this set contains another set or not

pop() Removes an element from the set

remove() Removes the specified element

symmetric_difference() Returns a set with the symmetric differences of two sets

18

symmetric_difference_update

()

inserts the symmetric differences from this set and another

union() Return a set containing the union of sets

update() Update the set with the union of this set and others

2.4 DICTIONARY

 Dictionaries are used to store data values in key : value pairs.

 A dictionary is a collection which is ordered*, changeable and does not allow duplicates.

 Dictionaries are written with curly brackets, and have keys and values:

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(thisdict)

Output:
{'brand': 'Ford', 'model': 'Mustang', 'year': 1964}

Ordered or Unordered?

 When we say that dictionaries are ordered, it means that the items have a defined order, and that

order will not change.

 Unordered means that the items does not have a defined order, you cannot refer to an item by

using an index.

Changeable

 Dictionaries are changeable, meaning that we can change, add or remove items after the dictionary

has been created.

Duplicates Not Allowed

 Dictionaries cannot have two items with the same key.

 Duplicate values will overwrite existing values.

19

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964,

 "year": 2020

}

print(thisdict)

Output:
{'brand': 'Ford', 'model': 'Mustang', 'year': 2020}

2.4.1 Accessing Items

 You can access the items of a dictionary by referring to its key name, inside square brackets.

 Get the value of the "model" key:

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

x = thisdict["model"]

print(x)

Output:
Mustang

 There is also a method called get() that will give you the same result:

Example2:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

x = thisdict.get("model")

print(x)

Output:
Mustang

20

Change Values:

 You can change the value of a specific item by referring to its key name

 Change the "year" to 2018

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict["year"] = 2018

print(thisdict)

Output:
{'brand': 'Ford', 'model': 'Mustang', 'year': 2018}

Update Dictionary:

 The update() method will update the dictionary with the items from the given argument.

 The argument must be a dictionary, or an iterable object with key:value pairs.

 Update the "year" of the car by using the update() method.

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.update({"year": 2020})

print(thisdict)

Output:
{'brand': 'Ford', 'model': 'Mustang', 'year': 2020}

2.4.2 Adding Items

 Adding an item to the dictionary is done by using a new index key and assigning a value to it.

21

Example1:

thisdict = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

thisdict["color"] = "red"

print(thisdict)

Output:
{'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'color': 'red'}

Update Dictionary:

 The update() method will update the dictionary with the items from a given argument. If the

item does not exist, the item will be added.

 The argument must be a dictionary, or an iterable object with key:value pairs.

 Add a color item to the dictionary by using the update() method:

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.update({"color": "red"})

print(thisdict)

Output:
{'brand': 'Ford', 'model': 'Mustang', 'year': 1964, 'color': 'red'}

2.4.3 Remove Dictionary Items

 There are several methods to remove items from a dictionary.

 The pop() method removes the item with the specified key name.

22

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.pop("model")

print(thisdict)

Output:
{'brand': 'Ford', 'year': 1964}

 The popitem() method removes the last inserted item (in versions before 3.7, a random item is

removed instead).

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.popitem()

print(thisdict)

Output:
{'brand': 'Ford', 'model': 'Mustang'}

 The del keyword removes the item with the specified key name.

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

del thisdict

print(thisdict) #this will cause an error because "thisdict" no longer

exists.

23

Output:
Traceback (most recent call last):

 File "demo_dictionary_del3.py", line 7, in <module>

 print(thisdict) #this will cause an error because "thisdict" no longer

exists.

NameError: name 'thisdict' is not defined

 The clear() method empties the dictionary.

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.clear()

print(thisdict)

Output:

{}

2.4.4 Loop Through a Dictionary:

 You can loop through a dictionary by using a for loop.

 When looping through a dictionary, the return value are the keys of the dictionary, but there are

methods to return the values as well.

 Print all key names in the dictionary, one by one.

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

for x in thisdict:

 print(x)

Output:

brand

model

year

24

 Print all values in the dictionary, one by one.

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

for x in thisdict:

 print(thisdict[x])

Output:

Ford

Mustang

1964

 You can use the keys() method to return the keys of a dictionary:

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

for x in thisdict.keys():

 print(x)

Output:

brand

model

year

 Loop through both keys and values, by using the items() method.

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

for x, y in thisdict.items():

 print(x, y)

Output:

25

brand Ford

model Mustang

year 1964

2.4.5 Copy a Dictionary

 You cannot copy a dictionary simply by typing dict2 = dict1, because: dict2 will only be

a reference to dict1, and changes made in dict1 will automatically also be made in dict2.

 There are ways to make a copy, one way is to use the built-in Dictionary method copy().

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

mydict = thisdict.copy()

print(mydict)

Output:

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964}

 Another way to make a copy is to use the built-in function dict().

Example1:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

mydict = dict(thisdict)

print(mydict)

Output:

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964}

2.4.6 Nested Dictionaries:

 A dictionary can contain dictionaries, this is called nested dictionaries.

 Create a dictionary that contain three dictionaries:

26

Example1:

myfamily = {

 "child1" : {

 "name" : "Emil",

 "year" : 2004

 },

 "child2" : {

 "name" : "Tobias",

 "year" : 2007

 },

 "child3" : {

 "name" : "Linus",

 "year" : 2011

 }

}

print(myfamily)

Output:

{'child1': {'name': 'Emil', 'year': 2004}, 'child2': {'name': 'Tobias',

'year': 2007}, 'child3': {'name': 'Linus', 'year': 2011}}

 Create three dictionaries, then create one dictionary that will contain the other three

dictionaries.

Example1:

child1 = {

 "name" : "Emil",

 "year" : 2004

}

child2 = {

 "name" : "Tobias",

 "year" : 2007

}

child3 = {

 "name" : "Linus",

 "year" : 2011

}

27

myfamily = {

 "child1" : child1,

 "child2" : child2,

 "child3" : child3

}

print(myfamily)

Output:

{'child1': {'name': 'Emil', 'year': 2004}, 'child2': {'name': 'Tobias',

'year': 2007}, 'child3': {'name': 'Linus', 'year': 2011}}

2.4.7 Dictionary Methods:

Method Description

clear() Removes all the elements from the dictionary

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and value

get() Returns the value of the specified key

items() Returns a list containing a tuple for each key value pair

keys() Returns a list containing the dictionary's keys

pop() Removes the element with the specified key

popitem() Removes the last inserted key-value pair

setdefault() Returns the value of the specified key. If the key does not exist: insert

the key, with the specified value

update() Updates the dictionary with the specified key-value pairs

values() Returns a list of all the values in the dictionary

1

CHAPTER 3

CONTROL FLOW

TOPIC 1: DECISION CONTROL STATEMENTS

4.2 SELECTION / CONDITIONAL BRANCHING STATEMENTS

4.2.1 IF STATEMENT

 The if statement is the simplest form of decision control statement that is frequently used in

decision making.

Syntax:

If test_expression:

 Statement 1
 . . .

 Statement n
Statement x

Example 1:
x = 10 #Initialize the value of x

if (x>0): #test the value of x
 x=x+1 #Increment the value of x if it is > 0

True

Decision Control Statements

Sequential Control Statements

Statement 1

Statement 2

. . .

. . .

Statement n

Selection Control Statements

Statement 1

. . .

Test Condition

True

. . .

. . .

False

. . .

. . .

Iterative Control Statements

Statement 1

. . .

Test Condition

False

. . .

. . .

. . .

Test

Expression

Statement Block 1

Statement Block x

True

False

Figure: Flow chart for if statement

2

print(x) #Print the value of x

Example 2:
Write a program to determine whether a person is eligible to vote.
age = int(input("Enter the age : "))

if (age >= 18):
 print("You are eligible to vote")

Output:

Enter the age : 18
You are eligible to vote

Example 3:

Write a program to determine the character entered by the user

char = input("Press any key : ")
if(char.isalpha()):
 print("The user has entered a character")

if(char.isdigit()):
 print("The user has enterd a digit")
if(char.isspace()):

 print("The user entered a white space character")

Output:

Press any key : a
The user has entered a character

4.2.2 if - else Statement

 The if..else statement evaluates test expression and will execute the body of if only when
the test condition is True . If the condition is False , the body of else is executed.

Syntax:

If test_expression:
 Statement block 1
else:

 Statement block 2
Statement x

Figure: Flow chart for if-else statement

False Test

Expression

Statement Block 2 Statement Block 1

True

Statement Block x

3

Example 1:
Write a program to find whether the given number is even or odd
num = int(input("Enter any number :"))

if(num%2==0):
 print(num,"is even")
else:

 print(num,"is odd")

Output:
Enter any number :125

125 is odd

Example 2:
Write a program to enter any character. If the entered character is in
lowercase then convert it into uppercase and if it is

an uppercase character, then convert it into lowercase.
ch = input ("Enter any character : ")
if (ch >= 'A' and ch <= 'Z'):

 ch = ch.lower()
 print("The entered character was in uppercase. In lowercase it is :" +
ch)

else:
 ch = ch.upper()
 print("The entered character was in lowercase. In uppercase it is :" +

ch)

Output:

Enter any character : c
The entered character was in lowercase. In uppercase it is :C

4

Example 3:
A company decides to give bonus to all its emplyess on Diwali. A 5% bonus

on salary
is given to the male workers and 10% bonus on salary to the female workers.
Write a

program to enter the salary of the employee and sex of the employee. If the
salary of
the employee is less than Rs.10,000 then the employee get an extra 2%

bonuson salary.
Calcullate the bonus that has to given to the employee and display the
salary that the

employee will get.

ch=input("Enter the sex of the employee (m or f) :")

sal=int(input("Enter the salary of the employee :"))
if (ch=='m'):
 bonus = 0.05 * sal

else:
 bonus = 0.10 * sal
amt_to_be_paid = sal + bonus

print("Salary =", sal)
print("Bonus =", bonus)
print("****************************")

print("Amount to be paid : ",amt_to_be_paid)

Output:

Enter the sex of the employee (m or f) :m
Enter the salary of the employee :30000
Salary = 30000

Bonus = 1500.0

Amount to be paid : 31500.0

4.2.3 if…elif…else in Python

 if…elif…else are conditional statements that provide you with the

decision making that is required when you want to execute code based on a
particular condition.

Syntax:

If (test_expression 1)
 Statement_block 1

Elif (test_expression 2)
 Statement_block 2
…
Elif (test_expression N)
 Statement_block N
Else

 Statement_block X
Statement_Y

5

Example1:

Write a program to test whether a number entered by the user is negative,
positive or equal to zero
num = int(input("Enter any number : "))

if (num==0):
 print("The value is equal to zero")
if (num>0):

 print("The number is positive")
else:
 print("The number is negative")

Output:
Enter any number : -10

The number is negative

Example2:
Write a program to determine whether the character entered is vowel or not.
ch = input("Enter any character :")

if(ch=="A" or ch=="E" or ch=="I" or ch=="O" or ch=="U"):
 print (ch, "is vowel")

elif (ch=="a" or ch=="e" or ch=="i" or ch=="o" or ch=="u"):

 print(ch, "is vowel")
else:
 print(ch, "is not a vowel")

Output:
Enter any character :A

A is vowel

Figure: Flow chart for if-elif-else

statement

Statement Block 1

False Test

Expression

Statement Block Y

Test

Expression

Statement Block 2
Statement Block x

True False

6

Example 3: Write a program to find the greatest number from three numbers.

Write a program to find the greatest number from three numbers.
num1 = int(input("Enter the first number : "))
num2 = int(input("Enter the second number : "))

num3 = int(input("Enter the third number : "))
if(num1>num2):
 if(numl>num3):

 prit(num1, "is greater than", num2, "and", num3)
 else:
 print(num3, "is greater than", num1, "and", num2)

elif(num2>num3):
 print(num2, "is greater than", num1, "and", num3)
else:

 print("The three numbers are equal")

Output:

Enter the first number : 13
Enter the second number : 43
Enter the third number : 25

43 is greater than 13 and 25

Example 4: Write a program to calculate tax given the following conditions:

If income is less than 1,50, 000 then no tax

If taxable income is Rs.1,50,001 - Rs.300,000 then charge 10% tax

If taxable income is Rs.3,00,001 - Rs.500,000 then charge 20% tax

If taxable income is above Rs.5,00,001 then charge 30% tax

#Write a program to calculate tax given the following conditions:

#If income is less than 1,50, 000 then no tax
#If taxable income is Rs.1,50,001 - Rs.300,000 then charge 10% tax
#If taxable income is Rs.3,00,001 - Rs.500,000 then charge 20% tax

#If taxable income is above Rs.5,00,001 then charge 30% tax
MIN1 = 150001
MAX1 = 300000

RATE1 = 0.10
MIN2 = 300001

MAX2 = 500000

RATE2 = 0.20
MIN3 = 500001
RATE3 = 0.30

income = int(input("Enter the income : "))
taxable_income = income - 150000
if(taxable_income<= 0):

 print("No tax")
elif(taxable_income>=MIN1 and taxable_income<MAX1):
 tax = (taxable_income - MIN1) * RATE1

7

elif(taxable_income>=MIN2 and taxable_income<MAX2):
 tax = (taxable_income - MIN2) * RATE2

else:
 tax = (taxable_income - MIN3) * RATE3
print("TAX = ", tax)

Output:
Enter the income : 2000000

TAX = 404999.7

4.3 BASIC LOOP STRUCTURES / ITERATIVE STATEMENTS

 Python supports basic loop structures through iterative statements.

 Iterative statements are used to repeat the execution of list of statements depending on the value

of integer expression.

4.3.1 While Loop

 While loop provides a mechanism to repeat one or more statements while a particular condition is

True.

Syntax:

Statement x
While (condition):
 Statement block

Statement y

Figure: Flow chart for while loop

True

False

Statement X

Condition

Statement Y

Statement Block

Update the

Condition

8

Example 1: Write a program to print first 5 numbers using while loop.

i = 1
while i < 6:
 print(i)

 i = i + 1

Output:

1
2
3

4
5

Example 2: Write a program to calculate the sum of numbers from m to n

Write a program to calculate the sum of numbers from m to n
m=int(input("Enter the value of m : "))
n=int(input("Enter the value of n : "))

s=0
while (m<=n):
 s=s+m

 m=m+1
print("sum = ", s)

Output:
Enter the value of m : 1
Enter the value of n : 10

sum = 55

Example 3: Write a program to read the numbers until -1 is encountered. Also
count the negative, poitive, and zeros entered by the user.

Write a program to read the numbers until -1 is encountered. Also count the
negative, poitive, and zeros entered by the user.

negatives=0
positives=0

zeroes=0

print("Enter -1 to exit...")
while(1):
 num=int(input("Enter any number : "))

 if(num==-1):
 break
 if(num==0):

 zeroes=zeroes+1
 elif(num>0):
 positives = positives+1

9

 else:
 negatives = negatives+1

print("Count of positive numbers entered : ", positives)
print("Count of negative numbers entered : ", negatives)
print("Count of zeroes entered : ", zeroes)

4.3.1 For Loop

 For loop provides a mechanism to repeat task until a particular condition
is True.

Syntax:
for loop_control_var in sequence:
 Statement block

Example 1: Write program to print first 5 numbers using the range() in a for
loop

Write program to print first 5 numbers using the range() in a for loop
for i in range(1, 5):
 print(i)

Output:

1

2
3
4

Figure: Flow chart for while loop

Specify the range of sequence

Is Loop control

variable in specified

range

Statement Block 2

Statement Block 1 True

False

10

Example 2: Write program to print first 10 numbers using the range() in a for
loop using step value

Write program to print first 5 numbers using the range() in a for loop
for i in range(1, 10, 2):

 print(i)

Output:

1
3
5

7
9

Example 3: Write a program using for loop to calculate the average of first n
natural numbers

Write a program using for loop to calculate the average of first n natural
numbers

n=int(input("Enter the value of n :"))
avg = 0.0
s = 0

for i in range(1,n+1):
 s=s+i
avg = s/i

print("The sum of first ",n,"numbers is",s)
print("The average of first",n,"natural numbers is",avg)

Output:
Enter the value of n :5
The sum of first 5 numbers is 15

The average of first 5 natural numbers is 3.0

4.4 NESTED LOOPS

 A nested loop is a loop inside a loop.

 The "inner loop" will be executed one time for each iteration of the "outer loop".

Example 1: Write a program to Print each adjective for every fruit.

adj = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]

for x in adj:
 for y in fruits:
 print(x, y)

11

Output:

red apple

red banana

red cherry

big apple

big banana

big cherry

tasty apple

tasty banana

tasty cherry

Example 2: Write a program to print the following pattern

Pass 1- 1 2 3 4 5
Pass 2- 1 2 3 4 5

Pass 3- 1 2 3 4 5
Pass 4- 1 2 3 4 5
Pass 5- 1 2 3 4 5

for i in range(1,6):
 print("Pass",i,"-",end=' ') # appends space instead of newline
 for j in range(1,6):

 print(j, end=' ') # appends space instead of newline
 print()

Output:

Pass 1 - 1 2 3 4 5

Pass 2 - 1 2 3 4 5

Pass 3 - 1 2 3 4 5

Pass 4 - 1 2 3 4 5

Pass 5 - 1 2 3 4 5

4.5 THE BREAK STATEMENT

 The break statement is used to terminate the execution of the nearest enclosing loop in which it

appears.

12

Syantax:

Example1: Program to demonstrate the break statement.

fruits = ["apple", "banana", "cherry"]
for x in fruits:

 if x == "banana":
 break
 print(x)

Output:
apple

Example 2: Write a program to print numbers 1 to 5 from the sequnce of ten
numbers

i = 1
while i <= 10:

 print(i, end = " ") # appends space instead of newline
 if i==5:
 break

 i = i + 1
print("\n Done")

Output:

1 2 3 4 5

Done

while . . .

 . . .

 If condition:

 break

 . . .

. . .

Transfer of

control out of

while loop

for . . .

 . . .

 If condition:

 break

 . . .

. . .

Transfer of

control out of the

for loop

for . . .

 . . .

 for . . .

 . . .

 If condition:

 break

 . . .

. . .

Transfer of control

out of the inner loop

13

4.6 THE CONTINUE STATEMENT

 The continue statement is used to stop the current iteration of the loop and continue with the next

one.

 Syntax:

Example 1: Write a program to skip the iteration if the variable i is 3, but

continue with the next iteration:

for i in range(9):

 if i == 3:
 continue
 print(i)

Output:
0

1
2
4

5
6

7

8

while . . .

 . . .

 If condition:

 continue

 . . .

. . .

Transfer of

control out of

while loop

for . . .

 . . .

 If condition:

 continue

 . . .

. . .

Transfer of

control out of the

for loop

for . . .

 . . .

 for . . .

 . . .

 If condition:

 continue

 . . .

. . .

Transfer of control

out of the inner loop

14

Example 2: Write a program to print sequence of numbers 1 to 10 by excluding
number 5.

for i in range(1,11):
 if(i==5):

 continue
 print(i, end=" ") # appends space instead of newline
print("\n Done")

Output:
1 2 3 4 6 7 8 9 10
Done

4.7 THE PASS STATEMENT

 The pass statement acts as a placeholder and usually used when there is no need of

code but a statement is still required to make a code syntactically correct.

Write a program to check if the number is even we are doing nothing and if
it is odd then we are displaying the number.

for num in [20, 11, 9, 66, 4, 89, 44]:
 if num%2 == 0:
 pass

 else:
 print(num)

Output:
11
9

89

1

. . .

. . .

. def func1():

. # function code

func1()

.

.

CHAPTER 4

FUNCTIONS

TOPIC 1: INTRODUCTION

 Function: A function is a block of organized and reusable program code that performs a single,

specific, and well defined task.

Syntax:

def function_name(variable1, variable2,…)
document string
statement block

return [expression]

Example 1: Write a function to display message “Hello from a function”

def my_function():

print("Hello from a function")
my_function()

Output:

Hello from a function

Example 2: Write a program that subtract two numbers using a function

Write a program that subtract two numbers using a function

def diff(x,y): # function to subtract two numbers
return x - y

a = 20
b = 10
operation = diff # function name assigned to a variable
print(operation(a,b)) # function called using variable name

Output:

10

2

Example 3: Write a function that displays a string repeatedly

Write a function that displays a string repeatedly
def func():

for i in range(4):

print("Hello World")
func() #function call

Output:
Hello World

Hello World

Hello World

Hello World

TOPIC 2: FUNCTION CALL

 Defining a function means specifying its name, parameters that are expected, and the set of

instructions.

Syntax:
function_name(variable1, variable2, …)

2.1 Function Parameters

 Information can be passed into functions as arguments.

 Arguments are specified after the function name, inside the parentheses. You can add as many

arguments as you want, just separate them with a comma.

Example 1: Program to add two integers using functions

Program to add two integers using functions
def total(a,b):

result = a+b
print("Sum of ",a, "and" ,b, "=", result)

a=int(input("Enter the first number : "))
b=int(input("Enter the second number : "))
total(a,b) #function call with two arguments

Output:
Enter the first number : 10

Enter the second number : 20

Sum of 10 and 20 = 30

3

Output:

Global variable num1 = 10
In Function - Local Varible num2 = 20
In Function - Local Variable num3 = 30

num1 again = 10

TOPIC 3: VARIABLE SCOPE AND LIFE TIME

Scope of the variable: Part of the program in which a variable is accessible is called its scope.

Lifetime of the variable: Duration for which the variable exits is called its life time.

 LOCAL AND GLOBAL VARIABLE

 Global Variable: Global variable are those variables which are defined in the main body of the

program file.

 They are visible throughout the program file.

 Local Variable: A variable which is defined within a function is local to that function.

 A local variable can be accessed from the point of its definition until the end of the function in which

it is defined. It exists as long as the function is executing

 Function parameters behave like local variable in the function.

Example 1: Write a program to understand the difference between local and
global variables.

num1=10 # global variable
print("Global variable num1 = ", num1)

def function1(num2): # num2 is function parameter
print("In Function - Local Varible num2 =",num2)

num3= 30 # num3 is a local variable
print ("In Function - Local Variable num3 =",num3)

function1(20) # 20 is passed as an argument to the function

print("num1 again =", num1) #global variable is being accessed
Error - local varible can't be used outside the function in which it is
defined

print ("num3 outide fuction =", num3)

Example 2: Write to add two integers using functions with different

arguments.

def total(x,y):

result = x+y

print("Sum of ",x, "and" ,y, "=", result)
a=int(input("Enter the first number : "))
b=int(input("Enter the second number : "))

total(a,b) #function call with two arguments

4

Output:
In function var is - Good
Outside function, var1 is - Morning

var is - Good

Output:
In Function var is - Moring

Outside Function var is - Moring

Outside Function, after modification,var is - Fantastic

 USING THE GLOBAL STATEMENT

 To define a variable defined inside a function as a global, you must use the global statement.

 This declares the local or the inner variable of the function to have module scope.

Example 1: Write a program to demonstrate the use of global statement

var = "Good"

def show():
global var1
var1="Morning"
print("In function var is - ", var)

show()
print("Outside function, var1 is - ",var1) # accessible as it is global

variable

print("var is - ", var)

Example 2: Program to demonstrate modifying a global variable

var = "Good"

def show():
global var

var = "Moring"
print("In Function var is - ", var)

show()

print("Outside Function var is - ",var)
var = "Fantastic"
print("Outside Function, after modification,var is - ", var)

Output:
Enter the first number : 10
Enter the second number : 12

Sum of 10 and 12 = 22

5

Output:

Hello World
None
Hello Again

None

Output:
Cube of 10 = 1000

 THE RETURN STATEMENT

The return statement is used for two things.

 Return a value to the caller.

 To end and exit a function and go back to its caller.

Example1: Program demonstrate return statement.

def display(str):

print(str)

x = display("Hello World") # assignig return value to another variable
print(x)
print(display("Hello Again")) # print the value without assigning it to

another variable

It should be noted that in the output None is returned from the function

Example 2: Program to demonstrate function which returns an integer to the
caller.

def cube(x):

return(x*x*x)
num=10

result = cube(num)
print("Cube of",num, "=", result)

 MORE ON DEFINING FUNCTIONS

 A function can be defined with

1. Required Arguments

2. Keyword Arguments

3. Default Arguments

4. Varible-length Arguments

 Required Arguments

6

Output:

Hello

Output:

The string is : Hello
The integer value is : 1234
The floating position value is : 56789.045

 In the required argument, the arguments are passed to a function in correct positional order. Also,

the number of arguments in the function call should exactly match with the number of arguments

specified in the function definition.

Example1: Program to demonstrate function with required argument
def display(str):

print(str)

str="Hello"
display(str)

 Keyword Arguments

 When we call a function with some value, the values are assigned to the arguments based on their

position.

 Python also allows functions to be called using keyword arguments in which the order (or position)

of the arguments can be changed.

 The values are not assigned to arguments according to their position but based on their name.

Example 1: Write a program to demonstrate the use of keyword arguments.

def display(str,int_x,float_y):

print("The string is :", str)
print("The integer value is :",int_x)

print("The floating position value is : ",float_y)
display(float_y=56789.045, str="Hello",int_x=1234)

 Default Arguments

 Python allows users to specify function arguments that can have default values.

 The default value to an argument is provided by using the assignment operator (=).

 Users can specify a default value for one or more arguments.

7

Output:
Name : Charishma

Course : M.Sc
Name : Abhiram

Course : M.C.A

Output:
Bindu likes to read CO DBMS
Raju likes to read DMS Python DS SE

Hemanth likes to read

Example 1: Write a program to demonstrate the use of default arguments.

def display(name, course = "M.C.A"):
print("Name : " + name)
print("Course : " + course)

display(course = "M.Sc", name = "Charishma") # Keyword Arguments
display(name = "Abhiram") # Default Argument

 Varible-length Arguments

 In some situations, it is not known in advance how many arguments will be passed to a function. In

such cases, Python allows programmers to make function calls with arbitrary number of arguments

.

 When we use arbitrary arguments or variable-length arguments, then the function definition uses

an asterisk (*) before parameter name.

Syntax:

def functionaname([arg1, arg2, . . .] *var_args_tuple):

function statements
return [expression]

Example 1: Program to demonstrate the use of variable-length arguments.

def func(name, *fav_subjects):

print("\n",name, " likes to read ", end=" ")

for subjects in fav_subjects:
print(subjects, end=" ")

func("Bindu", "CO", "DBMS")

func("Raju", "DMS", "Python", "DS", "SE")
func("Hemanth")

8

Output:

Sum = 8

Output:

Smaller of two numbers = -5

 LAMBDA FUNCTIONS (OR) ANONYMOUS FUNCTIONS

 Lambda or anonymous functions are so called because they are not declared as other functions

using the def keyword.

 Lambda functions are throw-away functions, i.e. they just needed where they have been created

and can be used anywhere a function is required.

Example 1: Write a program that adds two numbers using the syntax of lambda
function.

sum = lambda x,y:x+y
print("Sum =", sum(3,5))

Example 2: Write a program to find smaller of two numbers using lambda
function.

def small(a,b): # a regular function that returns smaller value
if(a<b):

return a

else:

return b

sum = lambda x,y:x+y # lambda function to add two numbers
diff = lambda x,y:x-y # lambda function to subtract two numbers
Pass lambda function as arguments to the regular function

print("Smaller of two numbers = ", small(sum(-3,-2),diff(-1,2)))

 MULTILINE DOCUMENT STRINGS

 You can assign a multiline string to a variable by using three quotes.

 Docstrings (document strings) serve the same purpose as of comments, as they are designed to

explain the code.

Example 1: Write a program to demonstrate multiline document string.

a = """Dear students

Welcome to Deparment of Computer Science,
P.B.Siddhartha College of Arts & Science,

Vijayawada-10, AP, INDIA."""
print(a)

9

Output:
Welcome to Deparment of Computer Science,
P.B.Siddhartha College of Arts & Science,

Vijayawada-10, AP, INDIA.

Example 2: Write a program to demonstrate multiline document string.

a = '''Dear students
Welcome to Deparment of Computer Science,
P.B.Siddhartha College of Arts & Science,
Vijayawada-10, AP, INDIA.'''

print(a)

 RECURSIVE FUNCTIONS

 Recursive Function: A function that calls itself.

Syntax:

Example 1: Write a program to calculate the factorial of number recursively.

def fact(n):

if (n==1 or n==0):

return 1

else:
return n*fact(n-1)

n = int(input("Enter the value of n : "))

print("The factorial of",n, "is", fact(n))

Output:
Welcome to Deparment of Computer Science,

P.B.Siddhartha College of Arts & Science,
Vijayawada-10, AP, INDIA.

10

Output:
Enter the first number : 62

Enter the second number : 8
The GCD of numbers is 2

Example 2: Write a program to calculate GCD using the recursive functions.

def GCD(x,y):
rem = x % y
if (rem == 0):

return y

else:
return GCD(y, rem)

n=int(input("Enter the first number : "))
m=int(input("Enter the second number : "))

print("The GCD of numbers is", GCD(n,m))

Working:
Assume a = 62 and b = 8
GCD(62, 8)

rem = 62 % 8 = 6
GCD(8 % 6)

rem = 8 % 6 = 2

GCD(6, 2)
rem = 6 % 2 = 0

return 2
return 2

return 2

 MODULES

 Module: Modules are pre-written pieces of codes that are used to perform common tasks.

 Create & use a Module

 To create a module just save the code you want in a file with the file extension .py

Output:
Enter the value of n : 4
The factorial of 4 is 24

11

Output:

12
8

Example1: Write a program to create and use file f1 comprises of message

“Hello this is TSR KIRAN”

Creating f1.py:

def my_function():
print("Hello this is TSR KIRAN")

Creating f2.py:

from f1 import *
my_function()

Example2: Write a program to import a module that comprises of functions add

and subtract to perform addition & subtraction operations.

Creating p3.py:

A simple module, p3.py
def add(x, y):

return (x+y)

def subtract(x, y):
return (x-y)

Creating p4.py:

importing module p3.py
from p3 import *

print(add(10,2))
print(subtract(10,2))

 PACKAGES

 Package: A package is a hierarchical file directory structure that has modules and other packages

within it.

 Every package in Python is a directory which must have a special file called _init_.py

 This file may not even have a single line of code. It is simply added to indicate that this directory is

not an ordinary directory and contains a Python package.

 For example, to create a package called MyPackage, create a directory called MyPackage having the

module MyModule and the _init_.py file. Now, to use MyModule in a program, you must first

import it. This can be done in two ways.

import MyPackage.MyModule

or
from MyPackage import MyModule

12

Output:
January 2017

Output:

a= -100
abs(a) = 100

Square Root of 100 = 10.0

Cube of 100 = 1000000

Output:
73 92 65 25 16 83 78 84 76 7

Output:

Local current time : Sat Jun 5 00:13:04 2021

Example 1: Write a program that prints absolute value, square root, and cube of a number.

import math
def cube(x):

return x**3

a=-100
print("a= ",a)

a=abs(a)

print("abs(a) = ", a)
print("Square Root of ",a, " = ", math.sqrt(a))
print("Cube of ",a, " = ", cube(a))

Example 2: Write a program to gnerate 10 random numbers between 1 to 100

import random
for i in range(10):

value = random.randint(1, 100)
print(value, end=" ")

Example 3: Write a program to display the date and time using the Time module.

import time
localtime = time.asctime(time.localtime(time.time()))
print("Local current time :", localtime)

Example 4: Program that prints the clendar of a particular month.

import calendar
print(calendar.month(2017, 1))

Mo Tu We Th Fr Sa Su

1

2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

1

CHAPTER 5

CLASSES & OBJECTS

5.1 CLASSES AND OBJECTE

5.1.1 CLASS

 A class is a user-defined blueprint or prototype from which objects are created.

 Classes provide a means of bundling data and functionality together.

 Class creates a user-defined data structure, which holds its own data members and

member functions, which can be accessed and used by creating an instance of that class.

 Some points on Python class:

1. Classes are created by keyword class.

2. Attributes are the variables that belong to a class.

3. Attributes are always public and can be accessed using the dot (.) operator.

 Eg.: Myclass.Myattribute

Class Definition Syntax:

class ClassName:

 # Statement-1

 .

 .

 .

 # Statement-N

Example1: Write a program to demonstrate defining a class.

class Dog:

 pass

Note:

 The pass statement is used as a placeholder for future code.

 When the pass statement is executed, nothing happens, but you avoid getting an error

when empty code is not allowed.

5.1.2 OBJECT

 Object: An Object is an instance of a Class.

2

 An object consists of

1. State: It is represented by the attributes of an object. It also reflects the properties of an

object.

2. Behavior: It is represented by the methods of an object. It also reflects the response of an

object to other objects.

3. Identity: It gives a unique name to an object and enables one object to interact with other

objects.

Eample 1: Write a program to access class variable using class object.

class ABC:

 var = 10 # class variable

obj = ABC()

print(obj.var) # class variable is accessed using class object

Output:

10

Example 2: Write a python program to demonstrate instantiating a

class.

class Dog:

 # A simple class attribute

 attr1 = "mammal"

 attr2 = "dog"

 # A sample method

 def fun(self):

 print("I'm a", self.attr1)

 print("I'm a", self.attr2)

Driver code

Object instantiation

Shadow = Dog()

Accessing class attributes and method through objects

print(Shadow.attr1)

Shadow.fun()

Output:

mammal

I'm a mammal

I'm a dog

3

5.1.3 THE SELF

 The self keyword is used to represent an instance (object) of the given class.

 By using the “self” keyword we can access the attributes and methods of the class in

python. It binds the attributes with the given arguments.

Example 1: Program to access class membership using the class object.

class ABC():

 var=10

 def display(self):

 print("In class method . . .")

obj = ABC()

print (obj.var)

obj.display()

Output:

10

In class method . . .

5.1.4 THE _init_() METHOD (THE CLASS CONSTRUCTOR)

 The _init_() method is automatically executed when an object of a class is created.

 The _init_() assign values to object properties, or other operations that are necessary

to do when the object is being created.

Example 1: Write a program illustrating the use of _init_() method.

class ABC():

 def __init__(self,val):

 print("In class method . . .")

 self.val = val

 print("The value is : ", val)

obj=ABC(10)

Output:

In class method . . .

The value is : 10

4

Example 2: Write a program to display the attributes name, age by

using the _init_() method.

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("Ravi Kiran", 45)

print(p1.name)

print(p1.age)

Output:

Ravi Kiran

45

5.1.5 CLASS VARIABLES & OBJECT VARIABLES

 Class Variable: Variable owned by the class is called class variable.

 Object Variable: Variable owned by the object is called object variable.

Example 1: Write a program to differentiate between class and object

variable.

Program to differentiate between class and object variable.

class ABC():

 class_var = 0 # class variable

 def __init__(self,object_var):

 ABC.class_var += 1

 self.object_var = object_var # object variable

 print("The Object value is : ",object_var)

 print("The variable of the class variable is :

",ABC.class_var)

obj1 = ABC(10)

obj2 = ABC(20)

obj3 = ABC(30)

Output:

The Object value is : 10

The variable of the class variable is : 1

The Object value is : 20

The variable of the class variable is : 2

The Object value is : 30

The variable of the class variable is : 3

5

Program 2: Write a python program to show that the variables with a

value assigned in class declaration, are class variables.

Python program to show that the variables with a value

assigned in class declaration, are class variables

Class for Computer Science Student

class CSStudent:

 stream = 'cse' # Class Variable

 def __init__(self,name,roll):

 self.name = name # Instance Variable

 self.roll = roll # Instance Variable

Objects of CSStudent class

a = CSStudent('Laksmi', 1)

b = CSStudent('Raju', 2)

print(a.stream) # prints "cse"

print(b.stream) # prints "cse"

print(a.name) # prints "lakshmi"

print(b.name) # prints "Raju"

print(a.roll) # prints "1"

print(b.roll) # prints "2"

Class variables can be accessed using class

name also

print(CSStudent.stream) # prints "cse"

Now if we change the stream for just a it won't be changed for

b

a.stream = 'ece'

print(a.stream) # prints 'ece'

print(b.stream) # prints 'cse'

To change the stream for all instances of the class we can

change it

directly from the class

CSStudent.stream = 'mech'

print(a.stream) # prints 'mech'

print(b.stream) # prints 'mech'

6

Output:

cse

cse

Laksmi

Raju

1

2

cse

ece

cse

ece

mech

1

CHAPTER 6
INHERITANCE

6.1 INTRODUCTION

 Inheritance: The capability applying the properties of base class to child class.

 The benefits of inheritance are:
1. It represents real-world relationships well.
2. It provides reusability of a code. We don’t have to write the same code again and again.

Also, it allows us to add more features to a class without modifying it.
3. It is transitive in nature, which means that if class B inherits from another class A, then all

the subclasses of B would automatically inherit from class A.

Example 1: Program to demonstrate the use of inheritance.

parent class
class Person:

 # __init__ is known as the constructor
 def __init__(self, name, idnumber):
 self.name = name
 self.idnumber = idnumber
 def display(self):
 print(self.name)
 print(self.idnumber)

child class
class Employee(Person):
 def __init__(self, name, idnumber, salary, post):
 self.salary = salary
 self.post = post

Person

Doctor Patient

Dentist Surgeon

Generalized Class

Top-down Approach

Specialized Class

2

 # invoking the __init__ of the parent class
 Person.__init__(self, name, idnumber)

creation of an object variable or an instance
a = Employee("TSR Kiran",109, 600000, "HoD")

calling a function of the class Person using its instance
a.display()

Output:
TSR Kiran
109

6.2 USE THE SUPER() FUNCTION
 Python also has a super() function that will make the child class inherit all the methods and

properties from its parent.
 By using the super() function, you do not have to use the name of the parent element, it will

automatically inherit the methods and properties from its parent.

Example1: Program to demonstrate the the use of super() function.
class Person:
 def __init__(self, fname, lname):
 self.firstname = fname
 self.lastname = lname

 def printname(self):
 print(self.firstname, self.lastname)

class Student(Person):
 def __init__(self, fname, lname, year):
 super().__init__(fname, lname)
 self.graduationyear = year

 def welcome(self):
 print("Welcome", self.firstname, self.lastname, "to the class of",
self.graduationyear)

x = Student("Venkat", "Pola", 2021)
x.welcome()

3

Output:
Welcome Venkat Pola to the class of 2021

6.2 POLYMORPHISM, FUNCTION OVERLOADING AND METHOD OVERRIDING

6.2.1 POLYMORPHISM

 Polymorphism: Polymorphism is taken from the Greek words Poly (many) and morphism

(forms). It means that the same function name can be used for different types. This makes
programming more intuitive and easier.

Example 1: Write a python program to demonstrate in-built poly-morphic
functions.

len() being used for a string
print(len("geeks"))

len() being used for a list
print(len([10, 20, 30]))

Output:
5
3

Example2: Write a simple Python function to demonstrate polymorphism.

def add(x, y, z = 0):
 return x + y + z

Driver code
print(add(2, 3))
print(add(2, 3, 4))

Output:
5
9

4

6.2.2 FUNCTION OVER LOADING

 Function overloading: Function overloading is the ability to have mulƟple funcƟons with the

same name but with different signatures/implementaƟons.
 When an overloaded funcƟon is called, the runƟme first evaluates the arguments /

parameters passed to the funcƟon call and judging by this invokes the corresponding
implementaƟon.

Example 1: Program to demonstrate polymorphism using function
overloading.

from multipledispatch import dispatch

#passing one parameter

def product(first,second):
 result = first*second
 print(result);

#passing two parameters

def product(first,second,third):
 result = first * second * third
 print(result)

#you can also pass data type of any value as per requirement

def product(first,second,third):
 result = first * second * third
 print(result);

#calling product method with 2 arguments
product(2,3,2) #this will give output of 12
product(2.2,3.4,2.3) # this will give output of 17.204

Output:
12
17.204

Example 2: Polymorphism using Function Overloading.

def add(datatype, *args):

5

 # if datatype is int
 # initialize answer as 0
 if datatype =='int':
 answer = 0

 # if datatype is str
 # initialize answer as ''
 if datatype =='str':
 answer =''

 # Traverse through the arguments
 for x in args:

 # This will do addition if the
 # arguments are int. Or concatenation
 # if the arguments are str
 answer = answer + x

 print(answer)

Integer
add('int', 5, 6)

String
add('str', 'Hi ', 'TSR Kiran')

Output:
11
Hi TSR Kiran

6.2.3 METHOD OVERRIDING

 Method Overriding: Method overriding is ability allows a subclass or child class to provide

a specific implementation of a method that is already provided by one of its super classes
or parent classes.

 When a method in a subclass has the same name, same parameters or signature and
same return type (or sub-type) as a method in its super-class, then the method in the
subclass is said to override the method in the super-class.

6

Example1: Python program to demonstrate method overriding.

Defining parent class
class Parent():
 # Constructor
 def __init__(self):
 self.value = "Inside Parent"

 # Parent's show method
 def show(self):
 print(self.value)

Defining child class
class Child(Parent):
 # Constructor
 def __init__(self):
 self.value = "Inside Child"

 # Child's show method
 def show(self):
 print(self.value)

Driver's code
obj1 = Parent()
obj2 = Child()

obj1.show()
obj2.show()

7

Output:
Inside Parent
Inside Child

Example2: Python program to demonstrate method overriding.

class Rectangle():
 def __init__(self,length,breadth):
 self.length = length
 self.breadth = breadth
 def getArea(self):
 print (self.length*self.breadth," is area of rectangle")
class Square(Rectangle):
 def __init__(self,side):
 self.side = side
 Rectangle.__init__(self,side,side)
 def getArea(self):
 print (self.side*self.side," is area of square")

r = Rectangle(3,5)
s = Square(10)

r.getArea()
s.getArea()

Output:
15 is area of rectangle
100 is area of square

6.3 TYPES OF INHERITANCE

6.3.1 MULTIPLE INHERITANCE

 Multiple Inheritance: When a class is derived from more than one base class it is

called multiple Inheritance.

8

Example: Program to demonstrate multiple inheritance.

Defining parent class 1
class Parent1():
 # Parent's show method
 def show(self):
 print("Inside Parent1")

Defining Parent class 2
class Parent2():
 # Parent's show method
 def display(self):
 print("Inside Parent2")

Defining child class
class Child(Parent1, Parent2):
 # Child's show method
 def show(self):
 print("Inside Child")

Driver's code
obj = Child()
obj.show()
obj.display()

Output:
Inside Child
Inside Parent2

6.3.3 MULTILEVEL INHERITANCE

 Multilevel Inheritance: Multilevel inheritance

where one can inherit from a derived class, thereby making this derived class
class for the new class.

Example1: Python program to demonstrate multilevel inheritance.

class Parent():
 # Parent's show method
 def display(self):
 print("Inside Parent")

Inherited or Sub class (Note Parent in bracket)
class Child(Parent):
 # Child's show method
 def show(self):
 print("Inside Child")

Inherited or Sub class (Note Child in bracket)
class GrandChild(Child):
 # Child's show method
 def show(self):
 print("Inside GrandChild")

Driver code
g = GrandChild()
g.show()
g.display()

MULTILEVEL INHERITANCE

Multilevel inheritance refers to a mechanism in OO technology
where one can inherit from a derived class, thereby making this derived class

Example1: Python program to demonstrate multilevel inheritance.

Parent's show method

print("Inside Parent")

Inherited or Sub class (Note Parent in bracket)

od

print("Inside Child")

Inherited or Sub class (Note Child in bracket)
class GrandChild(Child):

Child's show method

print("Inside GrandChild")

9

in OO technology
where one can inherit from a derived class, thereby making this derived class as the base

Example1: Python program to demonstrate multilevel inheritance.

10

Output:
Inside GrandChild
Inside Parent

6.3.4 MULTUPATH INHERITANCE (OR) HYBRID INHERITANCE

 Multipath Inheritance: When a class is derived from two or more classes which are derived

from the same base class then such type of inheritance is called multipath inheritance. Here
class 'D' derived from classes 'B' and 'C', which are derived from same base class 'A'.

Example 1: Program to demonstrate multipath inheritance (or) hybrid
inheritance.

Program to demonstrate multipath inheritance (or) hybrid inheritance

class School:
 def func1(self):
 print("This function is in school.")

class Student1(School):
 def func2(self):
 print("This function is in student 1. ")

class Student2(School):
 def func3(self):
 print("This function is in student 2.")

class Student3(Student1, Student2):
 def func4(self):
 print("This function is in student 3.")

Driver's code
object = Student3()
object.func2()
object.func3()

Output:
This function is in student 1.
This function is in student 2.

6.3.5 HIERARCHICAL INHERITANCE

 Hierarchical Inheritance: When more than one derived classes are created from a single

base this type of inheritance is called hierarchical inheritance. In this
parent (base) class and two child (derived) classes.

Example 1: Python program to demonstrate Hierarchical inheritance

Base class
class Parent:
 def func1(self):
 print("This function is in parent class.")

Derived class1
class Child1(Parent):
 def func2(self):
 print("This function is in child 1.")

Derivied class2
class Child2(Parent):
 def func3(self):
 print("This function is in child 2.")

This function is in student 1.
This function is in student 2.

HIERARCHICAL INHERITANCE

When more than one derived classes are created from a single
base this type of inheritance is called hierarchical inheritance. In this program, we have a
parent (base) class and two child (derived) classes.

Python program to demonstrate Hierarchical inheritance

print("This function is in parent class.")

print("This function is in child 1.")

print("This function is in child 2.")

11

When more than one derived classes are created from a single
program, we have a

Python program to demonstrate Hierarchical inheritance.

12

Driver's code
object1 = Child1()
object2 = Child2()
object1.func1()
object1.func2()
object2.func1()
object2.func3()

Output:
This function is in parent class.
This function is in child 1.
This function is in parent class.
This function is in child 2.

6.4 ABSTRACT CLASS

 Abstract Class: Abstract classes are classes that contain one or more abstract methods. An

abstract method is a method that is declared, but contains no implementation.
 Abstract classes cannot be instantiated, and require subclasses to provide implementations

for the abstract methods.

Example 1: Program to illustrate the concept of abstract class.

class Fruit:
 def taste(self):
 raise NotImplementedError()
 def rich_in(self):
 raise NotImplementedError()
 def color(self):
 raise NotImplementedError()

class Mango(Fruit):
 def taste(self):
 return "Sweet"
 def rich_in(self):
 return "Vitamin A"
 def color(self):
 return "Yellow"

class Orange(Fruit):
 def taste(self):
 return "Sour"
 def rich_in(self):
 return "Vitamin C"

13

 def color(self):
 return "Orange"
Alphanso = Mango()
print(Alphanso.taste(), Alphanso.rich_in(), Alphanso.color())
Org = Orange()
print(Org.taste(), Org.rich_in(), Org.color())

Output:
Sweet Vitamin A Yellow
Sour Vitamin C Orange

CHAP 7
OPERATOR OVERLOADING

 Operator Overloading: The feature that allows the same operator to have different meaning

according to the context is called operator overloading.

Example 1: Python Program illustrate how to overload an binary +
operator.

class A:
 def __init__(self, a):
 self.a = a

 # adding two objects
 def __add__(self, o):
 return self.a + o.a
ob1 = A(1)
ob2 = A(2)
ob3 = A("RAVI")
ob4 = A("KIRAN")

print(ob1 + ob2)
print(ob3 + ob4)

Output:
3
RAVIKIRAN

Example 2: Program to overload the + operator on a complex object.

class Complex:
 def __init__(self):
 self.real = 0
 self.imag = 0
 def setValue(self, real, imag):
 self.real = real
 self.imag = imag
 def __add__(self, C):
 Temp = Complex()
 Temp.real = self.real + C.real
 Temp.imag = self.imag + C.imag
 return Temp
 def display(self):
 print("(", self.real, " + ", self.imag, "i)")
C1 = Complex()
C1.setValue(1,2)
C2 = Complex()
C2.setValue(3,4)
C3 = Complex()
C3 = C1 + C2
print("RESULT = ")
C3.display()

Output:
RESULT =
(4 + 6 i)

1 + 2 i
2 + 4 i

ERRORS AND EXCEPTION HANDLING

8.1 INTRODUCTION TO ERRORS AND EXCEPTIONS

▪ Error: Mistake in a program.

▪ The programs that we write may behave abnormally or unexpectedly because of
exceptions.

▪ Basically, there are syntax errors

▪ Syntax error: A syntax error is an error in the

Example 1: Program to demonstrate syntax error.

initialize the amount variable

amount = 10000

check that You are eligible to

purchase Dsa Self Paced or not

if(amount>2999)

 print("You are eligible to purchase Dsa Self Paced")

Output:

File "<ipython-input-1-417b442f6752>", line 6
 if(amount>2999)
 ^
SyntaxError: invalid syntax

▪ Logic error: Logic errors occur when there is a fault in the

CHAPTER 8
ERRORS AND EXCEPTION HANDLING

8.1 INTRODUCTION TO ERRORS AND EXCEPTIONS

The programs that we write may behave abnormally or unexpectedly because of some errors

syntax errors and logic errors.

is an error in the source code of a program.

Example 1: Program to demonstrate syntax error.

initialize the amount variable

check that You are eligible to

purchase Dsa Self Paced or not

print("You are eligible to purchase Dsa Self Paced")

417b442f6752>", line 6

Logic error: Logic errors occur when there is a fault in the logic or structure of the problem.

1

some errors and

of the problem.

8.2 EXCEPTIONS

▪ Exception: An exception is an event, which occurs during the execution of a program that disrupts

the normal flow of the program's

8.2.1 Handling Exceptions

▪ An exception can be handled by using

Syntax:

try:

 statements

except ExceptionName:

 statements

▪ The try statement works as follows

Step 1: First, the try block is executed.

Step2 a: If no exception occurs, the except block is skipped.

Step 2 b: If exception occurs, during the execution of any statement in the try block, then

i. Rest of the statement in the try block are skipped.

ii. If the exception type matches the exception named

executed and then execution continues after the try statement.

iii. If the exception occurs which do not match the named in the except block, then it is passed on to

outer try block (in case of nested try blocks). I

an unhandled exception and the program is terminated with an error message.

Flowchart for Case iii under Step 2b for

is an event, which occurs during the execution of a program that disrupts

the normal flow of the program's instructions.

An exception can be handled by using try block and except block.

The try statement works as follows

Step 1: First, the try block is executed.

Step2 a: If no exception occurs, the except block is skipped.

Step 2 b: If exception occurs, during the execution of any statement in the try block, then

Rest of the statement in the try block are skipped.

If the exception type matches the exception named after the except keyword, the except block is

executed and then execution continues after the try statement.

If the exception occurs which do not match the named in the except block, then it is passed on to

outer try block (in case of nested try blocks). If no exception handler is found in the program, then it is

an unhandled exception and the program is terminated with an error message.

Flowchart for Case iii under Step 2b for try statement

2

is an event, which occurs during the execution of a program that disrupts

Step 2 b: If exception occurs, during the execution of any statement in the try block, then

after the except keyword, the except block is

If the exception occurs which do not match the named in the except block, then it is passed on to

f no exception handler is found in the program, then it is

3

Example 1: Program to display divide by zero exception.

initialize the amount variable
marks = 10000

perform division with 0
a = marks / 0
print(a)

Output:

ZeroDivisionError Traceback (most recent call last)
<ipython-input-2-9ba2de7eb02e> in <module>
 5
 6 # perform division with 0
----> 7 a = marks / 0
 8 print(a)

ZeroDivisionError: division by zero

Example 2: Program to handle divide by zero exception.

num = int(input("Enter the numerator:"))
deno = int(input("Enter the denominator:"))
try:
 quo = int(num / deno)
 print("Quotient:", quo)
except ZeroDivisionError:
 print("Denominator cannot be zero")

Output:
Enter the numerator:10
Enter the denominator:0
Denominator cannot be zero

4

Example 2: Program to handle multiple errors with one except statement.

try :
 a = 3
 if a < 4 :
 # throws ZeroDivisionError for a = 3
 b = a/(a-3)

 # throws NameError if a >= 4
 print ("Value of b = ", b)

note that braces () are necessary here for multiple exceptions
except(ZeroDivisionError, NameError):
 print ("\nError Occurred and Handled")

Output:
Error Occurred and Handled

8.3 TYPES OF EXCEPTIONS VVIMP
Types of Exceptions
S.No Exception Name Description

1 Exception Base class for all exceptions
2 StopIteration Raised when the next() method of an iterator does not point to any

object.

3 SystemExit

Raised by the sys.exit() function.

4 StandardError

Base class for all built-in exceptions except StopIteration and
SystemExit.

5 ArithmeticError

Base class for all errors that occur for numeric calculation.

6 OverflowError

Raised when a calculation exceeds maximum limit for a
numeric type.

7 FloatingPointError

Raised when a floating point calculation fails.

8 ZeroDivisionError

Raised when division or modulo by zero takes place for all
numeric types.

9 AssertionError

Raised in case of failure of the Assert statement.

10 AttributeError

Raised in case of failure of attribute reference or
assignment.

11 EOFError

Raised when there is no input from either the raw_input() or
input() function and the end of file is reached.

12 ImportError

Raised when an import statement fails.

5

13 KeyboardInterrupt

Raised when the user interrupts program execution, usually
by pressing Ctrl+c.

14 LookupError

Base class for all lookup errors.

15 IndexError

Raised when an index is not found in a sequence.

16 KeyError

Raised when the specified key is not found in the dictionary.

17 NameError

Raised when an identifier is not found in the local or global
namespace.

18 UnboundLocalError

Raised when trying to access a local variable in a function or
method but no value has been assigned to it.

19 EnvironmentError

Base class for all exceptions that occur outside the Python
environment.

20 IOError

Raised when an input/ output operation fails, such as the
print statement or the open() function when trying to open a file that
does not exist.

21 SyntaxError

Raised when there is an error in Python syntax.

22 IndentationError

Raised when indentation is not specified properly.

23 SystemError

Raised when the interpreter finds an internal problem, but when this
error is encountered the Python interpreter does not exit.

24 SystemExit

Raised when Python interpreter is quit by using the sys.exit() function.
If not handled in the code, causes the interpreter to exit

25 TypeError

Raised when an operation or function is attempted that is invalid
for the specified data type.

26 ValueError

Raised when the built-in function for a data type has the valid type of
arguments, but the arguments have invalid values specified.

27 RuntimeError

Raised when a generated error does not fall into any category.

28 NotImplementedError

Raised when an abstract method that needs to be implemented in an
inherited class is not actually implemented.

8.4 MULTIPLE EXCEPT BLOCKS

▪ Python allows multiple except blocks in a single try block. The block which matches with

the exception generated will get executed.
▪ A try block can be associated with more than one except block to specify handlers for

different exceptions. However, only one handler will be executed.

Syntax:
try:
 Operation are done in this block
 …………………………………………

6

except Exception 1:
 If there is Exception1, then execute this block.
except Exception 2:
 If there is Exception1, then execute this block.
 …………………………………………
else:
 If there is no exception then execute this block.
 …………………………………………

Example 1: Program with multiple except blocks.

try:
 num = int(input("Enter the number : "))
 print(num**2)
except (KeyboardInterrupt):
 print("You have entered a character.....Program Terminating.....")
except (ValueError):
 print("Please check before you enter.....Program
Terminating.....")
print("Bye")

Output:
Enter the number : abc
Please check before you enter.....Program Terminating.....
Bye

8.5 MULTIPLE EXCEPTIONS IN A SINGLE BLOCK

▪ An except clause many have multiple exceptions as a parenthesized tuple. So whatever

exception is raised, out of three exceptions specified, the same except block will be
executed.

Example 1: Program having an except clause handling multiple
exceptions simultaneously.
try:
 num = int(input("Enter the number : "))
 print(num**2)
except (KeyboardInterrupt, ValueError, TypeError):

7

 print("Please check before you enter.....Program
Terminating.....")
print("Bye")

Output:
Enter the number : abc
Please check before you enter.....Program Terminating.....
Bye

8.6 EXCEPT BLOCK WITHOUT EXCEPTION

An except block can be specified without mentioning any exception.

Syntax:

try:
 Write the operation here
 …………………………………………
except:
 If there is any exception, then execute this block.
 …………………………………………
else:
 If there is no exception then execute this block.

Example1: Program to demonstarte the use of except: block

try:
 file = pen (File1.txt)
 str = f.readline()
 print(str)
except IOError:
 print("Error occured during Input.....Program Terminating.....")
except ValueError:
 print("Could not convert data to an integer.")
except:
 print("Unexpected error.....Program Terminating.....")

Output:
Unexpected error.....Program Terminating.....

8.7 THE else CLAUSE

▪ The try...except block can optionally have an else clause, which, when present, must

follow all except blocks.

8

▪ The statements in the else block is executed only if the try clause does not raise exception.

Example1: Program to demonstrate the use of else statement in exceptions.
VVIMP

try:
 num = int(input("Enter a number: "))
 assert num % 2 == 0 # if condition returns True, then nothing happens
with assert statement
except:
 print("Not an even number!")
else:
 reciprocal = 1/num
 print(reciprocal)

Output:
Enter a number: 1
Not an even number!

Output:
Enter a number: 4
0.25

Example 2: Python to demonstrate try...else blocks in exception handling.

def divide(x, y):
 try:
 # Floor Division : Gives only Fractional Part as Answer
 result = x // y
 except ZeroDivisionError:
 print("Sorry ! You are dividing by zero ")
 else:
 print("Yeah ! Your answer is :", result)

Look at parameters and note the working of Program
divide(3, 2)
divide(3, 0)

Output:
Yeah ! Your answer is : 1
Sorry ! You are dividing by zero

8.8 THE finally BLOCK

▪ The try block has another optional block called finally which is used to define clean-up actions that

must be executed under all circumstances.

9

Syntax:
try:
 # Some Code...
except:
 # Optional block
 # Handling of exception (if required)
else:
 # Execute if no exception
finally:
 # Some code ...(always executed)

▪ Try: This block will test the excepted error to occur.
▪ Except: Here you can handle the error.
▪ Else: If there is no exception then this block will be executed.
▪ Finally: Finally block always gets executed either exception is generated or not.

Example1: Simple program to demonstrate the use of try...catch...finally
block.

a = 10
b = 2

try:
 c = int(a / b)
 print(c)
except ZeroDivisionError as error:
 print(error)
finally:
 print('Finishing up.')

Output:
5
Finishing up.

Example2: Simple program to demonstrate the use of try...catch...finally
block. VVIMP

a = int(input("Enter first number: "))
b = int(input("Enter second number: "))

try:
 c = int(a / b)
 print(c)
except ZeroDivisionError as error:
 print(error)
finally:
 print('Finishing up.')

10

Output:
Enter first number: 10
Enter second number: 0
division by zero
Finishing up.

8.9 USER DEFINED EXCEPTIONS

▪ Programmers may name their own exceptions by creating a new exception class.
▪ Exceptions need to be derived from the Exception class, either directly or indirectly.

Although not mandatory, most of the exceptions are named as names that end
in “Error” similar to naming of the standard exceptions in python.

Example: Demonstration of user defined exception. VVIMP

class Error(Exception):
 """Base class for other exceptions"""
 pass

class ValueTooSmallError(Error):
 """Raised when the input value is too small"""
 pass

class ValueTooLargeError(Error):
 """Raised when the input value is too large"""
 pass

you need to guess this number
number = 10

user guesses a number until he/she gets it right
while True:
 try:
 i_num = int(input("Enter a number: "))
 if i_num < number:
 raise ValueTooSmallError
 elif i_num > number:
 raise ValueTooLargeError
 break
 except ValueTooSmallError:
 print("This value is too small, try again!")
 print()

11

 except ValueTooLargeError:
 print("This value is too large, try again!")
 print()

print("Congratulations! You guessed it correctly.")

Output:
Enter a number: 12
This value is too large, try again!

Enter a number: 4
This value is too small, try again!

Enter a number: 10
Congratulations! You guessed it correctly.

1

CHAPTER 8

REGULAR EXPRESSION

 A RegEx, or Regular Expression, is a sequence of characters that forms a search pattern.

 RegEx can be used to check if a string contains the specified search pattern.

Example1: Program to check if the string starts with "The" and ends with "Spain".

import re
#Check if the string starts with "The" and ends with "Spain":
txt = "The rain in Spain"
x = re.search("^The.*Spain$", txt)
if x:
 print("YES! We have a match!")
else:
 print("No match")

Output:
YES! We have a match!

8.1 RegEx FUNCTIONS

 The re module offers a set of functions that allows us to search a string for a match.

Function Description
findall Returns a list containing all matches
search Returns a Match object if there is a match anywhere in the

string
split Returns a list where the string has been split at each match
sub Replaces one or many matches with a string

2

8.1.1 findall()

 The findall function returns a list containing all matches.

Example1: Program to demonstrate findall function.

import re
#Return a list containing every occurrence of "ai":
txt = "The rain in Spain"
x = re.findall("ai", txt)
print(x)

Output:
['ai', 'ai']

 The list contains the matches in the order they are found.

 If no matches are found, an empty list is returned.

Example2: Program to demonstrate No match in regular expression.

import re
txt = "The rain in Spain"
#Check if "Portugal" is in the string:
x = re.findall("Portugal", txt)
print(x)
if (x):
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
[]
No match

3

8.1.2 Search

 The search() function searches the string for a match, and returns a Match object if there is a match.

 If there is more than one match, only the first occurrence of the match will be returned.

Example1: Program to find first white space character located in position of a string.

import re
txt = "The rain in Spain"
x = re.search("\s", txt) # \s is white space character
print("The first white-space character is located in position:", x.start())

Output: The first white-space character is located in position: 3

8.1.3 Split

 The split() function returns a list where the string has been split at each match.

Example 1: Program to demonstrate split the string at every white space character.

import re
#Split the string at every white-space character:
txt = "The rain in Spain"
x = re.split("\s", txt) # \s is white space character
print(x)

Output Character:
['The', 'rain', 'in', 'Spain']

 You can control the number of occurrences by specifying the maxsplit parameter.

Example 2: Program to demonstrate to split the string at the first white space character.

import re

4

#Split the string at the first white-space character:
txt = "The rain in Spain"
x = re.split("\s", txt, 1) # \s is white space character
print(x)

Output:
['The', 'rain in Spain']

8.1.4 sub()

 The sub() function replaces the matches with the text of your choice.

Example 1: Program to replace all white space characters with the digit 9.

import re
#Replace all white-space characters with the digit "9":
txt = "The rain in Spain"
x = re.sub("\s", "9", txt) # \s is white space character
print(x)

Output:
The9rain9in9Spain

 You can control the number of replacements by specifying the count parameter.

Example 2: Program to replace the first two occurrences of a white-space character with the digit 9.

import re
txt = "The rain in Spain"
x = re.sub("\s", "9", txt, 2) # \s is white space character
print(x)

Output:
The9rain9in Spain

5

8.2 METACHARACTERS

 Metacharacters are characters with a special meaning.

Character Description Example
[] A set of characters "[a-m]"
\ Signals a special sequence (can also be used to

escape special characters)
"\d"

. Any character (except newline character) "he..o"
^ Starts with "^hello"
$ Ends with "world$"
* Zero or more occurrences "aix*"
+ One or more occurrences "aix+"
{} Exactly the specified number of occurrences "al{2}"
| Exactly specify one or two strings falls|stays

Example 1: Python program to match string using metacharacter []

import re
txt = "The rain in Spain"
#Check if the string starts with "The":
x = re.findall("\AThe", txt)
print(x)
if x:
 print("Yes, there is a match!")
else:
 print("No match")

Output:

['The']

Yes, there is a match!

6

Example 2: Program to find digits in character using metacharacter \

import re
txt = "That will be 59 dollars"
#Find all digit characters
x = re.findall("\d", txt)
print(x)

Output:

['5', '9']

Example 3: Program for sequence that starts with "he", followed by two (any) characters using metacharacter
..

import re
txt = "hello world"
#Search for a sequence that starts with "he", followed by two (any) characters, and an "o":
x = re.findall("he..o", txt)
print(x)

Output:

['hello']

Example 4: Program to check if the string starts with 'hello' using metacharacter ^

import re
txt = "hello world"
#Check if the string starts with 'hello':
x = re.findall("^hello", txt)
if x:
 print("Yes, the string starts with 'hello'")
else:
 print("No match")

7

Output:

Yes, the string starts with 'hello'

Example 5: Program to check the string ends with 'world' using metacharacter $

import re
txt = "hello world"
#Check if the string ends with 'world':
x = re.findall("world$", txt)
if x:
 print("Yes, the string ends with 'world'")
else:
 print("No match")

Output:

Yes, the string ends with 'world'

Example 6: Program to check the string contains "ai" followed by 0 or more "x" characters

import re
txt = "The rain in Spain falls mainly in the plain!"
#Check if the string contains "ai" followed by 0 or more "x" characters:
x = re.findall("aix*", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:

['ai', 'ai', 'ai', 'ai']

Yes, there is at least one match!

8

Example 7: Program to check the string contains "ai" followed by 1 or more "x" characters

import re
txt = "The rain in Spain falls mainly in the plain!"
#Check if the string contains "ai" followed by 1 or more "x" characters:
x = re.findall("aix+", txt)
print(x)

if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
[]
No match

Example 9: Program to check if the string contains "a" followed by exactly two "l" characters

import re
txt = "The rain in Spain falls mainly in the plain!"
#Check if the string contains "a" followed by exactly two "l" characters:
x = re.findall("all{2}", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['all']
Yes, there is at least one match!

9

Example 10: Program to check if the string contains either "falls" or "stays" using meta character |

import re
txt = "The rain in Spain falls mainly in the plain!"
#Check if the string contains either "falls" or "stays":
x = re.findall("falls|stays", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['falls']
Yes, there is at least one match!

8.3 SPECIAL SEQUENCES

 A special sequence is a \ followed by one of the characters in the list below, and has a special meaning.

Character Description Example
\A Returns a match if the specified characters are

at the beginning of the string
"\AThe"

\b Returns a match where the specified characters
are at the beginning or at the end of a word.
(the "r" in the beginning is making sure that
the string is being treated as a "raw string")

r"\bain"
r"ain\b"

\B Returns a match where the specified characters
are present, but NOT at the beginning (or at the
end) of a word.
(the "r" in the beginning is making sure that

r"\Bain"
r"ain\B"

10

the string is being treated as a "raw string")
\d Returns a match where the string contains digits

(numbers from 0-9)
"\d"

\D Returns a match where the string DOES NOT
contain digits

"\D"

\s Returns a match where the string contains a
white space character

"\s"

\S Returns a match where the string DOES NOT
contain a white space character

"\S"

\w Returns a match where the string contains any
word characters (characters from a to Z, digits
from 0-9, and the underscore _ character)

"\w"

\W Returns a match where the string DOES NOT
contain any word characters

"\W"

\Z Returns a match if the specified characters are
at the end of the string

"Spain\Z"

Example 1: Program to check if the string starts with "The"

import re
txt = "The rain in Spain"
#Check if the string starts with "The":
x = re.findall("\AThe", txt)
print(x)
if x:
 print("Yes, there is a match!")
else:
 print("No match")

Output:
['The']
Yes, there is a match!

11

Example 2: Program to check if "ain" is present at the begining of a word

import re
txt = "The rain in Spain"
#Check if "ain" is present at the beginning of a WORD:
x = re.findall(r"\bain", txt) # r specifies raw string
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
[]
No match

Example 3: Program to check if "ain" is present at the end of a word

import re
txt = "The rain in Spain"
#Check if "ain" is present at the end of a WORD:
x = re.findall(r"ain\b", txt) # r specifies raw string
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['ain', 'ain']
Yes, there is at least one match!

12

Example 3: # Program to check if "ain" is present, but NOT at the begining of a word

import re
txt = "The rain in Spain"
Check if "ain" is present, but NOT at the beginning of a word
x = re.findall(r"\Bain", txt) # r specifies a raw string
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['ain', 'ain']
Yes, there is at least one match!

Example 4: Program to check if "ain" is present, but NOT at the end of a word

import re
txt = "The rain in Spain"
Check if "ain" is present, but NOT at the end of a word
x = re.findall(r"ain\B", txt) # r specifies a raw string
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
[]
No match

Example 5: Program to Check if the string contains any digits (numbers from 0-9)

import re

13

txt = "The rain in Spain 1975"
Check if the string contains any digits (numbers from 0-9):
x = re.findall("\d", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
[]
No match

Example 6: Program to return a match at every no-digit character.

import re
txt = "The rain in Spain"
Return a match at every no-digit character
x = re.findall("\D", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['T', 'h', 'e', ' ', 'r', 'a', 'i', 'n', ' ', 'i', 'n', ' ', 'S', 'p', 'a', 'i', 'n']
Yes, there is at least one match!

Example 7: Program to return a match at every white-space character.

import re
txt = "The rain in Spain"

14

Return a match at every white-space character:
x = re.findall("\s", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
[' ', ' ', ' ']
Yes, there is at least one match!

Example 8: Program to return a match at every NON white-space character.

import re
txt = "The rain in Spain"
#Return a match at every NON white-space character
x = re.findall("\S", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['T', 'h', 'e', 'r', 'a', 'i', 'n', 'i', 'n', 'S', 'p', 'a', 'i', 'n']
Yes, there is at least one match!

15

Example 9: Program to return a match at every word character (characters from a to Z, digits from 0-9, and
the underscore _ character)

import re
txt = "The rain in Spain"
Return a match at every word character (characters from a to Z, digits from 0-9, and the underscore _
character)
x = re.findall("\w", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['T', 'h', 'e', 'r', 'a', 'i', 'n', 'i', 'n', 'S', 'p', 'a', 'i', 'n']
Yes, there is at least one match!

Example 10: Program to return a match at every NON word character (characters NOT between a and Z. Like
"!", "?" white-space etc.)

import re
txt = "The rain in Spain"
Return a match at every NON word character (characters NOT between a and Z. Like "!", "?" white-space
etc.)
x = re.findall("\W", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
[' ', ' ', ' ']

16

Yes, there is at least one match!

Example 11: Program to check if the string ends with "Spain".

import re
txt = "The rain in Spain"
#Check if the string ends with "Spain":
x = re.findall("Spain\Z", txt)
print(x)
if x:
 print("Yes, there is a match!")
else:
 print("No match")

Output:
['Spain']
Yes, there is a match!

8.4 REGULAR EXPRESSION SETS

 A set is a set of characters inside a pair of square brackets [] with a special meaning.

Set Description

[arn] Returns a match where one of the specified characters (a, r, or n)
are present

[a-n] Returns a match for any lower case character, alphabetically
between a and n

[^arn] Returns a match for any character EXCEPT a, r, and n
[0123]

Returns a match where any of the specified digits (0, 1, 2, or 3) are
present

17

[0-9] Returns a match for any digit between 0 and 9
[0-5][0-9] Returns a match for any two-digit numbers from 00 and 59
[a-zA-Z] Returns a match for any character alphabetically between a and z,

lower case OR upper case
[+] In sets, +, *, ., |, (), $,{} has no special meaning, so [+] means:

return a match for any + character in the string

Example 1: Program Check if the string has any a, r, or n characters.

import re
txt = "The rain in Spain"
Check if the string has any a, r, or n characters:
x = re.findall("[arn]", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['r', 'a', 'n', 'n', 'a', 'n']
Yes, there is at least one match!

In []:

Example 2: Program to Check if the string has any characters between a and n.

import re
txt = "The rain in Spain"
Check if the string has any characters between a and n
x = re.findall("[a-n]", txt)
print(x)
if x:
 print("Yes, there is at least one match!")

18

else:
 print("No match")

Output:
['h', 'e', 'a', 'i', 'n', 'i', 'n', 'a', 'i', 'n']
Yes, there is at least one match!

Program 3: Program to Check if the string has other characters than a, r, or n.

import re
txt = "The rain in Spain"
Check if the string has other characters than a, r, or n
x = re.findall("[^arn]", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['T', 'h', 'e', ' ', 'i', ' ', 'i', ' ', 'S', 'p', 'i']
Yes, there is at least one match!

Program 4: Program to check if the string has any 0, 1, 2, or 3 digits.

import re
txt = "The rain in Spain"
Check if the string has any 0, 1, 2, or 3 digits
x = re.findall("[0123]", txt)
print(x)
if x:
 print("Yes, there is at least one match!")

19

else:
 print("No match")

Output:
[]
No match

Program 5: Program to check if a string has any digits.

import re
txt = "8 times before 11:45 AM"
Check if the string has any digits
x = re.findall("[0-9]", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['8', '1', '1', '4', '5']
Yes, there is at least one match!

Program 6: Program to check if the string has any two-digit numbers, from 00 to 59.

import re
txt = "8 times before 11:45 AM"
Check if the string has any two-digit numbers, from 00 to 59
x = re.findall("[0-5][0-9]", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

20

Output:
['11', '45']
Yes, there is at least one match!

Program 7: Program to Check if the string has any characters from a to z lower case, and A to Z upper case.

import re
txt = "8 times before 11:45 AM"
x = re.findall("[a-zA-Z]", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:
['t', 'i', 'm', 'e', 's', 'b', 'e', 'f', 'o', 'r', 'e', 'A', 'M']
Yes, there is at least one match!

Program 8: Program to check if the string has any + characters.

import re
txt = "8 times before 11:45 AM"
Check if the string has any + characters
x = re.findall("[+]", txt)
print(x)
if x:
 print("Yes, there is at least one match!")
else:
 print("No match")

Output:

21

[]
No match

1

CHAPTER 10

FILE HANDLING
10.1 INTRODUCTION

 File: A file is some information or data which stays in the computer storage devices.

10.1.1 File Path

 Most file systems that are used to day stores files in Tree Structure.

 At the top of the Tree there is one Root Node. Under the Root Node, there are other files

and folders. Even these folders can in turn contain other files and folders and this can go on

to an almost limitless depth.

 A file path can be relative or absolute.

 Absolute Path: Absolute path always contains the root and complete directory list to

specify the exact location of the file, relative path, on the other hand, needs to be combined

with another path in order to access a file.

E.g. C:\Students\Post Graduate\MCA

 Relative Path: The relative path is part of absolute path. The relative paths starts with

respect to the current working directory.

E.g. Post Graduate\MCA

C:\

Teaching Staff Non Teaching Staff Students

Graduate Post Graduate

 MCA M.SC(CS)

2

10.2 FILE HANDLING

10.2.1 Open Function:

 We use open () function in Python to open a file in read or write mode.

 Syntax: open (filename, mode).

 There are three kinds of mode, that Python provides and how files can be opened:

"r", for reading.
"w", for writing.

"a", for appending.
"r+", for both reading and writing.

Program 1: Write a program to open a file using open method.
f = open('d://demofile.txt', 'r')
print(f.read())

Output:
Hello! Welcome to demofile.txt

This file is for testing purposes.
Good Luck!

10.2.2 Read Only Parts of the File

 By default the read() method returns the whole text, but you can also specify how many characters

you want to return.

Program 2: Write a program to return the 5 first characters of the file.

f = open("d:\\demofile.txt", "r")
print(f.read(5))

Output:
Hello

10.2.3 Read Lines

 You can return one line by using the readline() method.

Program 3: Write a program to read a line from a file.

f=open("d:\\demofile.txt", "r")
print(f.readline())

Output:
Hello! Welcome to demofile.txt

3

10.2.4 Python File Write

Writing a File

Program 4: Program to write
Python code to create a file in write mode

file = open('d:\\x.txt','w')
file.write("This is the write command")
file.write("It allows us to write in a particular file")

file.close()

Using write along with with() function

Program 5: Write python code to illustrate with() along with write()

with open("d:\\y.txt", "w") as f:
 f.write("Hello World!!!")

Appending a File

 To write to an existing file, you must add a parameter to the open() function:

"a" - Append - will append to the end of the file.

"w" - Write - will overwrite any existing content.

Program 6: Program to append a new line to the existing file.

f = open("d:\\demofile2.txt", "a")
f.write("Now the file has more content!")

f.close()

#open and read the file after the appending:

f = open("d:\\demofile2.txt", "r")
print(f.read())

Output:
Hello! Welcome to demofile.txt

This file is for testing purposes.
Good Luck!Now the file has more content!

Program 7: Program to open the file "demofile3.txt" and overwrite the
content.

f = open("d:\\demofile3.txt", "w")
f.write("Woops! I have deleted the content!")

f.close()

4

#open and read the file after the appending:

f = open("d:\\demofile3.txt", "r")
print(f.read())

Output:
Woops! I have deleted the content!

Removing a File:

Program 8: Program to remove the existing file demofile.

import os

if os.path.exists("d:\\demofile"):
 os.remove("d:\\demofile")
else:

print("The file does not exist")
Output:
The file does not exist

Split() using File Handling:

Program 9: Program to illustrate split() function.

with open("d:\\x.txt", "r") as file:
 data = file.readlines()

 for line in data:
 word = line.split()
 print (word)

Output:
['This', 'is', 'the', 'write', 'command', 'It', 'allows', 'us', 'to',

'write', 'in', 'a', 'particular', 'file']

Program 10: Write a program to open the file and count the number of times a
character appears in the file.

with open("d:\\x.txt") as file:
 text = file.read()

 letter = input("Enter the character to be searhed : ")
 count = 0
 for char in text:

 if char == letter:
 count = count+1
print(letter, "appears" , count, "times in file")

5

Output:

Enter the character to be searhed : a
a appears 5 times in file

Program 11: Write a program that reads data from a file and calculates

the percentage of vowels and consonants in the file.

with open("d:\\x.txt") as file:

 text = file.read()
 count_vowels = 0
 count_consonants = 0

 for char in text:
 if char in "aeiou":
 count_vowels = count_vowels + 1

 else:
 count_consonants = count_consonants + 1
print("Number of vowels = ", count_vowels)

print("Number of consonants = ",count_consonants)
print("Total Length of File = ", len(text))
print("Percentage of vowels in the file =

",((count_vowels)*100)/len(text),"%")
print("Percentage of consonants in the file =
",((count_consonants)*100)/len(text), "%")

Output:
Number of vowels = 21

Number of consonants = 47
Total Length of File = 68
Percentage of vowels in the file = 30.88235294117647 %

Percentage of consonants in the file = 69.11764705882354 %

1

CHAPTER 11

PYTHON DATABASES

Program 1: Write a python program to create EMP table with attributes

ENO,ENAME and ESAL into PBS database.

import pymysql

#database connection
connection = pymysql.connect(host="localhost", user="root", passwd="",

database="PBS")
cursor = connection.cursor()
Query for creating table

EmpTableSql = """CREATE TABLE EMP(ENO INT(5) PRIMARY KEY,ENAME CHAR(10) NOT
NULL,ESAL INT(5))"""
cursor.execute(EmpTableSql)

connection.close()

Program 2: Write a python program to insert rows into EMP table of PBS

database.

import pymysql

Database connection

connection = pymysql.connect(host="localhost", user="root", passwd="",
database="PBS")
cursor = connection.cursor()

Queries for inserting values
insert1 = "INSERT INTO EMP(ENO, ENAME, ESAL) VALUES(1, 'PAVANI', 6000);"

insert2 = "INSERT INTO EMP(ENO, ENAME, ESAL) VALUES(2, 'VENKAT', 3000);"

Executing the quires

cursor.execute(insert1)
cursor.execute(insert2)

Commiting the connection then closing it.

connection.commit()

connection.close()

2

Program 3: Write a python program to update rows of EMP table of PBS

database.

import pymysql

Database connection
connection = pymysql.connect(host="localhost", user="root", passwd="",
database="PBS")

cursor = connection.cursor()
updateSql = "UPDATE EMP SET ENAME = 'ABHI' WHERE ENO = '1' ;"
cursor.execute(updateSql)

connection.commit()
connection.close()

Program 4: Write a python program to delete rows from EMP table of PBS

database.

import pymysql

Database connection
connection = pymysql.connect(host="localhost", user="root", passwd="",
database="PBS")

cursor = connection.cursor()
deleteSql = "DELETE FROM EMP WHERE ENO = '2'; "
cursor.execute(deleteSql)

connection.commit()
connection.close()

Program 5: Write a python program to drop EMP table of PBS database.

import pymysql

Database connection

connection = pymysql.connect(host="localhost", user="root", passwd="",
database="PBS")
cursor = connection.cursor()

dropSql = "DROP TABLE IF EXISTS EMP;"
cursor.execute(dropSql)

connection.commit()

connection.close()

